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Abstract

Rigid meromorphic cocycles were introduced by Darmon and Vonk as a conjectural p-adic
extension of the theory of singular moduli to real quadratic base fields. They are certain
cohomology classes of SL2(Z[1/p]) which can be evaluated at real quadratic irrationalities and
the values thus obtained are conjectured to lie in algebraic extensions of the base field. In
this article we present a similar construction of cohomology casses in which SL2(Z[1/p]) is
replaced by an order in an indefinite quaternion algebra over a totally real number field F .
These quaternionic cohomology classes can be evaluated at elements in almost totally complex
extensions K of F , and we conjecture that the corresponding values lie in algebraic extensions
of K. We also report on extensive numerical evidence for this algebraicity conjecture.

1 Introduction

Classical singular moduli are the values of the j-function at imaginary quadratic arguments in the
complex upper half plane. They turn out to be algebraic numbers, and in fact they play a central
role in explicit class field theory because they generate the ring class fields of imaginary quadratic
fields. While this theory has been generalized to some extent for CM fields, no satisfactory analogues
of the j function are known for other types of fields. Even for real quadratic fields, the finding of
meromorphic functions whose special values generate their class fields remains an important open
problem.

A recent breakthrough in this direction is the p-adic approach proposed by Darmon–Vonk in
[DV20b]. The j-function is a meromorphic function on the complex upper half plane H, and
therefore it cannot be evaluated at real quadratic irrationalities. A first key idea of Darmon–Vonk
is to replace H by the p-adic upper half plane Hp = Cp \ Qp, which does contain plenty of real
quadratic irrationals (also called RM points), and to consider rigid meromorphic functions onHp. A
second insight comes from the observation that, although the classical j-function is invariant under
the action of SL2(Z) on H, in the p-adic setting is more convenient to consider the p-arithmetic
group SL2(Z[1/p]) acting on Hp. It turns out that the only SL2(Z[1/p])-invariant functions on Hp
are constants; that is, if M× denotes the multiplicative group of rigid meromorphic functions on
Hp then

H0(SL2(Z[1/p]),M×) = C×p ,

so no interesting functions arise in this way. This motivates considering H1 instead of H0, and
leads to the key notion of rigid meromorphic cocycles introduced in [DV20b], which are elements of

H1(SL2(Z[1/p]),M×)
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satisfying the extra condition of having a representative whose restriction to the subgroup of upper
triangular matrices is constant. Even though rigid meromorphic cocycles are not functions but
cocycles with values in functions, there is a sensible notion of evaluating a rigid meromorphic
cocycle J at an RM point τ ∈ K ∩ Hp (here K here denotes the real quadratic field in which τ
lies). The main conjecture of [DV20b] predicts that this resulting p-adic number J [τ ] is, if fact, an
algebraic number that lies in a compositum of ring class fields of real quadratic fields.

The main evidence for the validity of this conjecture is experimental. Indeed, an important
feature of [DV20b] is the construction of certain explicit rigid meromorphic cocycles in the case
where p is a monstruous prime1. For such a prime p, Darmon–Vonk construct a rigid meromorphic
cocycle J+

τ1 associated to any RM point τ1 ∈ K1∩Hp, given as an explicit infinite product of rational
functions with zeroes and poles supported in the SL2(Z[1/p])-orbit of τ1. They compute, to high
p-adic accuracy, the values J+

τ1 [τ2] of this cocycle evaluated at other RM points τ2 ∈ K2 ∩ Hp,
and verify in many examples that these values are p-adically close to algebraic numbers lying in
the predicted field extension, which is the compositum of ring class fields of the quadratic orders
associated to τ1 and τ2.

The goal of the present article is to introduce a similar construction of cohomology classes
in which the matrix group SL2(Z[1/p]) is replaced by certain arithmetic subgroups of indefinite
quaternion algebras over totally real number fields. These cohomology classes can also be evaluated
at appropriate algebraic elements in Hp. Inspired by the findings of [DV20b], we also conjecture
that these values are p-adic logarithms of algebraic numbers2 lying in certain ring class fields, and
we present experimental evidence in support of this expectation.

More precisely, in our construction the base field is allowed to be any totally real number field
F of narrow class number 1. We fix a prime p of F , and we consider quadratic extensions K/F
such that p is inert in K (so that, in particular, K \ F is contained in the p-adic upper half plane
Hp associated to the completion of F at p) and such that the set of real places of F that split in K
consists of a single place v∞. These extensions are called Almost Totally Complex (ATC), because
all but one real places of F extend to complex places of K. The role played by the matrix algebra
in [DV20b] is played here by a quaternion algebra B/F which is split at p and at v∞ (but it is
allowed to ramify at other finite primes), and we consider the arithmetic group Γ0 which is the
group of norm 1 units in a maximal order R in B.

In the setting of division quaternion algebras the sensible notion of ATC point in Hp is defined
by means of optimal embeddings, and we shall adopt this point of view (see Section 2 below for
precise definitions). If K1 and K2 are quadratic extensions of F as above and O1 ⊂ K1, O2 ⊂ K2 are
quadratic OF -orders, we associate to any optimal embedding ψ1 : O1 ↪→ R cohomology classes Φ•ψ1

with • ∈ {even, odd,+,−} which can be evaluated, in an appropriate sense, at optimal embeddings
ψ2 : O2 ↪→ R. We conjecture that the resulting quantities J•ψ1,ψ2

belong to the compositum of the
ring class fields of O1 and O2, and we perform computer calculations of these quantities in concrete
examples that lend credence to this expectation.

The motivation and interest for a construction following the lines of [DV20b] in a more general
quaternionic setting is twofold. First of all, it allows to treat the case of quadratic extensions K/F
with base fields F other than Q. For instance, in §8.5 we provide numerical verifications of the
algebraicity our constructions in an example where F is a real quadratic field and K is a degree 4
field of signature (2, 1). But there is an additional nice feature of having a construction that allows

1i.e., when p belongs to the set {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}
2The cohomology classes that we construct should be regarded as playing the role of the logarithmic derivatives

of those in [DV20b], hence the presence of the p-adic logarithm in our conjectures
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for different choices of the quaternion algebra even for a fixed extension K/F , and this can already
be appreciated in the case F = Q. Indeed, in §8.3 we present two local computations (using different
primes p and different quaternion algebras B) that compellingly give rise to the same global quantity
J+
ψ1,ψ2

. This is in consonance with the prediction that these Darmon–Vonk-like cohomology classes,
which are constructed purely as p-adic objects, might be just the local manifestations at different
primes p of an object of a global nature. The reader can consult [DV20a, §4] for a more detailed
explanation of this expectation, of which our example of §8.3 can be regarded as the first numerical
verification.

Next we give an overview of the contents of the article and the structure of our construction
which, even if it is inspired by that of [DV20b], it follows a slightly different approach at some
points. A first difference is that our construction only uses the arithmetic groups Γ0 and Γ0(p)
(the later one associated to an Eichler order of level p), rather than p-arithmetic groups, and the
cohomology classes belong to H1(Γ0(p),Λ) with Λ ⊂ Z̄p[[x]] a power series ring. In this aspect, our
construction of the cohomology class attached to ψ1 can be seen more akin to the computational
strategy developed in [DV20b, §2.5] to numerically calculate the cohomology classes by means
of the iteration of a Up-operator. A second difference is in the evaluation of these cohomology
classes. In [DV20b] the cohomology classes initially take values in M×/C×p , and in order to be
meaningfully evaluated at RM points in Hp they need to be lifted to classes with values inM×. In
our approach instead of lifting the cohomology class we lift the homology classes attached to ψ2 to
classes with values in divisors of degree 0, at which the cocycles can be directly evaluated. These
homology classes with values in Div0Hp are in fact the same ones that are used in the construction
of Stark–Heegner points in [Gre09] and [GMS15].

In Section 2 we describe in detail the setting for our constructions, we introduce some of the
relevant ingredients and we fix some choices for them. In Section 3 we recall how to associate an
homology class in H1(Γ0,Div0Hp) to any optimal embedding. In Section 4 we associate to any
optimal embedding a cohomology class in H1(Γ0,Div0Hp). This is the seed for the cohomology
classes Φ•ψ1

∈ H1(Γ0(p),Λ) constructed in Section 5 by iterating the Up operator. In Section 6 we
explain how to evaluate the cohomology classes at the homology classes (the evaluation pairing)
and we formulate the conjecture that the values obtained in this way are logarithms of algebraic
numbers. In Section 7 we give an effective version of the construction of the cohomology classes that
allow for their computer calculation. Finally, in Section 8 we provide numerical computations of
our constructions in specific examples, and we verify that they convincingly satisfy the algebraicity
conjecture.

Finally, it is worth pointing out that a related construction of quaternionic rigid meromorphic
cocycles in a more abstract setting has been recently proposed by Gehrmann in [Geh20].
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2 Setup

In this section we introduce the main objects that we will use in the construction of quaternionic
p-adic singular moduli and some notation that will be in force throughout the article. Let F be a
totally real number field of narrow class number 1, and let B be an almost totally definite quaternion
algebra over F . That is to say, the set of archimedean places of F at which B is split consists of a
single place v∞. Fix a finite prime p of F at which B is split; let Qp denote the completion of F at
p and write Zp for the ring of integers of Qp. Fix also embeddings

ιp : B ↪→M2(Qp) and ι∞ : B ↪→M2(R),

induced by splittings of B at p and v∞ respectively.

Let p be the rational prime below p and put Cp = Q̂p, the completion of an algebraic closure of
Qp. Denote by

H = P1(C) \ P1(R)

the complex upper half plane and by

Hp = P1(Cp) \ P1(Qp)

the Cp-points of the p-adic upper half plane. We denote by DivHp (resp. Div0Hp) the Z-module
of divisors (resp. degree 0 divisors) on Hp. The algebra B acts on H and Hp by fractional linear
transformations via ι∞ and ιp, respectively, and this induces actions on DivHp and Div0Hp.

We choose a maximal order R ⊂ B such that

ιp(R⊗ Zp) = M2(Zp),

and let
Γ0 = R×1 ⊂ B×

be the group of norm one units of R.
Throughout the article, K will denote a quadratic extension of F such that p is inert in K,

v∞ splits in K and all other infinite places of F are ramified. We say that K is an almost totally
complex quadratic extension of F , in the sense that all but one of the real places of F extend to
complex places of K. In particular, if F = Q then K is a real quadratic field.

Let OK be the ring of integers of K, and let O ⊂ OK be an OF -order of K. An embedding of
F -algebras ψ : K ↪→ B is said to be (O, R)-optimal if ψ−1(R) = O. We will denote by E(O, R) the
set of (O, R)-optimal embeddings.

3 Darmon’s homology classes

The aim of this section is to recall the construction of [Gre09, §7] and [GMS15, §4.1] that associates
to any optimal embedding ψ ∈ E(O, R) an homology class c0ψ ∈ H1(Γ0,Div0Hp). These homology
classes are the same ones that appear in the construction of Darmon points on elliptic curves. Note
that [Gre09] and [GMS15] work with more general quadratic extensions K/F and construct classes
that can lie in higher homology groups in general. For convenience of the reader, we next recall
the construction of these classes in the setting of the present article (which corresponds to the case
n = 0 of [Gre09]).
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We denote by O×1 the group of units of O of relative norm one:

O×1 = {w ∈ O× : NormK/Fw = 1}.

By Dirichlet’s unit theorem O×1 is a group of rank 1, and we fix u to be a generator of the free
part. Put γψ = ψ(u), which belongs to Γ0. The matrix ιp(γψ) has two fixed points on Hp, that we
denote by τψ,p, τ

′
ψ,p. In fact, they belong to Kp \Qp, and we label them in such a way that τψ,p is

the one that satisfies that

ιp(ψ(a))

(
τψ,p

1

)
= a

(
τψ,p

1

)
for all a ∈ K,

where the operation on the left hand side is matrix multiplication, and we are using a fixed embed-
ding of K into Kp for the multiplication by scalars on the right.

For concreteness and for simplifying the presentation of some constructions in further sections,
we will make the assumption that τψ,p belongs to the principal affinoid

A0 = {z ∈ Cp : |z − t| ≥ 1 for all t ∈ Zp and |z| ≤ 1}.

In fact, if we allow to replace the chosen maximal order in B and the optimal embedding, we can
always suppose that τψ,p ∈ A0. Indeed, since p does not ramify in K there exists g ∈ B× such that
gτψ,p ∈ A0, so the conjugated embedding

gψg−1 : B ↪→ gRg−1

satisfies this property.
The action of Γ0 on Hp preserves A0, and we will consider the homology groups H1(Γ0,DivA0)

and H1(Γ0,Div0A0), which we regard as groups of 1-cycles modulo 1-boundaries. Recall that for
G a group and a G-module V the groups of 1-chains and 2-chains are, respectively

C1(G,V ) = Z[G]⊗Z V and C2(G,V ) = Z[G]⊗Z Z[G]⊗Z V.

The boundary maps

∂1 : C1(G,V ) −→ V and ∂2 : C2(G,V ) −→ C1(G,V )

are given by

∂1(g ⊗ v) = gv − v and ∂2(g ⊗ h⊗ v) = h⊗ g−1v − gh⊗ v + g ⊗ v,

and then H1(G,V ) = ker ∂1/ im ∂2.
We now consider the chain γψ⊗τψ,p ∈ C1(Γ0,DivA0). Since γψ fixes τψ,p its boundary vanishes:

∂(γψ ⊗ τψ,p) = γψτψ,p − τψ,p = 0.

Thus it is a cycle, and we will denote by cψ ∈ H1(Γ0,DivA0) the associated homology class.
The long exact sequence in homology associated to the degree map

0→ Div0A0 −→ DivA0
deg−→ Z −→ 0 (1)
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gives rise to

· · · −→ H2(Γ0,Z)
δ−→ H1(Γ0,Div0A) −→ H1(Γ0,DivA0)

deg−→ H1(Γ0,Z) −→ · · · .

For any B×-module V , the homology groups Hi(Γ0, V ) are equipped with the action of the Hecke
operators Tl and Sl, indexed by primes l of F not dividing the discriminant of B. This applies in
particular to H1(Γ0,DivHp) and H1(Γ0,Z).

The group H1(Γ0,Z) is torsion as a Hecke module, so there exists T ∈ T such that

T (deg cψ) = 0.

One can always choose T in such a way that it only involves Hecke operators away from p. These
operators can be made to act on H1(Γ0,DivA0), since elements of R whose norm is a p-adic unit
preserve A0. This means that Tcψ is a well defined element in H1(Γ0,DivA0). Moreover, it satisfies
that

deg(Tcψ) = T deg(cψ) = 0.

Thus Tcψ can be lifted to an element c0ψ ∈ H1(Γ0,Div0A0). Observe that c0ψ actually depends on
the choice of T , but we will not make this dependence explicit in the notation. Also, even for a
fixed choice of T the class c0ψ is only determined up to elements of δ(H2(Γ0,Z)).

Remark 3.1. When H1(Γ0,Z) is a torsion group (i.e., when the Shimura curve XB(1) = Γ0\H
has genus 0), we can take T to be an integer. In other words, in this case there is no need to act
by the Hecke algebra, it is enough to replace cψ by an appropriate muliple in order to lift it to a
cycle with values in Div0A0.

4 Cohomology classes for Γ0

The goal of this section is to attach to an optimal embedding ψ ∈ E(O, R) a cohomology class

ϕ0
ψ ∈ H1(Γ0,Div0Hp).

Similarly as we did in §3, we will make the additional assumption that τψ,p belongs to the principal
affinoid A0 and in this case the classes ϕ0

ψ actually belong to H1(Γ0,Div0A0). Another similarity
with the construction of the homology classes of the previous section is that we will start by
constructing a cohomology class ϕψ ∈ H1(Γ0,DivA0), that is, with values in divisors rather than
divisors of degree 0, and then we will see that it can be lifted to H1(Γ0,Div0A0) by applying
suitable Hecke operators.

We regard cohomology groups as classes of inhomogeneous cocycles. That is, for a G-module V
the group of 1-cochains is

C1(G,V ) = {maps ϕ : G→ V }.

The subgroup of 1-cocycles is

Z1(G,V ) = {ϕ ∈ C1(G,V ) : ϕ(gh) = ϕ(g) + gϕ(h) for all g, h ∈ G},

and the first cohomology group H1(G,V ) is the quotient of Z1(G,V ) by the subgroup generated
by the 1-coboundaries, which are the maps of the form ϕ(g) = gv − v for some v ∈ V .
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In order to define ϕ0
ψ we will fix a base point. If B is a division algebra this base point belongs

to H, but if B is the split matrix algebra over Q it can also belong to P1(Q). In order to treat the
two cases simultaneously, it is notationally convenient to define

H∗ =

{
H ∪ P1(Q) if B ∼= M2(Q)

H otherwise.

Fix throughout a base point x ∈ H∗. For a, b ∈ H ∪ P1(R) we denote by C(a, b) the oriented
geodesic segment from a to b in H ∪ P1(R).

The matrix ι∞(γψ) acts on P1(R) with two fixed points. If ι∞(γψ) =
(
a b
c d

)
with c 6= 0 they are

given by3

a− d±
√

(d− a)2 + 4bc

2c
.

We denote by τψ,∞ (resp. τ ′ψ,∞) the one corresponding to the choice of the positive square root
(resp. the negative square root).

In this section we will consider both the action of Γ0 on P1(R) via ι∞ and the action of Γ0 on Hp

via ιp. Suppose that w is an element of the orbit Γ0τψ,∞. Then w = γwτψ,∞ for some γw ∈ Γ0 and
we define wp = γwτψ,p ∈ Hp, where τψ,p is the element of Hp defined in Section 3. Observe that
wp does not depend on the choice of γw, for any other choice is of the form γwγ for some γ ∈ 〈γψ〉
and γψτψ,p = τψ,p. We also define w′p = γwτ

′
ψ,p. Similarly, we define w′ = γwτ

′
ψ,∞ ∈ P1(R).

For γ ∈ Γ0 and w ∈ Γ0τψ,∞ we define δγ(w) ∈ {−1, 0, 1} to be the signed intersection number
between the oriented geodesics C(x, γx) and C(w,w′). In particular,

δγ(w) =

{
±1 if C(x, γx) ∩ C(w,w′) 6= ∅,
0 else.

The following is a key result for the construction.

Lemma 4.1. For each γ ∈ Γ0, the set

{w ∈ Γ0τψ,∞ | δγ(w) 6= 0}

is finite.

Proof. Let w ∈ Γ0τψ,∞ such that δγ(w) 6= 0. Write γw for an element in Γ0 such that w = γwτψ,∞.
Then

C(γwτψ,∞, γwτ
′
ψ,∞) ∩ C(x, γx) 6= ∅

and therefore
C(τψ,∞, τ

′
ψ,∞) ∩ γ−1

w C(x, γx) 6= ∅
Let S be a fundamental domain for the action of 〈γψ〉 on the geodesic C(τψ,∞, τ

′
ψ,∞). Then there

exists an integer n such that
γnψS ∩ γ−1

w C(x, γx) 6= ∅.
Therefore, in order to prove the statement of the lemma it is enough to show that there are finitely
many n ∈ Z and w ∈ Γ0τψ,∞ such that

S ∩ γ−nψ γ−1
w C(x, γx) 6= ∅.

3we will assume that c 6= 0, as this can always be achieved by replacing ψ by a conjugate if necessary
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This follows from the fact that the action of Γ0 on H is discrete and proper: for compact sets K
and L, the set

{γ ∈ Γ0 | γK ∩ L 6= ∅}

is finite (see [Voi14, Theorem 34.5.1.]), if x ∈ H, since then C(x, γx) is compact. The case that
x ∈ H∗ \ H = P1(Q), so B ∼= M2(Q), was proved in [DV20b, §1.4] by a different argument.

For γ ∈ Γ0 define

ϕψ(γ) =
∑

w∈Γ0τψ,∞

δγ(w) · wp ∈ DivA0. (2)

The fact that ϕψ(γ) belongs to DivA0, i.e., that the above is a finite sum, is granted by Lemma
4.1. Next, we will show that ϕψ is a one-cocycle of Γ0 with values on DivA0. The cocycle relation
is ∑

w∈Γ0τψ,∞

δγ1γ2(w) · wp =
∑

w∈Γ0τψ,∞

δγ1(w) · wp +
∑

w∈Γ0τψ,∞

δγ2(w) · γ1wp,

which relabeling the sum in the third term can be written as∑
w∈Γ0τψ,∞

δγ1γ2(w) · wp =
∑

w∈Γ0τψ,∞

δγ1(w) · wp +
∑

w∈Γ0τψ,∞

δγ2(γ−1
1 w) · wp.

Thus we are reduced to prove the following lemma.

Lemma 4.2. For γ1, γ2 ∈ Γ0 and w ∈ Γ0τψ,∞ we have that

δγ1γ2(w) = δγ1(w) + δγ2(γ−1
1 w). (3)

Proof. The term δγ2(γ−1
1 w) is given by the intersection number between the geodesics

C(γ−1
1 w, γ−1

1 w′) and C(x, γ2x).

This clearly coincides with the intersection number between C(w,w′) and C(γ1x, γ1γ2x). Now the
identity (3) is just a reflection of the fact that the geodesic C(w,w′) intersects either 0 or 2 sides
of the triangle with vertices x, γ1x and γ1γ2x.

The next lemma shows that the cohomology class attached to the cocycle ϕψ does not depend
on the choice of the auxiliary point x. To state the result, let us temporarily denote by ϕψ,x the
map defined as in (2) corresponding to the choice of x as auxiliary point. Also, for x, y ∈ H∗ and
w ∈ Γ0τψ,∞ denote by εx,y(w) the signed intersection number between C(x, y) and C(w,w′), and
define Dx,y ∈ Div0(A0) as

Dx,y =
∑

w∈Γ0τψ,∞

εx,y(w) · wp.

Lemma 4.3. We have that

ϕτ,y(γ)− ϕτ,x(γ) = γDx,y −Dx,y. (4)
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Proof. In order to prove (4), which is an identity of divisors, it is enough to check that for any
w ∈ Γ0τψ,∞ the coefficient accompanying w in both sides of the equality is the same. Therefore,
we need to check that

εy,γy(w)− εx,γx(w) = εx,y(γ−1w)− εx,y(w) for all w ∈ Γ0τψ,∞. (5)

Consider the edges C(x, γx), C(γx, γy), C(γy, y) and C(y, x). Since these four edges form a
closed curve in H∗, the signed intersection number of such curve with C(w,w′) is 0. This translates
into the relation

εx,γx(w) + εγx,γy(w) + εγy,y(w) + εy,x(w) = 0 for all w ∈ Γ0τψ,∞.

From this we deduce that

εy,γy(w)− εx,γx(w) = εγx,γy(w)− εx,y(w) for all w ∈ Γ0τψ,∞,

and since εγx,γy(w) = εx,y(γ−1w) we obain (5) as we aimed.

We have thus proved the following result.

Proposition 4.4. The assignment γ 7→ ϕψ(γ) defines a cocycle in Z1(Γ0,DivA0). Moreover, the
corresponding cohomology class (which we call ϕψ as well) is independent of the choice of base point
x that was made to define it.

Similarly as in Section 3 we would like to see that ϕψ lies in the image of the natural map

H1(Γ0,Div0A0) −→ H1(Γ0,DivA0). (6)

That is to say, we would like to see that ϕψ can be lifted to a cocycle with values in divisors of
degree 0. This might not be true in general, and we thus need to act by an appropriate Hecke
operator. More precisely, the long exact sequence in cohomology associated to (1) is

· · · −→ H1(Γ0,Div0Hp) −→ H1(Γ0,DivHp)
deg−→ H1(Γ0,Z) −→ · · · .

There exists a Hecke operator T such that T deg(ϕψ) = 0. Therefore, Tϕψ can be lifted to a
cohomology class with values in divisors of degree 0. Moreover, T can be chosen in such a way that
it only involves Hecke operators Tl and Sl for l 6= p, and then Tϕψ lifts to a cohomology class ϕ0

ψ

belonging to H1(Γ0,Div0A0). Once again, we do not make explicit the dependence of ϕ0
ψ on T in

the notation.

Remark 4.5. Here a similar comment as in Remark 3.1 applies. Whenever deg(ϕψ) is torsion, we
will take T to be an integer. This will always be the case when H1(Γ0,Z) is torsion (i.e., when the
Shimura curve Γ0\H has genus 0).

5 Overconvergent cohomology classes

Let R(p) ⊂ R be an Eichler order of level p such that

ιp(R(p)⊗Qp) = {
(
a b
c d

)
∈ M2(Zp) : c ∈ p},
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and denote by Γ0(p) the group of norm 1 units of R(p). Let $ be a totally positive generator of p,
and let Λ = Z̄p[[$x]]. The goal of this section is to associate to the cohomology class ϕ0

ψ constructed
in Section 4 four cohomology classes

Φeven
ψ ,Φodd

ψ ,Φ+
ψ ,Φ

−
ψ ∈ H

1(Γ0(p),Λ).

These are the cohomology classes that will be paired with the homology classes c0ψ of Section 3. Our
definition of these cohomology classes and the pairing of Section 6 are inspired by the construction
of [DV20b, §3.5], where the authors obtain a formula for their rigid meromorphic cocycles which is
suitable for efficient calculations in terms of the iteration of the Up-operator.

Let T be the Bruhat–Tits tree of GL2(Qp), and denote by V its set of vertices and by E its
set of edges. It is a (|p|+ 1)-regular tree (here |p| denotes the cardinality of Fp = Zp/pZp), whose
vertices are in bijection with similarity classes of Zp-lattices in Q2

p and two vertices are connected
by an edge if they admit representing lattices Λ1,Λ2 with pΛ1 ( Λ2 ( Λ1. Let v0 ∈ V(Tp) be the
vertex corresponding to the lattice Z2

p. There is a GL2(Qp)-equivariant reduction map

red: Hp −→ T = V ∪ E

such that red−1(v0) = A0. Denote by V1 = {vt}t∈P1(Fp) the set of the |p|+ 1 vertices at distance 1
of v0. Removing from T the vertex v0 and the (open) edges originating from v0 one obtains |p|+ 1
subtrees {Tt}t∈P1(Fp) originating at each one of the vertices in V1. Denote by

U∞ = {z ∈ Hp : |z| ≥ |p|}

and for t in a set of representatives of Zp/pZp put

Ut = {z ∈ Hp : |z − t| ≤ |p|}.

We label the vertices of V1 in such a way that red−1(vt) ⊂ Ut.
The group Γ0 acts on red−1({Tt}) permuting the sets Ut, and this induces an isomorphism of

Γ0-modules ⊕
t∈P1(Fp)

Div0(Ut) ' IndΓ0

Γ0(p) Div0 U∞. (7)

We next recall the definition of the Hecke operator Wp acting on H1(Γ0,DivHp). Let ωp ∈ R(p)
be and element that normalizes Γ0(p) and which is locally of the form

ιp(ωp) = u′
(

0 −1
$ 0

)
,

for some u′ ∈ SL2(Zp) whose lower left entry belongs to p. If ϕ is a cocycle representing an element
in H1(Γ0(p),DivHp) then

(Wpϕ)(g) = ωpϕ(ω−1
p gωp). (8)

Recall the cohomology class ϕ0
ψ ∈ H1(Γ0,Div0(A0)) constructed in §4 and define φ̃ψ = Wpϕ

0
ψ.

Since ϕ0
ψ takes values in Div0(A0), from the explicit formula for Wp in (8) we see that φ̃ψ takes

values in Div0(U∞).
Let Σ0(p) ⊂ R(p) be the multiplicative semigroup formed by elements γ of non-zero norm and

such that ιp(γ) =
(
a b
c d

)
with c ∈ p and a ∈ Z×p . Let Z̄p〈x〉 be the Tate algebra over Z̄p, which we

endow with a weight two action by Σ0(p) by means of the following formula:

σf(x) = (ad− bc)(a− cx)−2f(σ−1x), for f(x) ∈ Z̄p〈x〉 and σ =
(
a b
c d

)
∈ Σ0(p). (9)
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Consider also the Σ0(p)-stable submodule Λ ⊆ Z̄p〈x〉, consisting of functions converging on the
open ball of radius |p|. Note that Λ is identified with the subring Z̄p[[$x]] ⊂ Z̄p〈x〉.

There is a natural Σ0(p)-equivariant map η : Div0 U∞ → Λ, induced by

η(Q− P ) = dlog

(
x−Q
x− P

)
=

1

x−Q
− 1

x− P
.

Equivariance of the above map is straightforward to check directly. Alternatively, one can notice

that for g ∈ Σ0(p) the functions
(
x−gQ
x−gP

)
and

(
g−1x−Q
g−1x−P

)
have the same zeros and poles so they

differ by a multiplicative constant; their logarithms hence differ by an additive constant. Taking
the dlog kills this constant and changes the weight by two.

We see that η defines a map in cohomology, which we will denote by the same letter

η : H1(Γ0(p),Div0 U∞) −→ H1(Γ0(p),Λ),

and we define φψ ∈ H1(Γ0(p),Λ) to be φψ = η(res φ̃ψ), where

res : H1(Γ0,Div0 U0)→ H1(Γ0(p),Div0 U0)

is the natural restriction map.
We consider now the operator Up acting on H1(Γ0(p),Λ). Let h$ ∈ Σ0(p) ben an element of

reduced norm $ such that ιp(h$) = ( 1 0
0 $ )u$ for some u$ ∈ SL2(Zp). There is a double coset

decomposition

Γ0(p)h$Γ0(p) =
⊔
t∈Fp

htΓ0(p),

where the elements ht can be chosen in such a way that

ιp(ht) = ( 1 t
0 $ )ut, for t in a system of representatives of Fp = Zp/pZp,

and where the ut belong to SL2(Zp) and have lower left entry belonging to p. Then for t ∈ Fp and
γ ∈ Γ0(p), there is a unique b and a unique st(γ) ∈ Γ0(p) such that

htst(γ) = γhb.

If ϕ is a cocycle representing an element in H1(Γ0,Λ) then Upϕ is represented by the cocycle given
by

(Upϕ)(γ) =
∑
t∈Fp

htϕ(st(γ)). (10)

Lemma 5.1. For any γ ∈ Γ0(p) we have that (Upϕ)(γ) belongs to $Λ.

Proof. The fact that ϕ(γ) belongs to Λ means that we can write ϕ(γ) =
∑
n≥0 an$

nxn for certain

coefficients an ∈ Z̄p. Then the result follows directly from (10) and the action (9) of ht on elements
of Λ. Indeed, ιp(ht) =

(
a b
c d

)
with c ∈ p, and therefore h−1

t x and (a − cx)−2 belong to Λ. This
implies that

(a− cx)−2ϕ(st(γ))(h−1
t x)

belongs to Λ, and the fact that det(ht) = $ implies that htϕ(st(γ)) belongs to $Λ.

11



Finally, we can define the cohomology classes Φ•ψ. We will define first Φ+
ψ and Φ−ψ , which are

given as explicit series involving the Up-iterates of φψ.

Proposition 5.2. The series given by

Φ+
ψ = φψ + Upφψ + U2

pφψ + U3
pφψ + U4

pφψ + · · · ,

Φ−ψ = −φψ + Upφψ − U2
pφψ + U3

pφψ − U4
pφψ + · · ·

give rise to well defined cohomology classes in H1(Γ0(p),Λ). In addition, they satisfy that

UpΦ+
ψ + φψ = Φ+

ψ and UpΦ−ψ + φψ = −Φ−ψ .

Proof. By Lemma 5.1 for any γ ∈ Γ0(p) the series in Λ

φψ(γ) + (Upφψ)(γ) + (U2
pφψ)(γ) + (U3

pφψ)(γ) + (U4
pφψ)(γ) + · · ·

converges to an element of Λ. Therefore, the series

Φ+
ψ = φψ + Upφψ + U2

pφψ + U3
pφψ + U4

pφψ + · · ·

gives rise to a well defined cohomology class Φ+
ψ ∈ H1(Γ0(p),Λ), which clearly satisfies that UpΦ+

ψ +

φψ = Φ+
ψ . The same argument applies to Φ−ψ .

We also set

Φeven
ψ =

1

2

(
Φ+
ψ − Φ−ψ

)
= φψ + U2

pφψ + U4
pφψ + · · · , and

Φodd
ψ =

1

2

(
Φ+
ψ + Φ−ψ

)
= Upφψ + U3

pφψ + · · · .

6 Evaluation pairing and algebraicity conjecture

There is a natural Γ0(p)-equivariant integration pairing

Λ×Div0A0 −→ Cp

(f,Q− P ) 7−→
∫ Q
P
f(x)dx,

where we define
∫ Q
P
f(x)dx = F (P ) − F (Q) for any primitive F of f . Observe that this is well

defined for f ∈ Λ and P,Q ∈ A0 since f belongs to Λ and therefore any primitive F belongs to
Z̄p〈x〉. We will denote by 〈·, ·〉 the induced integration pairing in (co)homology

〈·, ·〉 : H1(Γ0(p),Λ)×H1(Γ0(p),Div0A0) −→ Cp.

Denote by logp : C×p −→ Cp a choice of p-adic logarithm. Consider also the pairing

Cp(x)×/C×p ×Div0A0 −→ Cp

(f̄ , Q− P ) 7−→ logp (f(Q)/f(P )) ,
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where f is any representative of f̄ (observe that the result does not depend on the choice of
representative). Denote by [·, ·] the induced pairing in Γ0-(co)homology

[·, ·] : H1(Γ0,Cp(x)×/C×p )×H1(Γ0,Div0A0) −→ Cp.

Let now K1 and K2 be quadratic extensions of F , satisfying the same hypotheses that we have been
assuming for the field denoted by K so far. That is, for i = 1, 2, Ki is a quadratic extension of F
such that p is inert in Ki, the place v∞ is split in K and all other infinite places of F are ramified
in K. For i = 1, 2, let Oi be an OF -order of Ki and let ψi ∈ E(Oi, R) be optimal embeddings. We
can consider the homology class c0ψ2

∈ H1(Γ0,Div0A0) defined in Section 3, and the cohomology

classes ϕ0
ψ1

and Φ±ψ1
, Φeven,odd

ψ1
defined in Sections 4 and 5. Consider also the corestriction map in

group homology
cores : H1(Γ0,Div0A0)→ H1(Γ0(p),Div0A0).

Define the quantities

J•ψ1,ψ2
= [ϕ0

ψ1
, c0ψ2

] + 〈Φ•ψ1
, cores c0ψ2

〉, • ∈ {even, odd,+,−}.

All these quantities belong to Cp, but we expect them to be actually p-adic logarithms of algebraic
numbers. We will make the conjecture explicit only in the case where the Hecke operators used in
the definition of c0ψ2

and ϕ0
ψ1

are just integers as in Remark 3.1 and Remark 4.5 (and in particular
the classes deg(cψ2) and deg(ϕψ1) are torsion). Recall that this can always be achieved if H1(Γ0,Z)
is a torsion group (i.e., if the Shimura curve associated to Γ0 has genus 0).

Conjecture 6.1. Suppose that the Hecke operators used in the definition of ϕ0
ψ1
, c0ψ2

are inte-
gers. Let Hi be the narrow ring class field of Oi, and let H = H1H2. There exist elements
P even
ψ1,ψ2

, P odd
ψ1,ψ2

, P+
ψ1,ψ2

, P−ψ1,ψ2
∈ H such that

Jeven
ψ1,ψ2

= logp(P
even
ψ1,ψ2

), Jodd
ψ1,ψ2

= logp(P
odd
ψ1,ψ2

), J+
ψ1,ψ2

= logp(P
+
ψ1,ψ2

), J−ψ1,ψ2
= logp(P

−
ψ1,ψ2

).

Remark 6.2. The first term [ϕ0
ψ1
, c0ψ2

] is obviously the logarithm of an algebraic number, by defini-

tion, and therefore one could formulate an equivalent conjecture with the quantity 〈Φeven
ψ1

, cores c0ψ2
〉

instead of Jeven
ψ1,ψ2

(and similarly for the other classes). However, in the numerical experiments re-

ported in Section 8 below one observes that the quantities Jeven,odd
ψ1,ψ2

, J±ψ1,ψ2
tend to give rise to

algebraic numbers of smaller height, which makes them easier to recognize. This explains the
presence of the term [ϕ0

ψ1
, c0ψ2

] in the definition of these quantities.

7 Effective computation

In this section we describe how one can effectively compute J±ψ1,ψ2
. In fact, the key point is the

calculation of ϕψ, since the rest of the construction is either completely explicit and straightforward
to implement or, as in the case of lifting (co)homology classes with values in DivA0 to classes with
values in Div0A0, has been worked out in [GM14, §4].

In order to effectively compute ϕψ we need an explicit proof of Lemma 4.1. So suppose given
γ ∈ Γ0. We will describe how to compute a finite set Mγ ⊂ Γ0τψ,∞ with the property that

δγ(w) 6= 0 =⇒ w ∈Mγ .
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That is, the support of ϕψ(γ) is contained in Mγ . A finite computation of the values δγ(w) for all
w ∈Mγ will determine ϕψ(γ).

Recall that the cocycle ϕψ depends on the choice of an auxiliary point x ∈ H∗. With the same
notation as in Section 4, let S be a fundamental domain for the action of 〈γψ〉 on the geodesic
C(τψ,∞, τ

′
ψ,∞). It is the form C(y, γψy), where y ∈ H is any choice of a point on C(τψ,∞, τ

′
ψ,∞).

Using standard algorithms coming from the computation with hyperbolic domains for fuchsian
groups, we can find finite sets of elements in Γ0, say {gi}i∈I and {hj}j∈J such that

C(x, γx) ⊂
⋃
i∈I

giD̄, S ⊂
⋃
j∈J

hjD̄,

where D is an open fundamental domain for the action of Γ0 on H (in particular for all γ ∈ Γ0 we
have γD ∩D 6= ∅ =⇒ γ = 1). Then:

w ∈ Supp(ϕψ(γ)) ⇐⇒ C(x, γx) ∩ C(γ−1
w τψ,∞, γ

−1
w τ ′ψ,∞) 6= ∅

⇐⇒ ∃n : C(γwx, γwγx) ∩ γ−nψ S 6= ∅
⇐⇒ ∃n : C(γnψγwx, γ

n
ψγwγx) ∩ S 6= ∅.

Since the choice of γw is only well-defined up to 〈γψ〉, we may replace γw with γnτ γw to obtain

w ∈ Supp(ϕψ(γ)) ⇐⇒ w = γwτψ,∞,withγwC(x, γx) ∩ S 6= ∅.

Next, note that

γwC(x, γx) ∩ S ⊂
⋃
i∈I

γwgiD ∩
⋃
j∈J

hiD =
⋃
i,j

γwgiD ∩ hiD.

From the fact that D is a fundamental domain, we deduce that each of the terms in the above
right-hand side is empty unless γwgi = hj , that is unless γw = σhjg

−1
i , with σ belonging to the

finite set Σ of elements giving the side pairing:

Σ = {σ ∈ Γ0 | σD ∩D 6= ∅}.

To sum up, we have proved:

Proposition 7.1. With the notation defined above,

Supp(ϕψ(γ)) ⊆ {gih−1
j σ−1τ}i∈I,j∈J,σ∈Σ.

8 Numerical Evidence

We collect below a sampling of various examples that give evidence of the conjecture. The aim is
not to be exhaustive, and the interested reader is encouraged to try to find more examples on their
own. The implementation4 is written in Sage ([S+20]) and heavily depends on the darmonpoints

package5.

4Available at github.com/mmasdeu/darmonvonk
5Maintained by the second named author at github.com/mmasdeu/darmonpoints
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8.1 A detailed quaterionic example over Q

Consider the quaternion algebra B/Q of discriminant 6 given by B =
(

6,−1
Q

)
. In this example we

take p = 5. We consider the maximal order R = 〈1, i, j, 1+i+j+k
2 〉. We consider also the quadratic

field K1 = Q(
√

53), and the embedding

ψ1 : OK1 ↪→ R,
1 +
√

53

2
7→ 1/2− 3/2i− 1/2j.

This yields the hyperbolic element γψ1 :

γψ1
= 51/2 + 21/2i+ 7/2j.

Similarly, we consider the quadratic extension K2 = Q(
√

23), and the embedding

ψ2 : OK2
↪→ R,

√
23 7→ 2i+ j.

This yields the hyperbolic element γψ2 :

γψ2
= 1151 + 480i+ 240j

Working with 100 digits of 5-adic precision, we compute

J+
ψ1,ψ2

= 50971141466526826096289662898361868496463698468806135561183036939036

+ 9674029354607221223815165708202713711819464972332940921086896674730α5 +O(597),

where α5 ∈ C5 satisfies α2
5 − α5 − 13 = 0, the same polynomial that 1+

√
53

2 satisfies.

The period J+
ψ1,ψ2

satisfies, up to a root of unity, the polynomial

41177889x4 + 7867012x3 + 33058502x2 + 7867012x+ 41177889.

One checks that this gives an unramified extensions of the compositum of the fields of definition of
the involved cycle and cocycle, as predicted by the conjecture. Also, note the factorization of the
leading term of the minimal polynomial for J+

ψ1,ψ2
,

41177889 = 34 · 232 · 312.

The list of primes 3, 23 and 31 appears in the first of the tables of the next subsection.

8.2 Tables with quaternionic examples

In this section we present the result of a batch of calculations with the quaternion algebras B of
discrimiants D ∈ {6, 10, 22}. These are all the cases –other than the modular curve cases– for which
the corresponding Shimura curve has genus 0. In each case, we have chosen p to be the smallest
prime which is split in B: for D = 6 we have taken p = 5, and in the other two cases we have set
p = 3.

We consider the real quadratic fields of discriminant < 100 for which p is inert and the primes
dividing D are non-split. For each pair of different fields K1, K2 (rather, to their maximal orders)
we calculate J?∆1,∆2

, with ? ∈ {+,−, even, odd}.
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In order to recognize J?∆1,∆2
algebraically, we take advantage of the fact that Conjecture 6.1

predicts the field H where J?∆1,∆2
should belong. The support is also predicted in [DV20b, §4] and

hence (by embedding H× in Q×p2 and then taking p-adic logarithms) we can translate the problem
of algebraically recognizing J?∆1,∆2

into an additive lattice reduction problem.
In the row ∆1 and column ∆2 of each table we represent the result of this experiment corre-

sponding to J?∆1,∆2
. A ?-sign means that we were unsuccessful in recognizing the value algebraically.

By the symbol - we mean that the quantity was recognized but it belongs to Q(
√

∆1,
√

∆2) ⊆ H
–we regard these quantities as “trivial”–. In all other cases, the list of primes denotes the support
of the recognized quantity: it is the set S of rational primes q defined by the property

∀q ⊆ OH , |J |q 6= 0 ⇐⇒ q ∩ Z ∈ S.

If S = ∅ (which means that J is a unit in OH) then we write 1 instead of leaving a blank space.
It is worth remarking that the plus and minus tables are symmetric, while this is not true for

the even and odd ones. From this point of view, it seems justified to consider ±-classes more
“primitive” than the even and odd ones.

Plus table

8 12 53 77 92 93

8 - - 3, 5 2, 3 5
12 - 5 ? 2 -
53 - 5 ? 3, 23, 31 2, 5, 41
77 3, 5 ? ? ? ?
92 2, 3 2 3, 23, 31 ? ?
93 5 - 2, 5, 41 ? ?

Minus table

8 12 53 77 92 93

8 1 - 3, 5 2, 3 2, 5
12 1 2,5 ? 1 1
53 - 2, 5 3, 5 2, 3, 23, 31 2, 5, 41
77 3, 5 ? 3, 5 ? ?
92 2, 3 1 2, 3, 23, 31 ? ?
93 2, 5 1 2, 5, 41 ? ?

Table 1: Tables for D = 6, p = 5, plus-minus classes.

8.3 Moving p and B

Let K1 = Q(
√

53), which has narrow class number 1, and let K2 = Q(
√

23), of narrow class number
2.

Consider first the quaternion algebra B10 =
(

2,−5
Q

)
of discriminant 10. An embedding of the

maximal order of K1 in a maximal order R of B yields γψ1
= 51/2 + 49/2i+ 21/2j. Similarly, an
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Even table

8 12 53 77 92 93

8 1 - 3 2, 3 2, 5
12 1 ? ? 2 1
53 - 2, 5 ? 2, 3, 23 2, 41
77 5 ? ? ? ?
92 2, 3 2 2, 31 ? ?
93 2, 5 1 2, 41 ? ?

Odd table

8 12 53 77 92 93

8 1 - 5 2 2, 5
12 1 ? ? 2 1
53 - 2, 5 ? 2, 31 2, 5
77 3 ? ? ? ?
92 2 2 2, 3, 23 ? ?
93 2, 5 1 2, 5 ? ?

Table 2: Tables for D = 6, p = 5, even-odd classes.

Plus table

5 8 53 77 92

5 - - 3 2, 3
8 - - 3, 5 2, 3
53 - - 3, 5, 31 2, 3, 23, 31
77 3 3, 5 3, 5, 31 ?
92 2, 3 2, 3 2, 3, 23, 31 ?

Minus table

5 8 53 77 92

5 - - 3 3
8 - - 3, 5 2, 3
53 - - ? 3, 23, 31
77 3 3, 5 ? ?
92 3 2, 3 3, 23, 31 ?

Table 3: Tables for D = 10, p = 3, plus-minus classes.

Even table

5 8 53 77 92
5 - - 3 2, 3
8 - - 5 2
53 - - ? 2, 31
77 3 5 ? ?
92 2, 3 2, 3 2, 3, 23 ?

Odd table

5 8 53 77 92
5 - - 1 2, 3
8 - - 3 2, 3
53 - - ? 2, 3, 23
77 1 3 ? ?
92 2, 3 2 2, 31 ?

Table 4: Tables for D = 10, p = 3, even-odd classes.

embedding of the maximal order of K2 in R yields γψ2
= 1151− 720i+ 240j + 240k. Working with
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Plus table

8 29 44 77
8 - - 2
29 - 3 2
44 - 3 2, 11
77 2 2 2, 11

Minus table

8 29 44 77
8 - 1 ?
29 - ? ?
44 1 ? ?
77 ? ? ?

Table 5: Tables for D = 22, p = 3, plus-minus classes.

Even table

8 29 44 77
8 - 1 ?
29 - ? ?
44 1 ? ?
77 ? ? ?

Odd table

8 29 44 77
8 - 1 ?
29 - ? ?
44 1 ? ?
77 ? ? ?

Table 6: Tables for D = 22, p = 3, even-odd classes.

200 digits of 3-adic precision, we compute

J
even
ψ1,ψ2

= 671432593119615754102633585711508084975279376970274924820959686886765982751024059399440196967+

854036156664899807234573316442426628332603932639256104698469526875913414165113678004656329424
1 +
√

53

2
+O(3

195
).

We repeat the calculation with the quaternion algebra B6 =
(

2,3
Q

)
of discriminant 6. The

embeddings of K1 and K2 in B6 this time give rise to γ′ψ1
= 51/2 + 21/2i + 7/2j and γ′ψ2

=
1151 + 480i+ 240j, respectively. Working with 200 digits of 5-adic precision we compute

J
even
ψ′1,ψ

′
2

= 2235158967056605935022903962318227997528221577810184623092802398073249517900702179841205111669

29820333143729033784117048388613175877216081 + 1888129453960046774715006105424989658239316060832855

95774155493419628402609686469558179779684297934788222122759958929106946068250088369040
1 +
√

53

2
+O(5

197
).

Consider M the field generated by a root of the polynomial x8− 4x7 + 84x6− 238x5 + 1869x4−
3346x3 + 7260x2− 5626x+ 3497, and note that M contains Q(

√
53,
√

23). Also, M embeds in both
Q32 and Q52 via ι3 and ι5, respectively. We check that there exists α ∈ M (supported only on
primes above 2, 3, 5, 23 and 31) and units u1, u2 in Q(

√
53,
√

23) satisfying

ι3(αu1) = Jeven
ψ1,ψ2

, and ι5(αu2) = Jeven
ψ′1,ψ

′
2
.

In fact, the units u1 and u2 belong to the rang 2 subgroup generated by the fundamental units of
K1 and K2. It is worth noting that the primes appearing in the support of α are predicted by the
Gross–Zagier factorization, as explained in [DV20b, §4]
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8.4 Large genus example

Consider the quaternion algebra B/Q of discriminant 15 given by B =
(

2,15
Q

)
, and let p = 7. We

consider the maximal order R = 〈1, i, 1+i+j
2 , 2−i+k

4 〉. Consider the quadratic field K1 = Q(
√

17)
and the embedding

ψ1 : OK1 ↪→ R,
1 +
√

17

2
7→ 1/2− 1/2i− 1/2j.

This yields the hyperbolic element γψ1 :

γ1 = 33 + 8i+ 8j.

Similarly, we consider K2 = Q(
√

33), and the embedding

ψ2 : OK2
↪→ R,

1 +
√

33

2
7→ 1/2− 9/4i− j − 3/4k.

This yields the hyperbolic element γψ2
:

γψ2
= 1057 + 828i+ 368j + 276k.

In order to lift the classes, we needed to act by T2 + 1, which kills the cuspidal space for Γ0(15).
Working with 100 digits of 7-adic precision, we compute

J
+
ψ1,ψ2

= 64094024229051011328172608155448301705695076718018850887636370131427738532434310728

+ 47794262697757308857586073314123359973162778051638804058607411482263821225069561350α7 +O(7
98

),

where α7 ∈ C7 satisfies α2
7 − α7 − 4 = 0. The period J+

ψ1,ψ2
satisfies, up to a root of unity, the

polynomial
680625x4 − 2444871x3 + 3533392x2 − 2444871x+ 680625.

This element has support at the rational primes 3, 5 and 11, and it does indeed generate the
predicted compositum of Q(

√
17) (of trivial narrow class group) with the narrow class field of

Q(
√

33).

8.5 An example over a real quadratic field

Consider F = Q(
√

5), with ring of integers Z[w], w = 1+
√

5
2 . Consider the quaternion algebra B/F

of discriminant (2) given by B =
(−w,−2

F

)
. In this example we take p = (−3w + 2), an ideal of

norm 11. We consider the maximal order

R = 〈1, i, 2w + 2i+ j, 2w + 2 + 2wi+ k〉.

We consider the quadratic extension K1/F given by adjoining to F the square root w1 of 1− 2w,
and the embedding

ψ1 : OK1 ↪→ R, w1 7→ (w − 2)i− j.

This yields the hyperbolic element γψ1
:

γψ1
= w − 2 + (2w − 3)i+ (w − 1)j
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Similarly, we consider the quadratic extension K2/F given by adjoining to F the square root w2 of
9− 14w, and the embedding

ψ : OK ↪→ R, w2 7→ (−3w + 2)i+ (w − 2)k

This yields the hyperbolic element γψ2
:

γψ2
= −55w + 88 + (−50w + 81)i+ (34w − 55)k

Working with 60 digits of p-adic precision, we compute

J+
ψ1,ψ2

= 2650833861085011569846208847449970229624664608755690791954838 +O(1159),

which satisfies the polynomial

25420x4 − 227820x3 + 2200011x2 − 27566220x+ 372174220.

One readily checks that this gives an unramified extension of the compositum of the fields of
definition of the involved cycle and cocycle, as predicted by the conjecture.

References

[DV20a] H. Darmon and J. Vonk, Arithmetic intersections of modular geodesics, preprint (2020).

[DV20b] , Singular moduli for real quadratic fields: a rigid analytic approach, Accepted for
publication in the Duke Mathematical Journal (2020).

[Geh20] Lennart Gehrmann, On quaternionic rigid meromorphic cocyles, arXiv e-prints (2020),
arXiv:2009.04957.

[GM14] X. Guitart and M. Masdeu, Overconvergent cohomology and quaternionic Darmon points,
J. Lond. Math. Soc. (2) 90 (2014), no. 2, 495–524. MR 3263962

[GMS15] Xavier Guitart, Marc Masdeu, and Mehmet Haluk Sengün, Darmon points on elliptic
curves over number fields of arbitrary signature, Proc. Lond. Math. Soc. (3) 111 (2015),
no. 2, 484–518. MR 3384519

[Gre09] M. Greenberg, Stark-Heegner points and the cohomology of quaternionic Shimura varieties,
Duke Math. J. 147 (2009), no. 3, 541–575. MR 2510743 (2010f:11097)

[S+20] W. A. Stein et al., Sage Mathematics Software (Version 9.1), The Sage Development Team,
2020, http://www.sagemath.org.

[Voi14] John Voight, The arithmetic of quaternion algebras, preprint (2014).

20


	Introduction
	Setup
	Darmon's homology classes
	Cohomology classes for 0
	Overconvergent cohomology classes
	Evaluation pairing and algebraicity conjecture
	Effective computation
	Numerical Evidence

