Fields of definition of elliptic *k*-curves with CM and Sato–Tate groups of abelian surfaces

Francesc Fité¹ Xevi Guitart²

¹Barcelona Graduate School of Mathematics (BGSMath)

²Universitat de Barcelona (UB)

December 2016

Outline

- 1 The Sato-Tate conjecture for elliptic curves
- Sato-Tate for abelian varieties
- Fields of definition of elliptic k-curves
- 4 A field realizing all Sato-Tate groups in dimension 2

Outline

- 1 The Sato-Tate conjecture for elliptic curves
- Sato-Tate for abelian varieties
- Fields of definition of elliptic k-curves
- 4 A field realizing all Sato-Tate groups in dimension 2

An elliptic curve over a number field k is a projective curve

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of *E* is a ring, and

$$\bar{E}: yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3, \quad \bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$$

• An elliptic curve over a number field *k* is a projective curve

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of E is a ring

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

• An elliptic curve over a number field *k* is a projective curve

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of *E* is a ring

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

• An elliptic curve over a number field *k* is a projective curve

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of *E* is a ring.

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

An elliptic curve over a number field k is a projective curve

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of E is a ring, and
 - ▶ End(E) $\simeq \mathbb{Z}$ (generic case)
 - ► End(E) an order in an imaginary quadratic field M (E has CM by M
- Given a prime $\mathfrak{p} \subset \mathcal{O}_k$ we can reduce the equation of E modulo \mathfrak{p}

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

 $\triangleright \mathcal{O}_{k}/\mathfrak{p}$ is a finite field with $|\mathfrak{p}|$ elements

• An elliptic curve over a number field *k* is a projective curve

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of E is a ring, and
 - ▶ End(E) $\simeq \mathbb{Z}$ (generic case)
 - ► End(E) an order in an imaginary quadratic field M (E has CM by M)
- Given a prime $\mathfrak{p} \subset \mathcal{O}_k$ we can reduce the equation of E modulo \mathfrak{p}

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

 $\mathcal{O}_{\mathcal{K}}/\mathfrak{p}$ is a finite field with $|\mathfrak{p}|$ elements $\mathcal{F}(\mathcal{O}_{\mathcal{K}}/\mathfrak{p})$ is now a finite set

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of E is a ring, and
 - ▶ End(E) $\simeq \mathbb{Z}$ (generic case)
 - ightharpoonup End(E) an order in an imaginary quadratic field M (E has CM by M)
- Given a prime $\mathfrak{p} \subset \mathcal{O}_k$ we can reduce the equation of E modulo \mathfrak{p}

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

- $\mathcal{O}_k/\mathfrak{p}$ is a finite field with $|\mathfrak{p}|$ elements
- $ightharpoonup \bar{E}(\mathcal{O}_k/\mathfrak{p})$ is now a finite set
- $a_{\mathfrak{p}} = |\mathfrak{p}| + 1 \# \bar{E}(\mathcal{O}_{\mathfrak{p}}/\mathfrak{p})$
- ▶ Hasse bound: $|a_p| \le 2\sqrt{|p|}$

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of E is a ring, and
 - ▶ End(E) $\simeq \mathbb{Z}$ (generic case)
 - ightharpoonup End(E) an order in an imaginary quadratic field M (E has CM by M)
- Given a prime $\mathfrak{p} \subset \mathcal{O}_k$ we can reduce the equation of E modulo \mathfrak{p}

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

- $ightharpoonup \mathcal{O}_k/\mathfrak{p}$ is a finite field with $|\mathfrak{p}|$ elements
- $ightharpoonup \bar{E}(\mathcal{O}_k/\mathfrak{p})$ is now a finite set
- $a_{\mathfrak{p}} = |\mathfrak{p}| + 1 \# \bar{E}(\mathcal{O}_{\mathfrak{p}}/\mathfrak{p})$
- ▶ Hasse bound: $|a_{\mathfrak{p}}| \leq 2\sqrt{|\mathfrak{p}|}$

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi \colon E \to E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of E is a ring, and
 - ▶ End(E) $\simeq \mathbb{Z}$ (generic case)
 - ▶ End(E) an order in an imaginary quadratic field M (E has CM by M)
- Given a prime $\mathfrak{p} \subset \mathcal{O}_k$ we can reduce the equation of E modulo \mathfrak{p}

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

- $ightharpoonup \mathcal{O}_k/\mathfrak{p}$ is a finite field with $|\mathfrak{p}|$ elements
- $ightharpoonup \bar{E}(\mathcal{O}_k/\mathfrak{p})$ is now a finite set
- $a_{\mathfrak{p}} = |\mathfrak{p}| + 1 \#\bar{E}(\mathcal{O}_{\mathfrak{p}}/\mathfrak{p})$
- ▶ Hasse bound: $|a_{\mathfrak{p}}| \leq 2\sqrt{|\mathfrak{p}|}$

$$E: yz^2 = x^3 + axz^2 + bz^3, \quad a, b \in \mathcal{O}_k$$

- The set of points E(k) admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi: E \rightarrow E$ (given by polynomials) which induces a group endomorphism on E(k).
- The set of endomorphisms of E is a ring, and
 - ▶ End(E) $\simeq \mathbb{Z}$ (generic case)
 - ▶ End(E) an order in an imaginary quadratic field M (E has CM by M)
- Given a prime $\mathfrak{p} \subset \mathcal{O}_k$ we can reduce the equation of E modulo \mathfrak{p}

$$\bar{E}$$
: $yz^2 = x^3 + \bar{a}xz^2 + \bar{b}z^3$, $\bar{a}, \bar{b} \in \mathcal{O}_k/\mathfrak{p}$

- $\mathcal{O}_k/\mathfrak{p}$ is a finite field with $|\mathfrak{p}|$ elements
- $ightharpoonup \bar{E}(\mathcal{O}_k/\mathfrak{p})$ is now a finite set
- ▶ Hasse bound: $|a_{\mathfrak{p}}| \leq 2\sqrt{|\mathfrak{p}|}$

- k a number field and E/k an elliptic curve
- \mathfrak{p} a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$
- Sato—Tate is about regarding $\mathfrak{p}\mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$
- Sato–Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2,2]$
- Sato–Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$
- Sato–Tate is about regarding $\mathfrak{p}\mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$
- Sato–Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| < N$: there are finitely many
 - give each p equal probability, so \bar{a}_p is a random variable
 - ightharpoonup let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$
- Sato–Tate is about regarding $\mathfrak{p}\mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
 - give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
 - ightharpoonup let $N o \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$
- Sato–Tate is about regarding $\mathfrak{p}\mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
 - give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
 - let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2,2]$
- Sato–Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
 - give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
 - let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure
 - ▶ *X* compact topological space, $C(X) = \{f : X \rightarrow \mathbb{C} \text{ continuous}\}$
 - ▶ Measure μ on X is μ : $C(X) \rightarrow \mathbb{C}$ continuous (positive and of mass
 - ▶ Notation: $\mu(f) = \int f d\mu$
 - ▶ A sequence $\{x_n\}_{n\geq 1} \subseteq X$

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2,2]$
- Sato–Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- ullet infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
 - give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
 - let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure
 - ▶ X compact topological space, $C(X) = \{f : X \rightarrow \mathbb{C} \text{ continuous}\}$
 - ▶ Measure μ on X is μ : $C(X) \rightarrow \mathbb{C}$ continuous (positive and of mass 1)
 - ▶ Notation: $\mu(f) = \int f d\mu$
 - ▶ A sequence $\{x_n\}_{n\geq 1} \subseteq X$

- k a number field and E/k an elliptic curve
- ullet p a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2,2]$
- Sato–Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
 - give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
 - let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure
 - ▶ *X* compact topological space, $C(X) = \{f : X \rightarrow \mathbb{C} \text{ continuous}\}$
 - ▶ Measure μ on X is μ : $C(X) \rightarrow \mathbb{C}$ continuous (positive and of mass 1)
 - ▶ Notation: $\mu(f) = \int f d\mu$
 - ▶ A sequence $\{x_n\}_{n>1} \subseteq X$

- k a number field and E/k an elliptic curve
- ullet ${\mathfrak p}$ a prime of $k \leadsto a_{\mathfrak p} := |{\mathfrak p}| + 1 \# E({\mathbb F}_{\mathfrak p})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2,2]$
- Sato–Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
 - give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
 - let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure
 - ▶ X compact topological space, $C(X) = \{f : X \rightarrow \mathbb{C} \text{ continuous}\}$
 - ▶ Measure μ on X is μ : $C(X) \rightarrow \mathbb{C}$ continuous (positive and of mass 1)
 - ▶ Notation: $\mu(f) = \int f d\mu$
 - ▶ A sequence $\{x_n\}_{n\geq 1}$ ⊆ X is equidistributed w.r.t. a measure μ if

for every
$$f \in C(X)$$
: $\int f d\mu = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i)$

- k a number field and E/k an elliptic curve
- \mathfrak{p} a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$
- Hasse bound: $\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$
- Sato–Tate is about regarding $\mathfrak{p}\mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
 - give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
 - let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure
 - ▶ *X* compact topological space, $C(X) = \{f : X \rightarrow \mathbb{C} \text{ continuous}\}$
 - ▶ Measure μ on X is μ : $C(X) \rightarrow \mathbb{C}$ continuous (positive and of mass 1)
 - ▶ Notation: $\mu(f) = \int f d\mu$
 - ▶ A sequence $\{x_n\}_{n\geq 1}\subseteq X$ is equidistributed w.r.t. a measure μ if

for every
$$f \in C(X)$$
: $\int f d\mu = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i)$

• Suppose that E/k does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\{\bar{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in [-2,2] w.r.t the measure $\frac{4}{\pi}\sqrt{4-x^2}$.

- Proved for k totally real (Clozel-Harris-Taylor-Shepherd-Barron)
- (Hecke) If E has CM by an imaginary quadratic M
 - ► $M \subseteq k$: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$
 - ► $M \subseteq k$: by $\frac{1}{2\pi} \frac{1}{\sqrt{4-x^2}} + \frac{1}{2} \delta_0(x)$

Easy remark

- For example, any imaginary quadratic M of class number 1
 - \triangleright E_1/M without CM.
 - ▶ E_2/\mathbb{Q} with CM by M, and base change to M.
 - ▶ E_3/\mathbb{Q} with CM by $M' \neq M$, and base to M.

• Suppose that E/k does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\{\bar{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in [-2,2] w.r.t the measure $\frac{4}{\pi}\sqrt{4-x^2}$.

- Proved for k totally real (Clozel-Harris-Taylor-Shepherd-Barron)
- (Hecke) If E has CM by an imaginary quadratic M
 - ► $M \subseteq k$: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$
 - $M \subseteq k$: by $\frac{1}{2\pi} \frac{1}{\sqrt{4-x^2}} + \frac{1}{2} \delta_0(x)$

Easy remark

- For example, any imaginary quadratic M of class number 1
 - \triangleright E_1/M without CM.
 - $ightharpoonup E_2/\mathbb{Q}$ with CM by M, and base change to M.
 - ▶ E_3/\mathbb{Q} with CM by $M' \neq M$, and base to M.

• Suppose that E/k does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\{\bar{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in [-2,2] w.r.t the measure $\frac{4}{\pi}\sqrt{4-x^2}$.

- Proved for *k* totally real (Clozel–Harris–Taylor–Shepherd-Barron).
- (Hecke) If E has CM by an imaginary quadratic M
 - ► $M \subseteq k$: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$
 - ► $M \nsubseteq k$: by $\frac{1}{2\pi} \frac{1}{\sqrt{4-x^2}} + \frac{1}{2} \delta_0(x)$

Easy remark

- For example, any imaginary quadratic M of class number 1
 - \triangleright E_1/M without CM.
 - $ightharpoonup E_2/\mathbb{Q}$ with CM by M, and base change to M.
 - ▶ E_3/\mathbb{Q} with CM by $M' \neq M$, and base to M.

• Suppose that E/k does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\{\bar{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in [-2,2] w.r.t the measure $\frac{4}{\pi}\sqrt{4-x^2}$.

- Proved for *k* totally real (Clozel–Harris–Taylor–Shepherd-Barron).
- (Hecke) If E has CM by an imaginary quadratic M
 - ► $M \subseteq k$: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$
 - $M \nsubseteq k$: by $\frac{1}{2\pi} \frac{1}{\sqrt{4-x^2}} + \frac{1}{2} \delta_0(x)$

Easy remark

- For example, any imaginary quadratic *M* of class number 1
 - ► E₁/M without CM.
 - $ightharpoonup E_2/\mathbb{Q}$ with CM by M, and base change to M.
 - ▶ E_3/\mathbb{Q} with CM by $M' \neq M$, and base to M.

• Suppose that E/k does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\{\bar{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in [-2,2] w.r.t the measure $\frac{4}{\pi}\sqrt{4-x^2}$.

- Proved for *k* totally real (Clozel–Harris–Taylor–Shepherd-Barron).
- (Hecke) If E has CM by an imaginary quadratic M
 - ► $M \subseteq k$: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$
 - $M \subseteq k$: by $\frac{1}{2\pi} \frac{1}{\sqrt{4-x^2}} + \frac{1}{2} \delta_0(x)$

Easy remark

- For example, any imaginary quadratic M of class number 1
 - ► E₁/M without CM.
 - ▶ E_2/\mathbb{Q} with CM by M, and base change to M.
 - ► E_3/\mathbb{Q} with CM by $M' \neq M$, and base to M.

• Suppose that E/k does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\{\bar{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in [-2,2] w.r.t the measure $\frac{4}{\pi}\sqrt{4-x^2}$.

- Proved for k totally real (Clozel–Harris–Taylor–Shepherd-Barron).
- (Hecke) If E has CM by an imaginary quadratic M
 - ► $M \subseteq k$: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$
 - $M \nsubseteq k$: by $\frac{1}{2\pi} \frac{1}{\sqrt{4-x^2}} + \frac{1}{2} \delta_0(x)$

Easy remark

- For example, any imaginary quadratic M of class number 1
 - ► E₁/M without CM.
 - ▶ E_2/\mathbb{Q} with CM by M, and base change to M.
 - ▶ E_3/\mathbb{Q} with CM by $M' \neq M$, and base to M.

Outline

- The Sato-Tate conjecture for elliptic curves
- Sato—Tate for abelian varieties
- Fields of definition of elliptic k-curves
- 4 A field realizing all Sato-Tate groups in dimension 2

- An abelian variety is a complete algebraic variety whose set of points has a group structure.

Francesc Fité, Xevi Guitart (BGSMath, UB)

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - Elliptic curves are the abelian varieties of dimension 1
 - ▶ Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)

• Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - Elliptic curves are the abelian varieties of dimension 1
 - ► Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)

• Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - Elliptic curves are the abelian varieties of dimension 1
 - ► Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)
- $= C \cdot x^2 = x^2 x \text{ is of names } 2 \sim J(C) \text{ is a zero.}$
- Abelian variety A → End(A) the ring of endomorphisms

Francesc Fité, Xevi Guitart (BGSMath, UB)

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - ▶ Elliptic curves are the abelian varieties of dimension 1
 - ► Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)
 - ▶ It is an abelian variety over *k* of dimension *g*
 - $I(C)(k) \simeq \text{Div}^0(C)/\sim$
 - ▶ $C: y^2 = x^5 x$ is of genus $2 \rightsquigarrow J(C)$ is an abelian surface
- Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - ▶ Elliptic curves are the abelian varieties of dimension 1
 - ► Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)
 - ▶ It is an abelian variety over k of dimension g
 - ▶ $J(C)(k) \simeq \text{Div}^0(C)/\sim$
 - ▶ $C: y^2 = x^5 x$ is of genus $2 \rightsquigarrow J(C)$ is an abelian surface
- Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - Elliptic curves are the abelian varieties of dimension 1
 - ► Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)
 - ▶ It is an abelian variety over k of dimension g
 - ▶ $J(C)(k) \simeq \text{Div}^0(C)/\sim$
 - C: $y^2 = x^5 x$ is of genus $2 \rightsquigarrow J(C)$ is an abelian surface
- Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - Elliptic curves are the abelian varieties of dimension 1
 - ▶ Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)
 - ▶ It is an abelian variety over k of dimension g
 - ▶ $J(C)(k) \simeq \text{Div}^0(C)/\sim$
 - C: $y^2 = x^5 x$ is of genus $2 \rightsquigarrow J(C)$ is an abelian surface
- Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms
 - isogenies: those endomorphisms that are surjective
 - We work in a category where isogenies become isomorphisms

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - Elliptic curves are the abelian varieties of dimension 1
 - ▶ Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)
 - ▶ It is an abelian variety over k of dimension g
 - ▶ $J(C)(k) \simeq \text{Div}^0(C)/\sim$
 - C: $y^2 = x^5 x$ is of genus $2 \rightsquigarrow J(C)$ is an abelian surface
- Abelian variety $A \rightsquigarrow \text{End}(A)$ the ring of endomorphisms
 - isogenies: those endomorphisms that are surjective.
 - We work in a category where isogenies become isomorphisms.

- An abelian variety is a complete algebraic variety whose set of points has a group structure.
 - Elliptic curves are the abelian varieties of dimension 1
 - ► Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim > 1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian J(C)
 - ▶ It is an abelian variety over k of dimension g
 - ▶ $J(C)(k) \simeq \text{Div}^0(C)/\sim$
 - C: $y^2 = x^5 x$ is of genus $2 \rightsquigarrow J(C)$ is an abelian surface
- Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms
 - isogenies: those endomorphisms that are surjective.
 - We work in a category where isogenies become isomorphisms.

• $\bar{a}_{\mathfrak{p}} \in [-2,2] \iff \bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1$ is the characteristic polynomial of a matrix in

$$\mathrm{USp}(2) = \{ A \in \mathrm{GL}_2(\mathbb{C}) \colon AA^* = \mathrm{I}, A^t J A = J \}, \quad J = \mathrm{diag} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$$

• Moreover, the matrices in USp(2) with characteristic polynomial $\bar{L}_p(T)$ form a conjugacy class:

$$\operatorname{Conj}(\operatorname{USp}(2)) \stackrel{\operatorname{tr}}{\longrightarrow} [-2,2]$$
 is a bijection

- Equidistribution result can be stated in terms of Conj(USp(2)).
- Any compact subgroup G ⊆ USp(2) gives rise to a measure in Conj(USp(2)): the push forward of the Haar measure in G via

$$G \longrightarrow \operatorname{Conj}(G) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2)).$$

Restatement of the Sato-Tate conjecture

$$\{\bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1\}_{\mathfrak{p}} \in \operatorname{Conj}(\operatorname{USp}(2))$$
 is equidistributed w.r.t

USp(2): SO(2): Normalizer of SO(2) in USp(2).

• $\bar{a}_{\mathfrak{p}} \in [-2,2] \iff \bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1$ is the characteristic polynomial of a matrix in

$$\mathrm{USp}(2) = \{ A \in \mathrm{GL}_2(\mathbb{C}) \colon AA^* = \mathrm{I}, A^t JA = J \}, \quad J = \mathrm{diag} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$$

• Moreover, the matrices in USp(2) with characteristic polynomial $\bar{L}_p(T)$ form a conjugacy class:

$$Conj(USp(2)) \xrightarrow{tr} [-2,2]$$
 is a bijection

- Equidistribution result can be stated in terms of Conj(USp(2)).
- Any compact subgroup $G \subseteq \mathrm{USp}(2)$ gives rise to a measure in $\mathrm{Conj}(\mathrm{USp}(2))$: the push forward of the Haar measure in G via

$$G \longrightarrow \operatorname{Conj}(G) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2))$$

Restatement of the Sato-Tate conjecture

$$\{\bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1\}_{\mathfrak{p}} \in \operatorname{Conj}(\operatorname{USp}(2))$$
 is equidistributed w.r.t

USp(2); SO(2); Normalizer of SO(2) in USp(2).

• $\bar{a}_{\mathfrak{p}} \in [-2,2] \iff \bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1$ is the characteristic polynomial of a matrix in

$$\mathrm{USp}(2) = \{ A \in \mathrm{GL}_2(\mathbb{C}) \colon AA^* = \mathrm{I}, A^t JA = J \}, \quad J = \mathrm{diag} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$$

• Moreover, the matrices in USp(2) with characteristic polynomial $\bar{L}_{\mathfrak{p}}(T)$ form a conjugacy class:

$$\operatorname{Conj}(\operatorname{USp}(2)) \stackrel{\operatorname{tr}}{\longrightarrow} [-2,2]$$
 is a bijection

- Equidistribution result can be stated in terms of Conj(USp(2)).
- Any compact subgroup $G \subseteq \mathrm{USp}(2)$ gives rise to a measure in $\mathrm{Conj}(\mathrm{USp}(2))$: the push forward of the Haar measure in G via

$$G \longrightarrow \operatorname{Conj}(G) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2))$$

Restatement of the Sato-Tate conjecture

$$(\bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1)_{\mathfrak{p}} \in \operatorname{Conj}(\operatorname{USp}(2))$$
 is equidistributed w.r.t

USp(2): SO(2): Normalizer of SO(2) in USp(2)

• $\bar{a}_{\mathfrak{p}} \in [-2,2] \iff \bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1$ is the characteristic polynomial of a matrix in

$$\mathrm{USp}(2) = \{ A \in \mathrm{GL}_2(\mathbb{C}) \colon AA^* = \mathrm{I}, A^t JA = J \}, \quad J = \mathrm{diag} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$$

• Moreover, the matrices in USp(2) with characteristic polynomial $\bar{L}_p(T)$ form a conjugacy class:

$$\operatorname{Conj}(\operatorname{USp}(2)) \stackrel{\operatorname{tr}}{\longrightarrow} [-2,2]$$
 is a bijection

- Equidistribution result can be stated in terms of Conj(USp(2)).
- Any compact subgroup $G \subseteq USp(2)$ gives rise to a measure in Conj(USp(2)): the push forward of the Haar measure in G via $G \longrightarrow Conj(G) \longrightarrow Conj(USp(2))$.

Restatement of the Sato-Tate conjecture

$$\{\bar{L}_{\mathfrak{p}}(T)=T^2-\bar{a}_{\mathfrak{p}}T+1\}_{\mathfrak{p}}\in \mathrm{Conj}(\mathrm{USp}(2))$$
 is equidistributed w.r.t

• USp(2); SO(2); Normalizer of SO(2) in USp(2).

• $\bar{a}_{\mathfrak{p}} \in [-2,2] \iff \bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1$ is the characteristic polynomial of a matrix in

$$\mathrm{USp}(2) = \{ \textit{A} \in \mathrm{GL}_2(\mathbb{C}) \colon \textit{AA}^* = \mathrm{I}, \textit{A}^t\textit{JA} = \textit{J} \}, \quad \textit{J} = \mathrm{diag} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$$

• Moreover, the matrices in USp(2) with characteristic polynomial $\bar{L}_p(T)$ form a conjugacy class:

$$\operatorname{Conj}(\operatorname{USp}(2)) \stackrel{\operatorname{tr}}{\longrightarrow} [-2,2]$$
 is a bijection

- Equidistribution result can be stated in terms of Conj(USp(2)).
- Any compact subgroup $G \subseteq \mathrm{USp}(2)$ gives rise to a measure in $\mathrm{Conj}(\mathrm{USp}(2))$: the push forward of the Haar measure in G via

$$G \longrightarrow \operatorname{Conj}(G) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2)).$$

Restatement of the Sato-Tate conjecture

$$\{\bar{L}_{\mathfrak{p}}(T)=T^2-\bar{a}_{\mathfrak{p}}T+1\}_{\mathfrak{p}}\in \operatorname{Conj}(\operatorname{USp}(2))$$
 is equidistributed w.r.t

• USp(2); SO(2); Normalizer of SO(2) in USp(2)

• $\bar{a}_{\mathfrak{p}} \in [-2,2] \iff \bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1$ is the characteristic polynomial of a matrix in

$$\text{USp(2)} = \{\textit{A} \in \text{GL}_2(\mathbb{C}) \colon \textit{AA}^* = \text{I}, \textit{A}^t\textit{JA} = \textit{J}\}, \quad \textit{J} = \text{diag}\left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right)$$

• Moreover, the matrices in USp(2) with characteristic polynomial $\bar{L}_p(T)$ form a conjugacy class:

$$Conj(USp(2)) \xrightarrow{tr} [-2,2]$$
 is a bijection

- Equidistribution result can be stated in terms of Conj(USp(2)).
- Any compact subgroup $G \subseteq \mathrm{USp}(2)$ gives rise to a measure in $\mathrm{Conj}(\mathrm{USp}(2))$: the push forward of the Haar measure in G via

$$G \longrightarrow \operatorname{Conj}(G) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2)).$$

Restatement of the Sato-Tate conjecture

 $\{\bar{L}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1\}_{\mathfrak{p}} \in \operatorname{Conj}(\operatorname{USp}(2))$ is equidistributed w.r.t

• USp(2); SO(2); Normalizer of SO(2) in USp(2).

- ullet A/k abelian variety of dim g and $\mathfrak{p}\subset\mathcal{O}_k$ prime, $\mathbb{F}_q=\mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_p(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s
- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \leadsto \text{unique element in Conj}(\mathrm{USp}(2g))$
- Equidistribution of {\(\bar{L}_p(A, T)\)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the ma

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p}\subset\mathcal{O}_k$ prime, $\mathbb{F}_q=\mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \leadsto \text{unique element in Conj}(\mathrm{USp}(2g))$
- Equidistribution of {\(\bar{L}_p(A, T)\)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato—Tate group of A

Generalized Sato–Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the ma

$$\operatorname{ST}_A \longrightarrow \operatorname{Conj}(\operatorname{ST}_A) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p} \subset \mathcal{O}_k$ prime, $\mathbb{F}_q = \mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \leadsto \text{unique element in Conj}(\mathrm{USp}(2g))$
- Equidistribution of {\(\bar{L}_p(A, T)\)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the materials of the Haar measure in ST_A

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p} \subset \mathcal{O}_k$ prime, $\mathbb{F}_q = \mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_p(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \leadsto \text{unique element in Conj}(\mathrm{USp}(2g))$
- ▶ USp(2g) = { $A \in GL_{2g}(\mathbb{C})$: $AA^* = I$, $A^*JA = J$ }, $J = diag\left(\begin{bmatrix} 0 \\ -1 \end{bmatrix} \right)$ ▶ Equidistribution of { \overline{I} , (A, T)}, C Conj(USp(2g))
- Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the m

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p} \subset \mathcal{O}_k$ prime, $\mathbb{F}_q = \mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \rightsquigarrow \text{ unique element in Conj}(\mathrm{USp}(2g))$ • $\mathrm{USp}(2g) = \{A \in \mathrm{GL}_{2g}(\mathbb{C}) \colon AA^* = \mathrm{I}, A^tJA = J\}, \quad J = \mathrm{diag}\left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right)$
- Equidistribution of {L_p(A, I)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Coni(USp(2g)
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the ma

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p} \subset \mathcal{O}_k$ prime, $\mathbb{F}_q = \mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \rightsquigarrow \text{ unique element in Conj}(\mathrm{USp}(2g))$ • $\mathrm{USp}(2g) = \{A \in \mathrm{GL}_{2g}(\mathbb{C}) \colon AA^* = \mathrm{I}, A^tJA = J\}, \quad J = \mathrm{diag}\left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right)$
- Equidistribution of $\{\bar{L}_{\mathfrak{p}}(A,T)\}_{\mathfrak{p}} \subseteq \operatorname{Conj}(\operatorname{USp}(2g))$
 - ▶ Compact subgroup of $USp(2g) \rightsquigarrow measure in Conj(USp(2g))$
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the ma

$$\operatorname{ST}_A \longrightarrow \operatorname{Conj}(\operatorname{ST}_A) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p}\subset\mathcal{O}_k$ prime, $\mathbb{F}_q=\mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \geq 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \leadsto \text{ unique element in Conj}(\mathrm{USp}(2g))$ • $\mathrm{USp}(2g) = \{A \in \mathrm{GL}_{2g}(\mathbb{C}) \colon AA^* = \mathrm{I}, A^tJA = J\}, \quad J = \mathrm{diag}\left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right)$
- Equidistribution of {\(\bar{L}_p(A, T)\)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A

neralized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the ma

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p} \subset \mathcal{O}_k$ prime, $\mathbb{F}_q = \mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \leadsto \text{ unique element in Conj}(\mathrm{USp}(2g))$ • $\mathrm{USp}(2g) = \{A \in \mathrm{GL}_{2g}(\mathbb{C}) \colon AA^* = \mathrm{I}, A^tJA = J\}, \quad J = \mathrm{diag} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$
- Equidistribution of {\(\bar{L}_p(A, T)\)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A
 - e.g. if dim $A \le 3$ and $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$ then $\operatorname{ST}_A = \operatorname{USp}(2g)$

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the map

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p} \subset \mathcal{O}_k$ prime, $\mathbb{F}_q = \mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \rightsquigarrow \text{ unique element in Conj}(\mathrm{USp}(2g))$
 - $USp(2g) = \{A \in GL_{2g}(\mathbb{C}) : AA^* = I, A^tJA = J\}, \quad J = \operatorname{diag}\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
- Equidistribution of {\(\bar{L}_p(A, T)\)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A
 - e.g. if dim $A \le 3$ and $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$ then $\operatorname{ST}_A = \operatorname{USp}(2g)$

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the map

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

- A/k abelian variety of dim g and $\mathfrak{p} \subset \mathcal{O}_k$ prime, $\mathbb{F}_q = \mathcal{O}_k/\mathfrak{p}$
- (Weil) There is a polynomial $L_p(T) = (1 \alpha_1 T) \dots (1 \alpha_{2g} T)$ s.t.

$$\#A(\mathbb{F}_{q^n}) = (1 - q^{n/2}\alpha_1^n)\dots(1 - q^{n/2}\alpha_{2g}^n), \quad \forall n \ge 1$$

- $\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{|\mathfrak{p}|}) \leadsto \text{unique element in Conj}(\mathrm{USp}(2g))$
 - ▶ USp(2g) = { $A \in GL_{2g}(\mathbb{C})$: $AA^* = I, A^tJA = J$ }, $J = diag\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
- Equidistribution of {\(\bar{L}_p(A, T)\)}_p ⊆ Conj(USp(2g))
 Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato-Tate group of A
 - e.g. if dim $A \leq 3$ and $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$ then $\operatorname{ST}_A = \operatorname{USp}(2g)$)

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_p(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the map

$$ST_A \longrightarrow Conj(ST_A) \longrightarrow Conj(USp(2g))$$

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato—Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that ST_A = G

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
- How to determine the Sato—Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that ST_A = G

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
- How to determine the Sato-Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that ST_A = G

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
- How to determine the Sato-Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that $ST_A = G$
 - ▶ The number field is not always the same, it depends on *G*..

Question

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
- How to determine the Sato—Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that $ST_A = G$
 - ▶ The number field is not always the same, it depends on *G*...

Question

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
- How to determine the Sato-Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that $ST_A = G$
 - ▶ The number field is not always the same, it depends on *G*...

Question

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
- How to determine the Sato-Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that $ST_A = G$
 - ▶ The number field is not always the same, it depends on G...

Question

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that $ST_A = G$
 - ▶ The number field is not always the same, it depends on *G*...

Question

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
 - ▶ It doesn't work, the Sato-Tate group is sensitive to base change
 - How to determine the Sato-Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that $ST_A = G$
 - ▶ The number field is not always the same, it depends on *G*...

Question

- First idea: take k_0 the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_0
 - ▶ It doesn't work, the Sato-Tate group is sensitive to base change
- How to determine the Sato-Tate group of an abelian surface A?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

The Sato–Tate group of A/k is completely determined by $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$, viewed as a G_k -module. Moreover

- ullet The G_k -module $\operatorname{End}(A_{\overline{k}})\otimes_{\mathbb{Z}}\mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change

Theorem (Fité-Kedlaya-Rotger-Sutherland)

The Sato–Tate group of A/k is completely determined by $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$, viewed as a G_k -module. Moreover

- $(ST_A)^0$ is determined by $End(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $ST_A/(ST_A)^0 \simeq Gal(L/k)$ (smallest field of definition of $End(A_{\overline{k}})$)
- lacktriangle The G_k -module $\operatorname{End}(A_{\overline{k}})\otimes_{\mathbb{Z}}\mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato-Tate groups
- Observe that the component group is sensitive to base change

Theorem (Fité-Kedlaya-Rotger-Sutherland)

The Sato–Tate group of A/k is completely determined by $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$, viewed as a G_k -module. Moreover

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\operatorname{ST}_A/(\operatorname{ST}_A)^0 \simeq \operatorname{Gal}(L/k)$ (smallest field of definition of $\operatorname{End}(A_{\bar{k}})$)
- ullet The G_k -module $\operatorname{End}(A_{\overline{k}})\otimes_{\mathbb{Z}}\mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change

Theorem (Fité-Kedlaya-Rotger-Sutherland)

The Sato–Tate group of A/k is completely determined by $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$, viewed as a G_k -module. Moreover

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\operatorname{ST}_A/(\operatorname{ST}_A)^0 \simeq \operatorname{Gal}(L/k)$ (smallest field of definition of $\operatorname{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change

Theorem (Fité-Kedlaya-Rotger-Sutherland)

The Sato–Tate group of A/k is completely determined by $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$, viewed as a G_k -module. Moreover

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\operatorname{ST}_A/(\operatorname{ST}_A)^0 \simeq \operatorname{Gal}(L/k)$ (smallest field of definition of $\operatorname{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato-Tate groups
- Observe that the component group is sensitive to base change

Theorem (Fité-Kedlaya-Rotger-Sutherland)

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\operatorname{ST}_A/(\operatorname{ST}_A)^0 \simeq \operatorname{Gal}(L/k)$ (smallest field of definition of $\operatorname{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato-Tate groups
- Observe that the component group is sensitive to base change
 - ▶ But if $k' \cap L = k$ then $ST_{A_{i,j}} = ST_A$
 - Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find k_0 and construct 52 abelian surfaces over k_0 realizing all 52 possible Galois endomorphism types

Theorem (Fité-Kedlaya-Rotger-Sutherland)

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\operatorname{ST}_A/(\operatorname{ST}_A)^0 \simeq \operatorname{Gal}(L/k)$ (smallest field of definition of $\operatorname{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change
 - ▶ But if $k' \cap L = k$ then $ST_{A_{k'}} = ST_A$
 - Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find k_0 and construct 52 abelian surfaces over k_0 realizing all 52 possible Galois endomorphism types

Theorem (Fité-Kedlaya-Rotger-Sutherland)

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\operatorname{ST}_A/(\operatorname{ST}_A)^0 \simeq \operatorname{Gal}(L/k)$ (smallest field of definition of $\operatorname{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change
 - ▶ But if $k' \cap L = k$ then $ST_{A_{k'}} = ST_A$
 - ► Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find k_0 and construct 52 abelian surfaces over k_0 realizing all 52 possible Galois endomorphism types

Theorem (Fité–Kedlaya–Rotger–Sutherland)

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\mathrm{ST}_A/(\mathrm{ST}_A)^0 \simeq \mathrm{Gal}(L/k)$ (smallest field of definition of $\mathrm{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change
 - ▶ But if $k' \cap L = k$ then $ST_{A_{k'}} = ST_A$
 - Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find k_0 and construct 52 abelian surfaces over k_0 realizing all 52 possible Galois endomorphism types
 - What kind of arithmetic problems this leads to?
 - Why controlling fields of definition of CM curves is important?

Theorem (Fité-Kedlaya-Rotger-Sutherland)

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\mathrm{ST}_A/(\mathrm{ST}_A)^0 \simeq \mathrm{Gal}(L/k)$ (smallest field of definition of $\mathrm{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change
 - ▶ But if $k' \cap L = k$ then $ST_{A_{k'}} = ST_A$
 - Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find k_0 and construct 52 abelian surfaces over k_0 realizing all 52 possible Galois endomorphism types
 - What kind of arithmetic problems this leads to?
 - ▶ Why controlling fields of definition of CM curves is important?

Theorem (Fité–Kedlaya–Rotger–Sutherland)

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $\mathrm{ST}_A/(\mathrm{ST}_A)^0 \simeq \mathrm{Gal}(L/k)$ (smallest field of definition of $\mathrm{End}(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato—Tate groups
- Observe that the component group is sensitive to base change
 - ▶ But if $k' \cap L = k$ then $ST_{A_{k'}} = ST_A$
 - Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find k_0 and construct 52 abelian surfaces over k_0 realizing all 52 possible Galois endomorphism types
 - What kind of arithmetic problems this leads to?
 - Why controlling fields of definition of CM curves is important?

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato–Tate groups $\leadsto \operatorname{Gal}(L/k) \supseteq \operatorname{S}_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is O then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2$$
 and $Gal(L/k) \supseteq S_4$ (1)

had $M = \mathbb{Q}(\sqrt{-2})$

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato–Tate groups \rightsquigarrow Gal $(L/k) \supseteq S_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is O then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2$$
 and $\operatorname{Gal}(L/k) \supseteq S_4$ (1)

had $M = \mathbb{Q}(\sqrt{-2})$

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato-Tate groups $\rightsquigarrow \operatorname{Gal}(L/k) \supseteq \operatorname{S}_4$
- This implies that $A_{\bar{k}} \sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is *O* then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2$$
 and $Gal(L/k) \supseteq S_4$ (1)

had $M = \mathbb{Q}(\sqrt{-2})$

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato-Tate groups $\rightsquigarrow \operatorname{Gal}(L/k) \supseteq S_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is *O* then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq K$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2 \text{ and } \mathrm{Gal}(L/k) \supseteq \mathrm{S}_4$$
 (1)

had $M = \mathbb{Q}(\sqrt{-2})$

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato–Tate groups $\rightsquigarrow \operatorname{Gal}(L/k) \supseteq S_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is O then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2$$
 and $Gal(L/k) \supseteq S_4$ (1)

had $M = \mathbb{Q}(\sqrt{-2})$

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato–Tate groups $\rightsquigarrow \operatorname{Gal}(L/k) \supseteq S_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is O then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2 \text{ and } \operatorname{Gal}(L/k) \supseteq S_4$$
 (1)

had
$$M = \mathbb{Q}(\sqrt{-2})$$
.

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato–Tate groups $\rightsquigarrow \operatorname{Gal}(L/k) \supseteq S_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is O then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2 \text{ and } \operatorname{Gal}(L/k) \supseteq S_4$$
 (1)

had $M = \mathbb{Q}(\sqrt{-2})$.

- Are there examples with $M \neq \mathbb{Q}(\sqrt{-2})$?
 - ▶ If not, one could not realize all Sato–Tate groups over a single k_0 : one would have $\mathbb{Q}(\sqrt{-2}) \subseteq k_0$ and $\mathbb{Q}(\sqrt{-2}) \not\subseteq k_0$ at the same time!
 - ► The answer is yes, and constructing such a variety is part of the solution to the problem

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato–Tate groups $\rightsquigarrow \operatorname{Gal}(L/k) \supseteq S_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is O then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2 \text{ and } \operatorname{Gal}(L/k) \supseteq S_4$$
 (1)

had
$$M = \mathbb{Q}(\sqrt{-2})$$
.

- Are there examples with $M \neq \mathbb{Q}(\sqrt{-2})$?
 - ▶ If not, one could not realize all Sato–Tate groups over a single k_0 : one would have $\mathbb{Q}(\sqrt{-2}) \subseteq k_0$ and $\mathbb{Q}(\sqrt{-2}) \not\subseteq k_0$ at the same time!
 - ► The answer is yes, and constructing such a variety is part of the solution to the problem

- There are three Sato–Tate groups, called O, O_1 , and J(O), whose component group contains S_4 .
- If A/k has one of these Sato-Tate groups $\rightsquigarrow \operatorname{Gal}(L/k) \supseteq S_4$
- ullet This implies that $A_{ar k}\sim E^2$ with E a CM curve, say by M
- [FKRS12] prove that
 - ▶ If the group is O then $M \subseteq k$
 - ▶ If the group is O_1 or J(O), then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2 \text{ and } \operatorname{Gal}(L/k) \supseteq S_4$$
 (1)

had
$$M = \mathbb{Q}(\sqrt{-2})$$
.

- Are there examples with $M \neq \mathbb{Q}(\sqrt{-2})$?
 - ▶ If not, one could not realize all Sato–Tate groups over a single k_0 : one would have $\mathbb{Q}(\sqrt{-2}) \subseteq k_0$ and $\mathbb{Q}(\sqrt{-2}) \not\subseteq k_0$ at the same time!
 - ► The answer is yes, and constructing such a variety is part of the solution to the problem

Suppose that A/k is such that $A_{\bar{k}} \sim E^2$ and E has CM by M.

- What are the possibilities for M?
- Does the prescription of Gal(L/k) impose extra restrictions on M?
- Our techniques need to assume that $M \subseteq k$

Francesc Fité, Xevi Guitart (BGSMath, UB)

- What are the possibilities for M?
- Does the prescription of Gal(L/k) impose extra restrictions on M?
- Our techniques need to assume that $M \subseteq k$

- What are the possibilities for M?
- Does the prescription of Gal(L/k) impose extra restrictions on M?
- Our techniques need to assume that $M \subseteq k$
 - ▶ In fact, to control the possibilities for M we assume k = M
 - ▶ This solves the case $k = \mathbb{Q}$ (by base change)

- What are the possibilities for M?
- Does the prescription of Gal(L/k) impose extra restrictions on M?
- Our techniques need to assume that $M \subseteq k$
 - ▶ In fact, to control the possibilities for M we assume k = M
 - ▶ This solves the case $k = \mathbb{Q}$ (by base change)

- What are the possibilities for M?
- Does the prescription of Gal(L/k) impose extra restrictions on M?
- Our techniques need to assume that $M \subseteq k$
 - ▶ In fact, to control the possibilities for M we assume k = M
 - ▶ This solves the case $k = \mathbb{Q}$ (by base change)

Outline

- The Sato-Tate conjecture for elliptic curves
- Sato—Tate for abelian varieties
- Fields of definition of elliptic k-curves
- 4 A field realizing all Sato-Tate groups in dimension 2

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of } \operatorname{End}(A_{\overline{\mathbb{Q}}})$. Obs: $M \subseteq L$.
- $\mathcal{M}^1, \mathcal{M}^2 = M$'s of class number 1 and 2; $\mathcal{M}^{2,2} = M$'s with class group $C_2 \times C$

Theorem

The set of possibilities for *M* is

• Control field of def. of *E* up to isogeny (control the class group)

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of } \operatorname{End}(A_{\overline{\mathbb{Q}}})$. Obs: $M \subseteq L$.
 - ► Known that $Gal(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- $\mathcal{M}^1, \mathcal{M}^2 = M$'s of class number 1 and 2; $\mathcal{M}^{2,2,} = M$'s with class group $C_2 \times C_2 \times C_3$

Theorem

The set of possibilities for *M* is

[•] Control field of def. of *E* up to isogeny (control the class group)

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of } \operatorname{End}(A_{\overline{\mathbb{Q}}})$. Obs: $M \subseteq L$.
 - ► Known that $Gal(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- $\mathcal{M}^1, \mathcal{M}^2 = M$'s of class number 1 and 2; $\mathcal{M}^{2,2,} = M$'s with class group $C_2 \times C$

Theorem

The set of possibilities for *M* is

• Control field of def. of E up to isogeny (control the class group)

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of } \operatorname{End}(A_{\overline{\mathbb{Q}}})$. Obs: $M \subseteq L$.
 - ▶ Known that $Gal(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- $\mathcal{M}^1, \mathcal{M}^2 = \textit{M}$'s of class number 1 and 2; $\mathcal{M}^{2,2,} = \textit{M}$'s with class group $\textit{C}_2 \times \textit{C}_2$

Theorem

The set of possibilities for *M* is

Control field of def. of E up to isogeny (control the class group)
 Restrictions coming from representation theory (excludes case)

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of } \operatorname{End}(A_{\overline{\mathbb{Q}}})$. Obs: $M \subseteq L$.
 - ► Known that $Gal(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- $\mathcal{M}^1, \mathcal{M}^2 = \textit{M}$'s of class number 1 and 2; $\mathcal{M}^{2,2,} = \textit{M}$'s with class group $\textit{C}_2 \times \textit{C}_2$

Theorem

The set of possibilities for *M* is

Control field of def. of E up to isogeny (control the class group)
 Restrictions coming from representation theory (excludes case)

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of } \operatorname{End}(A_{\overline{\mathbb{Q}}})$. Obs: $M \subseteq L$.
 - ► Known that $Gal(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- $\mathcal{M}^1, \mathcal{M}^2 = \textit{M}$'s of class number 1 and 2; $\mathcal{M}^{2,2,} = \textit{M}$'s with class group $\textit{C}_2 \times \textit{C}_2$

Theorem

The set of possibilities for *M* is

```
Gal(L/M)
                                                                                      \mathcal{M}(Gal(L/M))
        C_1
                                                                                          \mathcal{M}^1 \cup \mathcal{M}^2
        C_3
        C_4
                                                                       \{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^2
                                                                                  \{\mathbb{Q}(\sqrt{-3})\}\cup\mathcal{M}^2
        C_6
                                                                                 M^1 \cup M^2 \cup M^{2,2}
                                                                                          \mathcal{M}^1 \cup \mathcal{M}^2
        D_3
                                                              \{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^2 \cup \mathcal{M}^{2,2}
        D_4
        D_6
                                                                         \{\mathbb{Q}(\sqrt{-3})\}\cup\mathcal{M}^2\cup\mathcal{M}^{2,2}
                                                                                   \mathcal{M}^1 \setminus \{\mathbb{Q}(\sqrt{-7})\}
        A_4
                           \{\mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^2 \setminus \{\mathbb{Q}(\sqrt{-15}), \mathbb{Q}(\sqrt{-35}), \mathbb{Q}(\sqrt{-51}), \mathbb{Q}(\sqrt{-115})\}
```

- Control field of def. of *E* up to isogeny (control the class group)
- Restrictions coming from representation theory (excit

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of } \operatorname{End}(A_{\overline{\mathbb{Q}}})$. Obs: $M \subseteq L$.
 - ► Known that $Gal(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- $\mathcal{M}^1, \mathcal{M}^2 = \textit{M}$'s of class number 1 and 2; $\mathcal{M}^{2,2,} = \textit{M}$'s with class group $\textit{C}_2 \times \textit{C}_2$

Theorem

The set of possibilities for *M* is

```
Gal(L/M)
                                                                                       \mathcal{M}(Gal(L/M))
        C_1
                                                                                          \mathcal{M}^1 \cup \mathcal{M}^2
        C_4
                                                                        \{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^2
                                                                                   \{\mathbb{Q}(\sqrt{-3})\}\cup\mathcal{M}^2
        C_6
                                                                                 M^1 \cup M^2 \cup M^{2,2}
                                                                                          \mathcal{M}^1 \cup \mathcal{M}^2
        D_3
                                                               \{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^2 \cup \mathcal{M}^{2,2}
        D_6
                                                                         \{\mathbb{Q}(\sqrt{-3})\}\cup\mathcal{M}^2\cup\mathcal{M}^{2,2}
                                                                                   \mathcal{M}^1 \setminus \{\mathbb{Q}(\sqrt{-7})\}
        A_4
                            \{\mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^2 \setminus \{\mathbb{Q}(\sqrt{-15}), \mathbb{Q}(\sqrt{-35}), \mathbb{Q}(\sqrt{-51}), \mathbb{Q}(\sqrt{-115})\}
```

- Control field of def. of E up to isogeny (control the class group)
- Restrictions coming from representation theory (excit

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where E has CM by M.
- $L = \text{smallest field of definition of End}(A_{\overline{\square}})$. Obs: $M \subseteq L$.
 - ► Known that $Gal(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- \mathcal{M}^1 , $\mathcal{M}^2 = M$'s of class number 1 and 2; $\mathcal{M}^{2,2} = M$'s with class group $C_2 \times C_2$

Theorem

The set of possibilities for *M* is

- Control field of def. of E up to isogeny (control the class group)
 Restrictions coming from representation theory (excludes cases)
- Francesc Fité, Xevi Guitart (BGSMath, UB)

16/20

Outline

- The Sato-Tate conjecture for elliptic curves
- Sato—Tate for abelian varieties
- Fields of definition of elliptic k-curves
- 4 A field realizing all Sato-Tate groups in dimension 2

Theorem

Set $k_0 := \mathbb{Q}(\sqrt{-40}, \sqrt{-51}, \sqrt{-163}, \sqrt{-67}, \sqrt{19 \cdot 43}, \sqrt{-57})$. Then, there exist 52 abelian surfaces defined over k_0 realizing all possible Sato–Tate groups of abelian surfaces defined over number fields.

Used several methods to find the 52 abelian surfaces

Theorem

- Used several methods to find the 52 abelian surfaces:
 - ▶ Base change the curves of [FKRS12] over ℚ
 - ***** For each C/\mathbb{Q} , we checked that $L \cap k_0 = \mathbb{Q}$ so that C_{k_0} works
 - Finding an explicit equation of a genus two curve, and determining the endomorphisms of the Jacobian and the field of definition
 - ★ Search methods (help of Sutherland)
 - ★ looking into families with prescribed automorphisms (Cardona—Quer)
 - Restriction of Scalars construction
 - * A surface A/k with $A_{\overline{0}} \sim E^2$ and $Gal(L/k) \simeq S_4$ and $M \neq \mathbb{Q}(\sqrt{-2})$
 - ***** We will see that $k = M = \mathbb{Q}(\sqrt{-40})$

Theorem

- Used several methods to find the 52 abelian surfaces:
 - ▶ Base change the curves of [FKRS12] over ℚ
 - ★ For each C/\mathbb{Q} , we checked that $L \cap k_0 = \mathbb{Q}$ so that C_{k_0} works
 - Finding an explicit equation of a genus two curve, and determining the endomorphisms of the Jacobian and the field of definition
 - ★ Search methods (help of Sutherland)
 - ★ looking into families with prescribed automorphisms (Cardona—Quer)
 - Restriction of Scalars construction
 - * A surface A/k with $A_{\overline{0}} \sim E^2$ and $Gal(L/k) \simeq S_4$ and $M \neq \mathbb{Q}(\sqrt{-2})$
 - ***** We will see that $k = M = \mathbb{Q}(\sqrt{-40})$

Theorem

- Used several methods to find the 52 abelian surfaces:
 - ▶ Base change the curves of [FKRS12] over Q
 - ★ For each C/\mathbb{Q} , we checked that $L \cap k_0 = \mathbb{Q}$ so that C_{k_0} works
 - Finding an explicit equation of a genus two curve, and determining the endomorphisms of the Jacobian and the field of definition
 - ★ Search methods (help of Sutherland)
 - ★ looking into families with prescribed automorphisms (Cardona-Quer)
 - Restriction of Scalars construction
 - * A surface A/k with $A_{\overline{0}} \sim E^2$ and $Gal(L/k) \simeq S_4$ and $M \neq \mathbb{Q}(\sqrt{-2})$
 - ***** We will see that $k = M = \mathbb{Q}(\sqrt{-40})$

Theorem

- Used several methods to find the 52 abelian surfaces:
 - ▶ Base change the curves of [FKRS12] over Q
 - ★ For each C/\mathbb{Q} , we checked that $L \cap k_0 = \mathbb{Q}$ so that C_{k_0} works
 - Finding an explicit equation of a genus two curve, and determining the endomorphisms of the Jacobian and the field of definition
 - ★ Search methods (help of Sutherland)
 - ★ looking into families with prescribed automorphisms (Cardona—Quer)
 - Restriction of Scalars construction
 - * A surface A/k with $A_{\overline{\mathbb{Q}}} \sim E^2$ and $\mathrm{Gal}(L/k) \simeq S_4$ and $M \neq \mathbb{Q}(\sqrt{-2})$
 - ***** We will see that $k = M = \mathbb{Q}(\sqrt{-40})$

Restriction of scalars construction

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$ • Galois closure of the extension given by $x^4 = x^2 + 5x^2 - 5x + 2$ • field with label 4.0.5780.1 in LMFDB

- E* is a k-curve with CM by M.
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \text{Res}_{L/K} E$. It is defined over k and $R_L \sim E^{24}$.

- We can compute explicitly c_F , and therefore $\operatorname{End}^0(R)$.
 - \triangleright Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor *A* of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $\operatorname{Gal}(L/k) \simeq S_4$, with $F \subseteq L$
 - ▶ Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2x^2 5$
 - ▶ field with label 4.0.5780.1 in LMFDE

$$E^*: y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$$

E* is a k-curve with CM by M.

- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$
- Consider $R = \text{Res}_{L/k}E$. It is defined over k and $R_L \sim E^{24}$.

- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$.
 - ightharpoonup Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - ▶ field with label 4.0.5780.1 in LMFDB

$$E^*: y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$$

E* is a k-curve with CM by M.

- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$
- Consider $R = \text{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$.

- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - ightharpoonup Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $\operatorname{Gal}(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - ▶ field with label 4.0.5780.1 in LMFDB

$$E^*$$
: $y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$

E* is a k-curve with CM by M

- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$
- Consider $R = \operatorname{Res}_{I/k} E$. It is defined over k and $R_I \sim E^{24}$.

- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - ightharpoonup Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $\operatorname{Gal}(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - field with label 4.0.5780.1 in LMFDB

$$E^*: y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \operatorname{Res}_{I/k} E$. It is defined over k and $R_I \sim E^{24}$.

- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - ightharpoonup Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $\operatorname{Gal}(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - field with label 4.0.5780.1 in LMFDB

$$E^*: y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$
- Consider $R = \operatorname{Res}_{I/k} E$. It is defined over k and $R_I \sim E^{24}$.

- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - \triangleright Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $\operatorname{Gal}(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - ▶ field with label 4.0.5780.1 in LMFDB

$$E^*$$
: $y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \text{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$.

- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - ightharpoonup Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - ▶ field with label 4.0.5780.1 in LMFDB

$$E^*$$
: $y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \operatorname{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$

- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - ▶ Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - field with label 4.0.5780.1 in LMFDB

$$E^*$$
: $y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \text{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$.
 - ▶ Gross–Ribet: End⁰(R) $\simeq M^{c_E}[Gal(L/k)]$ (twisted group algebra)
 - $M^{c_E}[\operatorname{Gal}(L/k)] = \bigoplus_{\sigma \in \operatorname{Gal}(L/k)} M \cdot u_{\sigma}, \text{ with } u_{\sigma} \cdot u_{\tau} = c_E(\sigma, \tau) u_{\sigma},$
- ullet We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - ightharpoonup Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - field with label 4.0.5780.1 in LMFDB

$$E^*$$
: $y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \text{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$.
 - ▶ Gross–Ribet: End⁰(R) $\simeq M^{c_E}[Gal(L/k)]$ (twisted group algebra)
 - $M^{c_E}[\operatorname{Gal}(L/k)] = \bigoplus_{\sigma \in \operatorname{Gal}(L/k)} M \cdot u_{\sigma}, \text{ with } u_{\sigma} \cdot u_{\tau} = c_E(\sigma, \tau) u_{\sigma\tau}$
- We can compute explicitly c_E , and therefore End⁰(R)
 - \triangleright Choosing β carefully, R decomposes in the right way
 - ► There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - ▶ field with label 4.0.5780.1 in LMFDB

$$E^*$$
: $y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \operatorname{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$.
 - ▶ Gross–Ribet: End⁰(R) $\simeq M^{c_E}[Gal(L/k)]$ (twisted group algebra)
 - $M^{c_E}[\operatorname{Gal}(L/k)] = \bigoplus_{\sigma \in \operatorname{Gal}(L/k)} M \cdot u_{\sigma}, \text{ with } u_{\sigma} \cdot u_{\tau} = c_E(\sigma, \tau) u_{\sigma\tau}$
- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$
 - \triangleright Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$
 - ► Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - ▶ field with label 4.0.5780.1 in LMFDB

$$E^*: y^2 = x^3 + (135\sqrt{5} - 1125)x + 6480\sqrt{5} - 54000$$

- E* is a k-curve with CM by M.
 - ▶ For $\sigma \in Gal(L/k)$ the isogeny $\mu_{\sigma} : {}^{\sigma}E \longrightarrow E$ is defined over L
 - ▶ Then $c_{E^*} \in H^2(Gal(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R = \text{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$.
 - ▶ Gross–Ribet: End⁰(R) $\simeq M^{c_E}[Gal(L/k)]$ (twisted group algebra)
 - $M^{c_E}[\operatorname{Gal}(L/k)] = \bigoplus_{\sigma \in \operatorname{Gal}(L/k)} M \cdot u_{\sigma}, \text{ with } u_{\sigma} \cdot u_{\tau} = c_E(\sigma, \tau) u_{\sigma\tau}$
- We can compute explicitly c_E , and therefore $\operatorname{End}^0(R)$.
 - ▶ Choosing β carefully, R decomposes in the right way
 - ▶ There is a simple factor A of dim 2 that has the sought properties

Fields of definition of elliptic *k*-curves with CM and Sato–Tate groups of abelian surfaces

Francesc Fité¹ Xevi Guitart²

¹Barcelona Graduate School of Mathematics (BGSMath)

²Universitat de Barcelona (UB)

December 2016