Darmon points: algorithms and numerical evidence

Xevi Guitart

Max-Planck-Institute for Mathematics

Number Theory Lunch Seminar, 14 November 2012

The Birch and Swinnerton-Dyer conjecture

 F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.
Modularity conjecture

There exists a Hilbert modular form f over F with $L(E / F, s)=L(f, s)$

- Modularity of E is known in many cases: we will just assume it.
- $L(E / F, s)$ extends to an entire function.
- Let $r_{a n}(E / F)=\operatorname{ord}_{s=1} L(E / F, s)$.

Conjecture (BSD)
Let $r(E / F)$ denote the rank of $E(F)$. Then

$$
r(E / F)=r_{a n}(E / F)
$$

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If $r_{a n}(E / F) \leq 1$ and E satisfies the Jacquet-Langlands condition:

- (JL) either $[F: \mathbb{Q}]$ is odd or \mathcal{N} is not a square then BSD holds true: $r_{a n}(E / F)=r(E / F)$.

Key ingredient: Heegner points

- Points coming from Shimura curve parametrizations.
- Condition (JL) is needed to ensure geometric modularity

$$
\pi_{E}: \operatorname{Jac}(X) \longrightarrow E, \quad X / F \text { Shimura curve. }
$$

- Shimura curves are endowed with a plentiful of algebraic points: the so-called CM points
- They are associated to elements in quadratic CM extensions K / F
- $\tau \in K \backslash F \rightsquigarrow \mathrm{CM}$ point $J_{\tau} \in \operatorname{Jac}(X)\left(K^{\mathrm{ab}}\right)$
- Heegner points: CM points satisfying certain additional conditions (e.g., that $\operatorname{sign} L(E / K, s)=1$)
- By means of π_{E} one obtains Heegner points on E

$$
P_{\tau} \in E\left(K^{\mathrm{ab}}\right)
$$

- The arithmetic of P_{τ} is related to $L(E / K, s)$ thanks to formulas of Gross-Zagier and Zhang

Particular case: $F=\mathbb{Q}$ and $X=X_{0}(N)$

- E defined over \mathbb{Q} of conductor N, and K quadratic imaginary field
- $\pi_{E}: X_{0}(N)=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E$
- Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be the newform such that $L(E / \mathbb{Q} ; s)=L(f ; s)$
- $\omega_{f}=2 \pi i f(z) d z$ a differential on $X_{0}(N)$
- For $\tau \in K \cap \mathcal{H}$ let $J_{\tau}=\int_{\infty}^{\tau} \omega_{f} \in \mathbb{C} / \Lambda_{f} \sim \mathbb{C} / \Lambda_{E}$

$$
\Lambda_{f}=\left\{\int_{\gamma} \omega_{f} \mid \gamma \in H_{1}\left(X_{0}(N), \mathbb{Z}\right)\right\}
$$

- $P_{\tau}=\Phi_{\mathrm{W}}\left(J_{\tau}\right) \in E(\mathbb{C})$, where $\Phi_{\mathrm{W}}: \mathbb{C} / \Lambda \rightarrow E(\mathbb{C})$
- This is computable: $f(z)=\sum a_{n} e^{2 \pi i n z}$ with $a_{p}=p+1-\# E\left(F_{p}\right)$
- it gives a good algorithm for doing explicit calculations
- Structure of the construction:
- $E \rightsquigarrow$ differential form ω_{f}
- $\tau \rightsquigarrow$ chain $\left.\Delta_{\tau}=\{\tau \rightarrow \infty\}\right\} \longrightarrow J_{\tau}=\int_{\Delta_{\tau}} \omega_{f}$
- This is a local construction
- In principle $P_{\tau} \in E(\mathbb{C})$ (but in fact $P_{\tau} \in E\left(K^{\mathrm{ab}}\right)$)

A natural question

- K / F arbitrary quadratic extension (not necessarily CM) with $\operatorname{sign} L(E / K, s)=-1$

Question

Is there an analytical construction of points in $E\left(K^{\mathrm{ab}}\right)$?

- To the best of my knowledge, nothing about this question has been proved beyond the result of Gross-Zagier and Zhang.
- However, a collection of conjectural constructions of points have been proposed by several authors (Darmon, Dasgupta, Greenberg, Pollack, Rotger, Longo, Vigni, Gartner, Trifkovic...)
- Construction of local points in $E\left(K_{v}\right)$, where v is a place of K ($K_{v}=\mathbb{C}$ or a p-adic field, depending on v)
- They are conjectured to be global points, namely to lie in $E\left(K^{\mathrm{ab}}\right)$
- The constructions are different, depending on K / F and v.
- All these constructions are known under the generic name of Darmon points (a.k.a. Stark-Heegner points).

Numerical calculation of Darmon points

- The constructions resemble some formal similarities, and are inspired by, the Heegner point construction:
$\left.\begin{array}{l}-E \rightsquigarrow \omega_{f} \\ \rightarrow \tau \in K \rightsquigarrow \Delta_{\tau}\end{array}\right\} \longrightarrow P_{\tau}=\int_{\Delta_{\tau}} \omega_{f}$
- But no "moduli interpretation" for this points is known: they do not correspond to projecting points from any Shimura variety.
- They are available even when E is not geometrically modular
- Evidence for the rationality: mainly from numerical computations
- The computed points are really close to global points!
- Actually, in some cases they turn out to be amazingly efficient algorithms for computing rational points
- But the computational and algorithmic picture is still not complete
- For some instances of Darmon points, there are no algorithms at all
- For the instances in which there are, sometimes the algorithm is still very restrictive and applies under some additional hypothesis
- In this talk: explain two instances of Darmon points
- There was an algorithm, but quite restrictive
- Provide some extensions that lead to a more general algorithm (joint work with Marc Masdeu)

Outline

(1) Heegner points and Darmon points

(2) Archimedean Darmon points
(3) p-adic Darmon points

ATR points (in a simplified setting)

- F real quadratic with $h^{+}(F)=1$
- E / F elliptic curve of conductor (1)
- K/F an almost totally real (ATR) quadratic extension (K has 1 complex place and 2 real places)
- This is a situation already presents interesting difficulties
- E does not satisfy (JL), so it is not geometrically modular in general (excepcion: if f_{E} is a base change, then it is geom. modular)
- The method of Heegner points is not available for these curves
- The simplest example is this curve over $\mathbb{Q}(\sqrt{509})$:
$E_{509}: y^{2}-x y-\omega y=x^{3}+(2+2 \omega) x^{2}+(162+3 \omega) x+(71+34 \omega), \omega=\frac{1+\sqrt{509}}{2}$
- The differential form attached to E :
- Modularity: f Hilbert modular form/F with $L(E / F, s)=L(f, s)$
- $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ invariance property w.r.t. the action of $\operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$
- $f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}$ descends to a holomorphic differential on $Y=\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right) \backslash(\mathcal{H} \times \mathcal{H})$, the (open) principal Hilbert modular surface
- We let $\omega_{f}=f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}-f\left(\epsilon_{0} z_{0}, \epsilon_{1} \bar{z}_{1}\right) d z_{0} d \bar{z}_{1}$
($\epsilon=$ fundamental unit of F)

ATR points II

- The ATR cycle attached to $\tau \in K \backslash F$:

- $\left[\delta_{\tau}\right] \in H_{1}(Y, \mathbb{Z})$ is null-homologous: $\delta_{\tau}=\partial \Delta_{\tau}$ with $\Delta_{\tau} \in C_{2}(Y, \mathbb{Z})$.
- ATR point: $J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f}$
- Oda's conjecture: $\mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} \mathbb{C} / \Lambda_{E}$

Conjecture (Darmon)

The point $\Phi_{\mathrm{W}}\left(\iota\left(J_{\tau}\right)\right) \in E(\mathbb{C})$ belongs to $E\left(K^{\text {ab }}\right)$

- Question: how to compute $\int_{\Delta_{\tau}} \omega_{f}$ in practice?
- ω_{f} is a 2-form: we can compute are double integrals $\int_{x}^{y} \int_{z}^{t} \omega_{f}$
- It seems that the ATR cycle only gives 3-limits: $\int^{\tau_{0}} \int_{\tau_{1}}^{\tau_{1}^{\prime}} \omega_{f}$

Darmon-Logan algorithm

- Idea: to give a precise meaning to semi-indefinite integrals
- There is a unique map

$$
\begin{aligned}
\mathcal{H} \times \mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F) & \longrightarrow \\
(z, x, y) & \longmapsto \int^{z} \int_{x}^{y} \Lambda_{f}
\end{aligned}
$$

satisfying certain natural conditions conditions
(i) $\int^{\gamma z} \int_{\gamma x}^{\gamma y} \omega_{f}=\int^{z} \int_{x}^{y} \omega_{f}$ for all $\gamma \in \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$,
(ii) $\int^{z} \int_{x}^{y} \omega_{f}+\int^{z} \int_{y}^{t} \omega_{f}=\int^{z} \int_{x}^{t} \omega_{f}$,
(iii) $\int^{z_{2}} \int_{x}^{y} \omega_{f}-\int^{z_{1}} \int_{x}^{y} \omega_{f}=\int_{z_{1}}^{z_{2}} \int_{x}^{y} \omega_{f}$.

- Then $\int_{\Delta_{\tau}} \omega_{f}=\int^{\tau_{0}} \int_{\infty}^{\gamma_{\tau} \infty} \omega_{f}$, where $\left\langle\gamma_{\tau}\right\rangle=\operatorname{Stab}_{\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)}\left(\tau_{0}\right)$
- Darmon-Logan algorithm: use (i), (ii), (iii) to transform semi-indefinite integrals into sums of double integrals $\int_{x}^{y} \int_{z}^{t} \omega_{f}$, which can be computed summing the Fourier series
- Restriction: algorithm needs to assume F is norm-euclidean
- only 16 real quadratic fields are euclidean $(\mathbb{Q}(\sqrt{73})$ the last one $)$

Extending Darmon-Logan: continued fractions

- A key step for transforming semi-indefinite integrals into double integrals is a sort of "Manin Trick".
- Involves computing the continued fraction expansion of $c \in F$:

$$
c=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}+\cdots+\frac{1}{q_{n}}}}, \quad q_{1}, \ldots, q_{n} \in \mathcal{O}_{F}
$$

- If F is norm-euclidean: euclidean algorithm computes the q_{i}
- Cooke: all fields $\mathbb{Q}(\sqrt{d})$ with class number 1 are conjectured to be 2-stage euclidean: for all $a, b \in \mathcal{O}_{F}$ there exist $q_{1}, q_{2}, r_{1}, r_{2}$

$$
\begin{aligned}
& a=b q_{1}+r_{1} \\
& b=q_{2} r_{1}+r_{2} ; \operatorname{Nm}_{F / \mathbb{Q}}\left(r_{2}\right)<\operatorname{Nm}_{F / \mathbb{Q}}(b)
\end{aligned}
$$

Teorema (G.-Masdeu)

There exists an algorithm for verifying if $\mathbb{Q}(\sqrt{d})$ is 2-stage euclidean, and if it is so, for computing continued fractions of elements in F. All $\mathbb{Q}(\sqrt{d})$ with class number 1 and $d \leq 8000$ are 2-stage euclidean.

Experimental evidence of the ATR conjecture

- We used this method to compute an ATR point on the non-geometrically modular curve
$E_{509}: y^{2}-x y-\omega y=x^{3}+(2+2 \omega) x^{2}+(162+3 \omega) x+(71+34 \omega), \omega=\frac{1+\sqrt{509}}{2}$
- We computed a point over the ATR field given by
- $K=F(\sqrt{\alpha}), \alpha=9144 \omega+98577$.
- the ATR point coincides with a global point of infinite order (up to the computed numerical accuracy)
- $P_{\tau} \simeq 4 \cdot\left(\omega+17, \frac{\sqrt{\alpha}+\sqrt{509}+18}{2}\right) \in E(K)$
- This gives experimental evidence supporting Darmon's conjecture
- but this is not an efficient method for computing rational points
- it took about 2 days in the 32-processor machine of the MPIM to compute it to 12-digits of accuracy!
- p-adic methods turn out to be much more efficient!

p-adic Darmon points

- E / \mathbb{Q} elliptic curve of conductor $N=p M$, with $p \nmid M$.
- K / \mathbb{Q} real quadratic field in which
- p is inert and all primes dividing M are split
- Recall the modular parametrization $\Gamma_{0}(N) \backslash \mathcal{H} \longrightarrow E(\mathbb{C})$
- Naive obstruction to Heegner points: $K \cap \mathcal{H}=\emptyset$
- Idea: replace \mathcal{H} by the p-adic upper half plane $\mathcal{H}_{p}:=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$
- Here $\mathbb{C}_{p}=\widehat{\mathbb{Q}_{p}}\left(p\right.$-adic analogous to $\left.\mathbb{C} \backslash \mathbb{R}=\mathcal{H} \cup \mathcal{H}^{-}\right)$
- Key property: $K \cap \mathcal{H}_{p} \neq \emptyset$ (because $K_{p} \backslash \mathbb{Q}_{p} \neq \emptyset$)
- In this case the Stark-Heegner point construction is

$$
K \cap \mathcal{H}_{p} \longrightarrow E\left(\mathbb{C}_{p}\right)
$$

- P_{τ} is defined via certain p-adic periods of the modular form $f=f_{E}$

Conjecture (Darmon, 2001)

P_{τ} a global point, and it is defined over K^{ab}

- Effective computation: Darmon-Green-Pollack algorithm
- under the restriction that $M=1$ (i.e., on curves of prime conductor)

Integration in $\mathcal{H}_{p} \times \mathcal{H}$

Double integrals $\int_{\tau_{1}}^{\tau_{2}} \int_{x}^{y} \omega_{f} \in K_{p}^{\times}, \quad \tau_{1}, \tau_{2} \in \mathcal{H}_{p}, x, y \in \mathbb{P}^{1}(\mathbb{Q})$

- Definition

$$
\begin{aligned}
& -\Gamma_{0}(M)=\left\{\gamma \in \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right): \gamma \equiv\left(\begin{array}{c}
\star \\
0 \\
*
\end{array}\right)(\bmod M)\right\} \subset \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \\
& -x, y \in \mathbb{P}^{1}(\mathbb{Q}) \rightsquigarrow \text { measure in } \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right): \mu_{f}\{x \rightarrow y\}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{f}\{x \rightarrow y\}\left(\gamma \mathbb{Z}_{p}\right)=\frac{1}{\Omega^{+}} \int_{\gamma^{-1} x}^{\gamma^{-1} y} \operatorname{Re}(2 \pi i f(z) d z) \in \mathbb{Z} \text { for } \gamma \in \Gamma_{0}(M) \\
-f_{\tau_{1}}^{\tau_{2}} & \int_{x}^{y} \omega_{f}:=\int_{\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)}\left(\frac{t-\tau_{2}}{t-\tau_{1}}\right) d \mu_{f}\{x \rightarrow y\}(t) \in K_{p}^{\times}
\end{aligned}
$$

- They are multiplicative integrals (Riemann products)
- They can be very efficiently computed using the theory of overconvergent modular symbols of Pollack-Stevens
Semi-indefinite integrals $f^{\tau} \int_{x}^{y} \omega_{f} \in K_{p}^{\times}, \tau \in \mathcal{H}_{p}, x, y \in \mathbb{P}^{1}(\mathbb{Q})$
- $f^{\tau_{2}} \int_{x}^{y} \omega_{f} \div f^{\tau_{1}} \int_{x}^{y} \omega_{f}=f_{\tau_{1}}^{\tau_{2}} \int_{x}^{y} \omega_{f}$

p-adic Darmon points

Definition (Darmon)

Given $\tau \in K \cap \mathcal{H}_{p}$ then

$$
P_{\tau}=\Phi_{\text {Tate }}\left(\int^{\tau} \int_{\infty}^{\gamma_{\tau} \infty} \omega_{f}\right), \quad\left\langle\gamma_{\tau}\right\rangle=\operatorname{Stab}_{\Gamma_{0}(M)}(\tau)
$$

- Tate's uniformization map: $\Phi_{\text {Tate }}: K_{p}^{\times} / q_{E}^{\mathbb{Z}} \longrightarrow E\left(K_{p}\right)$
- Darmon-Green-Pollack algorithm
- Transform semi-indefinite integral into a product of double integrals
- Compute the double integrals using OMS
- This is the only stage where the assumption $M=1$ is needed.
- We give a different method, that works with $M>1$.
- This extends the algorithm to curves of arbitrary conductor.
- Key step: we can assume that $\gamma_{\tau} \in \Gamma_{1}(M)$

$$
\Gamma_{1}(M)=\left\{\gamma \in \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right): \gamma \equiv\left(\begin{array}{ll}
1 & \star \\
0 & 1
\end{array}\right) \quad(\bmod M)\right\} \subset \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)
$$

Extending the Darmon-Green-Pollack algorithm

- In this context there is also a "Manin Trick" involved
- Need to express $\gamma_{\tau} \infty \in \mathbb{P}^{1}(\mathbb{Q})$ as a "continued fraction" of the form

$$
\gamma_{\tau} \infty=q_{1}+\frac{1}{M q_{2}+\frac{1}{q_{3}+\frac{1}{M q_{4}+\cdots}}}, \quad q_{1}, \ldots, q_{n} \in \mathbb{Z}\left[\frac{1}{p}\right]
$$

- This is equivalent to a decomposition into elementary matrices

$$
\gamma_{\tau}=\left(\begin{array}{cc}
1 & q_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
M q_{2} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & q_{r-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
M q_{r} & 1
\end{array}\right)
$$

- If $M=1$, this is again the euclidean algorithm!

Theorem (G.-Masdeu)

Assume GRH. There is an algorithm that, given $\gamma \in \Gamma_{1}(M)$ computes a decomposition of the form

$$
\gamma_{\tau}=\left(\begin{array}{cc}
1 & q_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
M q_{2} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & q_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
M q_{4} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & q_{5} \\
0 & 1
\end{array}\right), q_{i} \in \mathbb{Z}\left[\frac{1}{p}\right]
$$

Implementation

- We implemented the algorithm in SAGE
- We used some code by Pollack for computing with overconvergent modular symbols.
- We have programed the routines for computing the elementary matrix decomposition and for expressing semi-indefinite integrals as products of definite integrals.
- Given an elliptic curve E and $K=\mathbb{Q}(\sqrt{D})$ a real quadratic field:
- choose $\tau \in K_{p}$ such that P_{τ} is conjecturally defined over H_{K}
- $\Phi_{\text {Tate }}\left(f^{\tau} \int_{\infty}^{\gamma_{\tau} \infty} \omega_{f}\right)=(x, y)$, in principle $x, y \in K_{p}$
- We can recognize x, y as elements of H_{K}

Curve 21A1 $\left(\mathrm{p}=7, \mathrm{M}=3\right.$, prec $\left.=7^{80}, K=\mathbb{Q}(\sqrt{D})\right)$

D	h	P_{τ}
8	1	$(-9 \sqrt{2}+11,45 \sqrt{2}-64)$
29	1	$\left(-\frac{9}{25} \sqrt{29}+\frac{32}{25}, \frac{63}{125} \sqrt{29}-\frac{449}{125}\right)$
44	1	$\left(-\frac{9}{49} \sqrt{11}-\frac{52}{49}, \frac{54}{343} \sqrt{11}+\frac{557}{343}\right)$
53	1	$\left(-\frac{37}{169} \sqrt{53}+\frac{184}{169}, \frac{555}{2197} \sqrt{53}-\frac{5633}{2197}\right)$
92	1	$\left(\frac{533}{46}, \frac{17325}{2116} \sqrt{23}-\frac{533}{92}\right)$
137	1	$\left(-\frac{1959}{1449} \sqrt{137}+\frac{242}{11449}, \frac{295809}{2450086} \sqrt{137}-\frac{162481}{2450086}\right)$
149	1	$\left(-\frac{261}{2809} \sqrt{149}+\frac{2468}{2889}, \frac{8091}{14887} \sqrt{149}-\frac{101789}{148877}\right)$
197	1	$\left(-\frac{79135143}{209961032} \sqrt{197}+\frac{977125081}{209961032}, \frac{1439547386313}{1075630366936} \sqrt{197}-\frac{9297639417941}{537815183468}\right)$
D	h	$h_{D}(x)$
65	2	$x^{2}+\left(\frac{61851}{6241} \sqrt{65}-\frac{491926}{6241}\right) x-\frac{403782}{6241} \sqrt{65}+\frac{3256777}{6241}$

Curve $51 \mathrm{~A} 1\left(\mathrm{p}=3, \mathrm{M}=17\right.$, $\left.\mathrm{prec}_{\mathrm{p}}{ }^{380}, K=\mathbb{Q}(\sqrt{D})\right)$

Curve 105A1 $\left(p=3, M=5 \cdot 7\right.$, prec $\left.=3^{80}, K=\mathbb{Q}(\sqrt{D})\right)$

D	h	P^{+}
29	1	$2 \cdot\left(\frac{5}{2} \sqrt{29}+\frac{29}{2}, \frac{25}{2} \sqrt{29}+\frac{133}{2}\right)$
44	1	$\left(\frac{47}{36}, \frac{13}{54} \sqrt{11}-\frac{83}{72}\right)$
149	1	$\left(\frac{41297}{48050} \sqrt{149}+\frac{554429}{48050}, \frac{28371039}{7447750} \sqrt{149}+\frac{340434623}{7447750}\right)$

Darmon points: algorithms and numerical evidence

Xevi Guitart

Max-Planck-Institute for Mathematics

Number Theory Lunch Seminar, 14 November 2012

