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The Shimura-Taniyama conjecture

Modularity Theorem (Wiles, Taylor, Breuil, Conrad, Diamond)
Every elliptic curve C defined over Q is modular

C is modular if either of these two equivalent conditions is satisfied:

1 There exists a non-constant homomorphism J0(N)→C.

Key step in the proof of the Birch and Swinnerton-Dyer conjecture
in the case of analytic rank at most 1 (Gross-Zagier, Kolyvagin).
Heegner points in J0(N) are projected via this uniformisation to
produce rational points in C.

2 There is a newform f ∈ S2(Γ0(N)) such that L(f ; s) = L(C/Q; s)

It implies the Hasse conjecture for C:
L(C/Q; s) is entire and it satisfies a functional equation.
Modularity of Frey curves can be used to solve diophantine
equations of Fermat–type.

Equivalence: Eichler-Shimura construction, congruence of
Eichler-Shimura and Faltings’s isogeny theorem.
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Characterization of modular abelian varieties over Q

Definition
A/Q is said to be of GL2-type if End0

Q(A) = Q⊗Z EndQ(A) is a field E
with [E : Q] = dim A.

Theorem (consequence of Serre’s conjecture)
A simple abelian variety A/Q is modular if and only if it is of GL2-type.

Here modular means either of these two equivalent conditions:
1 There exists a non-constant homomorphism J1(N)→A.
2 L(A/Q; s) =

∏
σ:Ef ↪→C L(σf ; s) for some newform f ∈ S2(Γ1(N)).

A is Q-isogenous to Af (a.v. attached to f by Eichler-Shimura)

GL2-type varieties are not necessarily simple up to Q̄-isogeny
Ribet studied their Q̄-decomposition and characterized their
Q̄-simple factors: they are a kind of varieties called building blocks.
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Q̄-factors of GL2-type varieties
Definition
A building block is an abelian variety B/Q̄ such that

∀ σ ∈ GQ there exists an isogeny µσ : σB→B compatible with End0
Q̄(B):

σB
σϕ

��

µσ // B

ϕ

��
σB

µσ // B.
End0

Q̄(B) is:
A totally real number field F with [F : Q] = dim B
A quaternion division algebra over F with 2[F : Q] = dim B

Theorem (Ribet-Pyle)
Let A/Q be a GL2-type variety (such that AQ̄ is non-CM).

Then A ∼Q̄ Bn, where B/Q̄ is a building block.

Conversely, given a building block B/Q̄ there exists A/Q of
GL2-type as A ∼Q̄ Bn for some n.
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Geometric modular varieties over number Q̄
Combining this result with the fact that every GL2-type variety is a
quotient of some J1(N) we obtain that:

building blocks are "modular" over Q̄, i.e. there exists

J1(N)Q̄ −→ B.

This uniformisation can be used in a similar way as in the case of
varieties over Q.
Building blocks of dimension 1: elliptic curves C/Q̄ isogenous to
all of their Galois conjugates (also known as Q− curves).
If C/Q̄ is a Q-curve then

J1(N)Q̄ −→ C

and Heegner points on J1(N) can be used to produce results in
the direction of BSD for C.
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However, if B is a building block and we consider a model of B
over a number field K , in general it is not true that L(B/K ; s) is a
product of L-series of modular forms.

This property is important in some applications of modularity:

it gives the analytic continuation of L(B/K ; s)
the use of Q-curves to solve certain diophantine equations (e.g. L.
Dieulefait and J. Jiménez)

Definition
B/K es strongly modular if L(B/K ; s) ∼

∏
f L(f ; s), for some newforms

f ∈ S2(Γ1(Nf )).

Aim

Give a characterization of (non-CM) strongly modular abelian
varieties in terms of the geometry of B.
Give some examples of strongly modular abelian varieties
constructed without any use of modularity, and use this
characterization to decide their strong modularity.
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B/K a non-CM abelian variety
Suppose that B is Q̄-simple and that EndQ̄(B) = EndK (B).

Observation 1
B is strongly modular over K ⇔ ResK/QB ∼Q

∏
f Af .

L(B/K ; s) = L((ResK/QB)/Q; s)
B/K strongly modular⇔ ResK/QB/Q strongly modular
A variety A/Q is strongly modular over Q⇔ A ∼Q

∏
f Af

(consequence of Faltings’s isogeny theorem)

Observation 2
If B is strongly modular over K , then K/Q is abelian.

ResK/QB ∼Q
∏

Af
The endomorphisms of

∏
Af are defined over an abelian number

field L.
The endomorphisms of ResK/QB are defined over L.
K ⊆ L.
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Proposition
If B is strongly modular over K then B is a building block completely
defined over K .

∏
Af ∼Q ResK/QB 'K

∏
s∈Gal(K/Q)

sB
Af ∼K Bn

Definition
A building block B/K is completely defined over K if for each
s ∈ Gal(K/Q) there exists a compatible isogeny µs : sB→B defined
over K .

Not every building block B/K completely defined over K is
strongly modular.
The characterization is given in terms of a 2-cohomology class
attached to B/K .
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Building blocks and Galois Cohomology

B/K building block completely defined over K .
For each s ∈ Gal(K/Q) let µs : sB→B be a compatible isogeny.
Let F = Z (End0(B)).
s, t ∈ Gal(K/Q) cB/K (s, t) = µs ◦ sµt ◦ µ−1

st

B
µ−1

st−→ stB
sµt−→ sB

µs−→ B

In fact, cB/K (s, t) ∈ F ∗, and it is a 2-cocycle.

[cB/K ] ∈ H2(Gal(K/Q),F ∗) (considering the trivial action).
[cB/K ] does not depend on the choice of the µs and is an invariant
of the K -isogeny class of B.
[cB/K ] is 2-torsion.

[cB] = Inf[cB/K ] ∈ H2(GQ,F ∗) (trivial action)
[cB] is an invariant of the Q̄-isogeny class of B.
Ribet used [cB] in his study of building blocks.
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Building blocks and Galois Cohomology
[cB] contains a lot of arithmetic information about B (in fact about
its Q̄-isogeny class).

Theorem (Chi)

The Brauer class of End0(B) is the image of [cB] under

H2(GQ,F ∗)
Res−→ H2(GF ,F ∗) −→ H2(GF ,F

∗
) ' Br(F )

Theorem (Ribet)
There exists a model of B defined over L (up to Q̄-isogeny) if and only
if [cB] lies in the kernel of

Res : H2(GQ,F ∗) −→ H2(GL,F ∗).

Theorem
There exists a model of B completely defined over L (up to Q̄-isogeny)
if and only if [cB] lies in the image of the inflation map

Inf : H2(L/Q,F ∗) −→ H2(GQ,F ∗)
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Endomorphism algebra of the restriction of scalars

[cB/K ] contains information about the K -isogeny class of B.

Proposition

End0
Q(ResK/QB) ' End0(B)⊗ F cB/K [Gal(K/Q)]

A = ResK/QB
AK '

∏
s∈Gal(K/Q)

sB

End0(B) ↪→ End0
Q(A) : ϕ 7→ (sϕ)s∈Gal(K/Q)

Let λs : AK→AK such that tsB
tµs−→ tB.

In fact λs ∈ End0
Q(A) and λsλt = cB/K (s, t)λst .
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Characterization of strongly modular abelian varieties

Theorem
Let B/K be a non-CM building block with EndQ̄(B) = EndK (B). Then B
is strongly modular over K if and only if

K/Q is Galois abelian.
B is completely defined over K .
[cB/K ] is symmetric: cB/K (s, t) = cB/K (t , s).

End0
Q(ResK/QB) ' EndK (B)⊗ F cB/K [Gal(K/Q)]

If cB/K is symmetric then F cB/K [Gal(K/Q)] is abelian and it is a
product of number fields.
End0

Q(ResK/QB) ' End0
Q̄(B)⊗

∏
Ei '

∏
Mt (Ei)

ResK/QB ∼Q
∏

At
i with End0

Q(Ai) ' Ei and [Ei : Q] = dim Ai .
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Strongly modular twists
Let K/Q be an abelian extension
B/K a building block completely defined over K
B/K is strongly modular if and only if cB/K is symmetric.

Suppose that B/K is not strongly modular.
Does there exist some twist of B strongly modular over K ?

Proposition
There exists a twist of B (a variety B0/K isogenous to B over Q̄) that is
strongly modular over K if and only if K contains a splitting field for [cB]

Tate’s theorem: H2(GQ, F̄ ∗) = {1} (trivial GQ-action)
The image of [cB] in H2(GQ, F̄ ∗) is trivial: there exist maps
β : GQ→F̄ ∗ such that

cB(σ, τ) = β(σ)β(τ)β(στ)−1.

The map β mod F ∗ is a homomorphism.
The field Q̄ker(β mod F∗) is a splitting field for [cB].
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Outline

1 Building blocks and statement of the problem (modularity)

2 Characterization of strongly modular abelian varieties

3 Examples of strongly modular abelian surfaces
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Examples of strongly modular varieties
Aim
Give explicit equations of strongly modular varieties over number
fields, constructed without any use of modular forms.

Equations of strongly modular varieties over Q
Curves: y2 = x3 + ax + b with a,b ∈ Q.
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Baba-Granath family of genus 2 curves

Cj : Y 2 =
(
−4 + 3

√
−6j

)
X 6 − 12(27j + 16)X 5 − 6(27j + 16)

(
28 + 9

√
−6j

)
X 4

+ 16(27j + 16)2X 3 + 12(27j + 16)2
(

28 − 9
√

−6j
)

X 2

− 48(27j + 16)3X + 8(27j + 16)3
(

4 + 3
√

−6j
)

Let Bj = Jac(Cj) for j ∈ Q.

End0
Q̄(Bj) ' (2,3)Q. (Hashimoto-Murabayashi)

σCj ' Cj for each σ ∈ GQ ⇒ φσ : σBj→Bj , but not necessarily
compatible
Skolem-Noether: ∃ ψσ ∈ End0

Q̄(B) with ψσ ◦ φσ compatible.
Bj is a building block: there exist newforms f such that

Af ∼Q̄ Bn
j .

Bj is completely defined over
K = Q(

√
−6j ,

√
j ,
√
−(27j + 16),

√
−2(27j + 16))
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The cohomology class [cBj ]
We can compute [cBj ], and to give an explicit expression we use the
isomorphism:

H2(GQ,Q∗)[2] ' Hom(GQ,Q∗/{±1}Q∗2) × H2(GQ, {±1})
cBj ↔ ( [cBj ] , [cBj ]± )

c2
Bj

(σ, τ) = δ(σ)δ(τ)δ(στ)−1 ⇒ cBj (σ) = δ(σ)mod{±1}Q∗2.
cBj±(σ, τ) = sign(cBj (σ, τ)).

Propositon

Let Gal(Q(
√
−(27j + 16),

√
−j(27j + 16))/Q) = 〈σ, τ〉.

[cBj ] : σ 7→ 3 τ 7→ 2
[cBj ]± = (−(27j + 16),3)Q · (−j(27j + 16),2)Q · (2,3)Q

cBj (σ, τ)2 = cBj (σ, τ)cBj (σ, τ)′ = (ψσ ◦ ψ′σ)(ψτ ◦ ψ′τ )(ψστ ◦ ψ′στ )

A formula of Quer giving End0
Q̄(Bj) in terms of [cBj ] and [cBj ]±.
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A concrete example: B = B−4/27

K = Q(
√
−6,
√
−3)

We do not know [cB/K ], but Inf([cB/K ]) = [cB].
[cB] is not the inflation of any symmetric element, so [cB/K ] is not
symmetric
K does not contain any splitting field for [cB]

L = K (
√
−1), then some twist of B is strongly modular over L.

[cB/L] is not symmetric→ B/L is not strongly modular.

We consider the twist of C by γ =
√

6 +
√

18:

Cγ : γ Y 2 = f (X )

[cBγ/L] it is symmetric→ Bγ/L is strongly modular.
γ is the solution of an embedding problem in Galois theory
(associated to the non-symmetric part of [cBj/L]± ∈ H2(L/Q, {±1}))

1→ Gal(L(
√
γ)/L) ' {±1} → Gal(L(

√
γ)/Q)→ Gal(L/Q)→ 1
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A concrete example: j = −4/27

We find f ∈ S2(Γ0(24 · 34), χ):

f = q −
√

3 q5 + 3i q7 − 3
√

3 q11 + q13 − 2i
√

3 q17 − 6i q19

+ 3
√

3 q23 + 2 q25 − 5
√

3i q29 − 3i q31 + · · ·

and g ∈ S2(Γ0(26 · 34), ε):

g = q −
√

3 q5 + 3i q7 − 3
√

3 q11 − q13 + 2i
√

3 q17 + 6i q19

− 3
√

3 q23 + 2 q25 − 5
√

3i q29 − 3i q31 + · · ·

such that

L(Bγ/L; T ) = (L(f ; s)L(σf ; s)L(g; s)L(τg; s))2

ResL/QBγ ∼ A2
f × A2

g
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In this example it is enough to go to a quadratic extension L/K to
obtain a twist which is strongly modular over L.

Proposition
There exist surfaces Bj in the Baba-Granath family such any L with Bj
strongly modular over L is arbitrary large.

Proposition
There exist surfaces Bj in the Baba-Granath family such that any Af
with Af ∼Q̄ Bn

j has dimension arbitrary large.

Let f be a modular form such that

Af ∼Q̄ Bn
j ,

and let ε be the Nebentypus of f .
[cBj ]± is ramified at p ⇔ εp(−1) = −1.
Using the formulas for [cBj ]± we can force the order of any such ε
to be high.
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