
REMARKS ON STRONGLY MODULAR JACOBIAN SURFACES

XAVIER GUITART AND JORDI QUER

Abstract. In [3] we introduced the concept of strongly modular abelian va-

riety. This note contains some remarks and examples of this kind of varieties,

especially for the case of Jacobian surfaces, that complement the results of [3].

1. Introduction

One of the most impressive achievements of the last years in number theory is the
proof of the modularity of all rational elliptic curves by Breuil, Conrad, Diamond
and Taylor, following the ideas and techniques introduced by A. Wiles. This fact,
among several other equivalent ways, can be stated as follows: every elliptic curve
A/Q defined over the rational numbers is Q-isogenous to a simple factor of some
variety J1(N).

From Serre’s conjecture on modularity of mod p two-dimensional Galois rep-
resentations, recently proven by Khare and Winterberger, one obtains (cf. Ribet
[8]) the more general characterization of the Q-simple varieties A/Q that are Q-
isogenous to a simple factor of some variety J1(N). They are the varieties called
of GL2-type, defined by the condition that End0

Q(A) is a number field of degree
equal to dimA. Much of the interest of these varieties lies in the fact that their
L-function is equivalent to a product of L-functions of classical modular forms for
congruence subgroups Γ1(N). In addition, if a Q-simple variety has this property
then it is of GL2-type.

In [5] Pyle characterizes the abelian varieties B/K defined over a number field K
that are simple factors of some abelian variety of GL2-type. Equivalently, thanks
to the modularity result stated in the previous paragraph, this is a characterization
of the the absolutely simple factors up to isogeny of modular Jacobians J1(N).
She calls them building blocks. The non-CM building blocks are precisely the va-
rieties admitting compatible isogenies between their Galois conjugates, and whose
endomorphism algebra has totally real center and has reduced degree equal to the
dimension of the variety.

In [3] we introduced the concept of strongly modular abelian variety as a variety
B/K over a number field K whose L-function L(B/K; s) is equivalent to a product
of L-functions of classical modular forms for congruence subgroups Γ1(N). This
property is characterized in [3, Theorem 5.3], with the additional hypothesis of K/Q
being a Galois extension, in terms of the existence of compatible isogenies between
Galois conjugates, the structure of the endomorphism algebra of the variety, and
properties of a certain Galois cohomology class [cB/K ] attached to it.

In the present paper we continue the study of strongly modular abelian varieties
by complementing the results of [3] in three different aspects. First of all, in Section
2 we prove that if the varietyB/K is strongly modular then the number fieldK must
necessarily be Galois (and abelian) over Q; this shows that the Galois condition can
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be removed from the hypothesis of the main theorem [3, Theorem 5.3]. The proof is
obtained from an elementary general result (Lemma 2.1) about the field of definition
of endomorphisms of abelian varieties obtained by restriction of scalars, and the
use of Ribet’s results on twists of modular forms. Second, in [3] the cohomology
classes [cB/K ] were explicitly computed for the Jacobians of a certain family of
genus two curves. In Section 3 we extend this computation to the Jacobians of a
much wider class of genus two curves investigated by Rotger in [10]. Finally, in
Section 4, we make a detailed study of an example that was already mentioned in
[3]: it is an abelian surface B/K defined over a biquadratic field K = Q(

√
2,
√
−3)

as the Jacobian of an explicitly given hyperelliptic curve C/K. It is a building
block but it is not strongly modular over K; moreover, none of its twists is strongly
modular over K. What we do is to show how to twist the defining curve C in such
a way that the corresponding Jacobian is a strongly modular surface, but over the
bigger field K(

√
−1).

2. Restriction of scalars and L-series of building blocks

We begin by recalling the basic definitions and properties of the objects we will
be working with; more details can be found in [3].

An abelian Q-variety is an abelian variety B/Q with the property that for each
σ ∈ GQ = Gal(Q/Q) there exists an isogeny µσ : σB → B compatible with the

endomorphisms of B; that is, such that ϕ aµσ = µσ aσϕ for all ϕ ∈ End0(B). A
building block is an abelian Q-variety such that End0(B) is a division algebra of
Schur index t 6 2 whose center is a totally real number field F and t[F : Q] = dimB.
The building blocks are the non-CM Q-simple factors of the varieties of GL2-type
(this is [5, §4]), and therefore they are the absolutely simple quotients without CM
of the varieties J1(N)Q.

Let B be a building block, and let F be the center of its endomorphism alge-
bra. Let K/Q be a Galois extension with Galois group G. We will say that B is
completely defined over K if B, its endomorphisms and all the isogenies between B
and its conjugated varieties are defined over K. If this is the case, for each s ∈ G
fix an isogeny µs : sB → B, and for s, t ∈ G define cB/K(s, t) = µs asµt aµ−1

st . This

map is a two-cocycle of G with values in the G-module with trivial action F×. Its
cohomology class [cB/K ] belongs to H2(G,F×), it is independent of the choices of
the µs and it is an invariant of the K-isogeny class of B; moreover, it is a 2-torsion
element. Let cB be the inflation of cB/K to GQ; its cohomology class [cB ] belongs to

H2(GQ, F
×)[2] (F× with trivial GQ-action) and it is an invariant of the Q-isogeny

class of B.
By considering an embedding of F into R one obtains a decomposition of the

group H2(GQ, F
×)[2] as

(2.1) H2(GQ, F
×)[2] ' H2(GQ, {±1})×Hom(GQ, F

×/{±1}F×2).

The first component of [cB ] under this isomorphism, that we will denote [cB ]±, is
obtained by taking the sign of cB . We will use that H2(GQ, {±1}) is canonically
isomorphic to the 2-torsion of the Brauer group of Q, and we will identify [cB ]±
with a rational quaternion algebra. The second component, that we will denote
[cB ], is given by a coboundary of c2B : if λ : GQ → F× is a map such that c2B(σ, τ) =
λ(σ)λ(τ)λ(στ)−1 then the homomorphism G→ F×/{±1}F×2 : σ 7→ λ(σ){±1}F×2

is precisely [cB ]. In practice, a coboundary of c2B can be computed by means of the
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degree map: fix ρ : B → B̂ a polarization of B, and for each σ ∈ GQ fix a compatible
isogeny µσ : σB → B and define the degree of µσ by d(µσ) = µσ aσρ−1 a µ̂σ aρ, which

is an element of F×. Then c2B(σ, τ) = d(µσ)d(µτ )d(µστ )−1, so the component [cB ]

is the map d : σ 7→ d(µσ){±1}F×2.
Let B be a building block defined over a number field K, and let F be the

center of End0(B). For simplicity suppose that all the endomorphisms of B are
defined over K (see however remark 2.4). The L-series L(B/K; s) is equivalent
to a product of L-series of modular forms for Γ1(N) if and only if the restriction
of scalars ResK/QB is isogenous over Q to a product of abelian varieties of GL2-
type (see [3, Proposition 2.4] for the details). In the case where K/Q is Galois,
a necessary and sufficient condition for this was given in [3, §5] in terms of the
cohomology class [cB/K ]. Now we show that, in fact, if ResK/QB is isogenous to a
product of varieties of GL2-type then K/Q is necessarily a Galois extension. This
will be a consequence of the following

Lemma 2.1. Let k be a field and k a separable closure. Let K,L be subfields of k
of finite degree over k. Let B be an abelian variety over K. If the endomorphisms
of the variety A = ResK/k B are defined over L, then K ⊆ L.

Proof. We will see that GL ⊆ GK . Suppose this is not the case. Then there exists
an automorphism σ ∈ GL which does not belong to GK . Let ΣK denote the set
of k-embeddings τ : K → k. If we denote by τ0 the inclusion τ0 : K ↪→ k, then
στ0 6= τ0. We will construct an element ϕ ∈ Endk(A) such that σϕ 6= ϕ, and this
will be a contradiction with the fact that Endk(A) = EndL(A).

Let A0 be the variety A0 =
∏
τ∈ΣK

τ
B, and for each ρ ∈ Gk let φρ : ρA0 → A0

be the isomorphism which permutes the coordinates according to the canonical
isomorphisms ρ(τB) ' ρτB. By the construction of the variety restriction of scalars,
there exists a k-isomorphism λ : A0 → A such that λ−1 aρλ = φρ (cf. [11, §1.3]).

Let ψ be a diagonal endomorphism of A0; that is, one of the form
∏
τ∈ΣK

ψτ ,

with each ψτ an element of End(τB). Since στ0 6= τ0 we can, and do, choose such a
ψ with σψτ0 6= ψστ0 . Consider now the endomorphism of A given by ϕ = λ aψ aλ−1.
If σϕ = ϕ then λ−1 aσλ aσψ = ψ aλ−1 aσλ, and therefore φσ aσψ = ψ aφσ. But the
restriction of φσ aσψ to στ0B is equal to σψτ0 , whereas the restriction of ψ aφσ to
στ0B is equal to ψστ0 . But we chose ψ with σψτ0 6= ψστ0 , so σϕ 6= ϕ and therefore
not all the endomorphisms of A are defined over L; this is a contradiction, thus GL
is indeed contained in GK as we aimed to see. �

Proposition 2.2. Let B be a building block defined over a number field K. If
ResK/QB is isogenous over Q to a product of abelian varieties of GL2-type without
CM, then the extension K/Q is abelian.

Proof. Since each abelian variety of GL2-type is isogenous over Q to a modular
abelian variety, we can suppose that A is isogenous over Q to a product of the form∏
f Af , for some weight two newforms f . The minimal field of definition of the

endomorphisms of Af is an abelian extension Lf/Q by [2, Proposition 2.1]. On
the other hand, suppose that Af and Ag are simple factors over Q of ResK/QB
such that HomQ(Af , Ag) 6= 0. Then by [9, Theorem 4.7] we can suppose that there
exists a Dirichlet character χ such that f = g ⊗ χ. If we identify χ with a Galois

character χ : GQ → Q× via class field theory, and we denote by M the fixed field of
the kernel of χ , then HomM (Af , Ag) 6= 0. That is, there exists a homomorphism
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between Af and Ag defined over the abelian extension M . This implies that the
endomorphisms between Af and Ag are defined over the composition MLfLg,
which is abelian. Thus, all the endomorphisms of ResK/QB are defined over a
certain abelian extension L. Now lemma 2.1 implies that K ⊆ L, so that K is also
abelian over Q. �

Theorem 2.3. Let B be a building block whose endomorphisms are defined over a
number field K. Then B is strongly modular over K if and only if K/Q is abelian,
B is completely defined over K and [cB/K ] belongs to the subgroup of classes of

symmetric cocycles Ext(G,F×) ⊆ H2(G,F×).

Proof. Suppose that L(B/K; s) is a product of L-series of modular forms. Then the
variety ResK/QB is isogenous over Q to a product of abelian varieties of GL2-type,
and by proposition 2.2 the extension K/Q is necessarily Galois. Now the result
follows from [3, Theorem 5.3]. �

Remark 2.4. A non-CM abelian variety of GL2-type is isogenous over Q to a power
of a building block. Analogously, if K/Q is a Galois extension with Galois group G,
then an abelian variety of GL2-type is isogenous over K to a power of a K-building
block. A K-building block is a Q-variety B defined over K, with compatible isoge-
nies defined over K and such that the endomorphism algebra End0

K(B) is a central
division algebra over a number field E, with index t 6 2 and t[E : Q] = dimB. Ob-
serve that with this terminology, a building block is the same as a Q-building block.
To a K-building block one also attaches a cohomology class as follows: for each
s ∈ G fix a compatible isogeny µs : sB → B and define cB/K(s, t) = µs asµt aµ−1

st .

Now cB/K is a two cocycle of G with values in E× (endowed with the trivial G-

action), and its cohomology class [cB/K ] belongs to H2(G,E×). Combining propo-
sition 2.2 with [3, Theorem 5.3] as we did in the proof of theorem 2.3 we have the
following

Theorem 2.5. Let B/K be a K-simple abelian variety. B is strongly modular over
K if and only if K/Q is abelian, B is a K-building block and [cB/K ] ∈ Ext(G,E×).

3. Cohomology classes attached to Jacobian surfaces with QM

We begin this section by recalling some notations and results from [10]. For
rational numbers a and b we denote by (a, b)Q the quaternion algebra over Q gen-
erated by ı,  with ı2 = a, 2 = b and ı+ ı = 0. Let B be an indefinite quaternion
algebra over Q of discriminant D > 1. We denote by n and tr the corresponding
reduced norm and trace. Let O be a maximal order in B. A curve C/Q is said to
be a QM -curve with respect to O if O can be embedded in the endomorphism ring
of its Jacobian.

Fix an element µ ∈ O such that µ2 + D = 0, whose existence is guaranteed
by Eichler’s theory of optimal embeddings, and call the pair (O, µ) a principally
polarized order. A twist of (O, µ) is an element χ ∈ O ∩ NB×(O) such that χ2 +
n(χ) = 0 and χµ+µχ = 0, so that B ' (−D,−n(χ))Q. The pair (O, µ) is said to be
twisting if it admits some twist in O, and B is said to be twisting if it contains some
twisting polarized maximal order. In fact, B is twisting if and only if B ' (−D,m)Q
for some integer m dividing D.

If (B, ρ)/Q is a polarized abelian variety and R is a subring of End(B), the
field of moduli kR is defined to be the smallest number field such that for any
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σ ∈ Gal(Q/kR) there exists an isomorphism φσ : σB → B with1 φ∗σ(ρ) = σρ and
such that for each r ∈ R the following diagram commutes:

σB

σr

��

φσ // B

r

��
σB

φσ // B.

For any curve C, we will see its Jacobian as a polarized abelian variety, with the
canonical polarization induced by C. The field of moduli of C, denoted by kC , is
the smallest number field such that σC and C are isomorphic for all σ ∈ Gal(Q/kC).
Note that this is the same as the field of moduli kZ for the subring Z ⊆ End(Jac(C)).
The following result is [10, Theorem 4.1].

Theorem 3.1 (Rotger). Let C/Q be a smooth irreducible curve of genus 2 such
that End(Jac(C)) is isomorphic to a maximal order O in B. Fix an isomorphism
O ' End(Jac(C)), let µ ∈ O such that µ2 + D = 0 and suppose that under the
previous isomorphism the Rosati involution is given by ϕ′ = µ−1ϕµ for all ϕ ∈ O,
where the bar denotes the canonical involution on B. Suppose that the polarized
order (O, µ) is twisting and let m | D such that B ' (−D,m)Q. Then there exist
elements ωm and ωD/m belonging to O such that µωm = −ωmµ and µωD/m =
−ωD/mµ, with the property that

(1) ω2
m = m and ω2

D/m = D/m,

(2) kZ[ωm] and kZ[ωD/m] are at most quadratic extensions of kC ,

(3) kO = kZ[ωm] · kZ[ωD/m].

Let C be a curve as in the previous theorem (in particular we continue with the
same notation for the elements µ, ωm and ωD/m), and let B be its Jacobian. For

each σ ∈ Gal(Q/kC) the isomorphism σC ' C induces an isomorphism of polarized
abelian surfaces φσ : σB → B. In particular, φσ is an isogeny, but it is not
guaranteed to be a compatible one. However, the map ϕ 7→ φσ aσϕ aφ−1

σ : B → B
is a Q-algebra automorphism of B, so by the Noether-Skolem theorem it is inner:
there exists a ψσ ∈ B× such that φσ aσϕ aφ−1

σ = ψ−1
σ

aϕ aψσ. Since ψσ is uniquely
determined up to multiplication by rational numbers, we can choose ψσ such that
µσ = ψσ aφσ is a compatible isogeny. In particular, if kC = Q then B is a building
block.

Recall that the degree of a compatible isogeny µσ is defined to be d(µσ) =
µσ aσρ−1 a µ̂σ aρ, which in our case can be identified with a rational number since
the center of B is equal to Q. The map

d : Gal(Q/kC) → Q×/{±1}Q×2

σ 7→ d(µσ) · {±1}Q×2

is a homomorphism, and it gives the degree component [cB ] of [cB ] under (the
restriction of) the isomorphism (2.1). We will use the following notation to indicate
elements in Hom(Gal(Q/kC),Q×/{±1}Q×2): if t ∈ kC and δ ∈ Q× we denote by
(t, δ)P the homomorphism that sends σ ∈ Gal(Q/kC) to δ ·{±1}Q×2 if σ

√
t = −

√
t,

and that sends σ to the trivial element if σ
√
t =
√
t. Observe that any element

1Recall that a polarization ρ for B is an isogeny ρ : B → B̂, and that the pullback of ρ by φσ
is φ∗σ(ρ) = φ̂σ aρ aφσ .
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of Hom(Gal(Q/kC),Q×/{±1}Q×2) can be expressed (in a non-unique way) as a
product of morphisms of the form (t, δ)P .

Proposition 3.2. Let C be a curve as in Theorem 3.1, and let d be the degree
map associated to its Jacobian B. Then d(σ) ≡ 1 mod {±1}Q×2 for all σ ∈
Gal(Q/kO). If σ ∈ Gal(Q/kZ[ωh]) does not fix kO, then d(σ) ≡ h mod {±1}Q×2,
for h ∈ {m,D/m}.

Proof. Let σ be an element in Gal(Q/kO), and let ρ be the polarization on B given
by C. By the definition of the field of moduli there exists a compatible isomorphism
φσ : σB → B such that φ∗σ(ρ) = σρ. If we use ρ to compute the degree we find that

d(φσ) = φσ aσρ−1 a φ̂σ aρ = φσ aφ−1
σ

aρ−1 a φ̂−1
σ

a φ̂σ aρ = 1.

Let σ be an element in Gal(Q/kZ[ωh]) that does not fix kO. By the definition of kZ[ωh]

there exists an isomorphism φσ : σB → B compatible with the endomorphisms in
Z[ωh]. By what we said above, there exists an element ψσ ∈ B such that µσ =
ψσ aφσ is an isogeny that is compatible with all the endomorphisms of B. The ψσ
satisfies that φσ aσϕ aφ−1

σ = ψ−1
σ

aϕ aψσ for all ϕ ∈ B, and if ϕ belongs to Z[ωh] this
implies that ϕ = ψ−1

σ
aϕ aψσ. Therefore, ψσ commutes with every element in Z[ωh],

which implies that ψσ belongs to Z[ωh]⊗Q. Hence, we have that ψσ = a+ bωh for
some a, b ∈ Q with b 6= 0. Indeed, if b was 0 then ψσ would be compatible with all
the endomorphisms of B, but since σ does not fix kO this is not possible. Again,
using ρ to compute the degree of µσ we find that

d(µσ) = d(ψσ aφσ) = ψσ aφσ aσρ−1 a ψ̂σ aφσ aρ
= ψσ aφσ aφ−1

σ
aρ−1 a φ̂−1

σ
a φ̂σ a ψ̂σ aρ

= ψσ aρ−1 a ψ̂σ aρ = ψσ aψ′σ.
But the Rosati involution of an endomorphism ϕ is given by ϕ′ = µ−1ϕµ, and
therefore

d(µσ) = ψσ aψ′σ = (a+ bωh)(a+ bωh)′ = (a+ bωh)µ−1(a− bωh)µ

= (a+ bωh)2 = a2 + hb2 + 2abωh.

The degree d(µσ) belongs to Q×, and since b 6= 0 then necessarily a = 0 and
d(µσ) ≡ h (mod Q×2). �

When B is a building block, we can use this knowledge of the degree map to
compute [cB ].

Proposition 3.3. Suppose that kC = Q, and let kZ[ωh] = Q(
√
th) for h ∈ {m,D/m}.

The sign and degree components of [cB ] are given by

(3.1) [cB ] = (tm, D/m)P · (tD/m,m)P ,

(3.2) [cB ]± = (tm, D/m)Q · (tD/m,m)Q · (−D,m)Q.

Proof. The expression for the degree component follows from Proposition 3.2. First
of all, the degree homomorphism d is the inflation of a homomorphism from the
group Gal(kO/Q), and we know that kO = Q(

√
tm,
√
tD/m). Note that we are

not assuming this to be a degree 4 extension: it can also be a quadratic or a
trivial extension. Let σ ∈ Gal(kO/kZ[ωm]) that does not fix kO; it restricts to a

generator of Gal(Q(
√
tD/m)/Q), and as we have seen d(σ) ≡ m mod {±1}Q×2.
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This gives the part (tD/m,m)P of the degree homomorphism. In the same way,
if τ is an element from Gal(kO/kZ[ωD/m]) that does not fix kO, it restricts to a

generator of Gal(Q(
√
tm)/Q) and d(σ) ≡ D/m mod {±1}Q×2, which gives the

part (tD/m,m)P .
Now, to prove the identity (3.2) we use [7, Theorem 2.8], which gives a formula

for the Brauer class of the endomorphism algebra of a building block. Particularized
to our case, and having computed the degree component, this formula gives

(−D,m)Q = [cB ]± · (tm, D/m)Q · (tD/m,m)Q.

Here H2(GQ, {±1}) is identified with the 2-torsion of the Brauer group of Q. From
this (3.2) follows immediately. �

4. A concrete example

Let B6 = (2, 3)Q be the rational quaternion algebra of discriminant 6. Let ı, 
be elements in B6 such that ı2 = 2 and 2 = 3, and let µ = 2 + ı. The order
O = Z[ı, (1 + )/2] is maximal, and the elements ω2 = ı and ω3 =  + ı are

twists of (O, µ). For ease of notation, we define the subrings R2 = Z[ı] ' Z[
√

2],

R3 = Z[+ ı] ' Z[
√
−3] and R6 = Z[µ] ' Z[

√
6].

We will consider the following genus two curve:

C : Y 2 =
(
−4 + 2

√
2
)
X6 − 122X5 − 72

(
28 + 2

√
2
)
X4 + 16 · 122X3

+ 123
(

28− 6
√

2
)
X2 − 48 · 123X + 8 · 123

(
4 + 2

√
2
)
.

It has been obtained by particularizing to −4/27 the value of the parameter j in the
family of curves described in [1, Theorem 15]. Let B be the Jacobian of C, which
is a polarized abelian surface (with the canonical polarization given by C). The
results on the arithmetic of such curves of [1, §3.6] give us the following information
about B:

Proposition 4.1 (Baba-Granath). The endomorphism algebra of B is isomorphic
to B6, and under this isomorphism the Rosati involution attached to the canonical
polarization of B is given by ϕ′ = µ−1ϕµ. The several fields of moduli are kZ = Q,
kR3

= Q and kO = kR2
= kR6

= Q(
√
−3). Finally, all the endomorphisms of B

are defined over K = Q(
√

2,
√
−3).

If σ ∈ GQ restricts to the non-trivial automorphism of Q(
√

2)/Q then the map

(x, y) 7→
(
−24
x , (−24)3/2y

x3

)
is an isomorphism

σ
C → C, that gives rise to an isomor-

phism σB ' B defined over K. Therefore, B is a building block completely defined
over K.

Proposition 4.2. The sign and degree components of [cB ] are [cB ] = (−3, 3)P and
[cB ]± = (−6, 3)Q.

Proof. This is a direct application of Proposition 3.3. Indeed, Proposition 4.1
directly gives that in this case t2 = −3 and t3 = 1. �

We will use this result to see that [cB/K ] is not symmetric. As in (2.1) we have
a decomposition

H2(G,Q×) ' H2(G, {±1})×Hom(G,Q×/{±1}Q×2),
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where G = Gal(K/Q) acts trivially on Q×; we denote by [cB/K ]± and [cB/K ]
respectively the components of [cB/K ] under this identification. Since G is abelian,

the component [cB/K ] is always symmetric, so we are only concerned with the
symmetry of the component [cB/K ]±.

The groups H2(G, {±1}) and Ext(G, {±1}) have dimension 3 and 2 respectively
as Z/2Z-vector spaces, and we will write down explicit bases for them (the reader
can consult [6, §2] for proofs of the following statements related to these bases).

If ε : G → {±1} is a character, for each σ ∈ G fix a square root
√
ε(σ) and let

cε : G×G→ {±1} be the map

cε(σ, τ) =
√
ε(σ)

√
ε(τ)

√
ε(στ)

−1
.

It is a 2-cocycle and its cohomology class does not depend on the choice of the square
roots. Let ε2 denote the character G → {±1} with kernel Gal(K/Q(

√
2)), and let

ε−3 be the character with kernel Gal(K/Q(
√
−3)). Then a basis of Ext(G, {±1}) is

given by {[cε2 ], [cε−3 ]}. Denote by χ2 and χ−3 the additive version of the characters
ε2 and ε−3 (i.e. the same characters but viewed as taking values in {0, 1}), and
define a cocycle c2,−3 by the formula

c2,−3(σ, τ) = (−1)χ2(σ)χ−3(τ).

A basis for H2(G, {±1}) is then given by {[cε2 ], [cε−3
], [c2,−3]}. The inflation of these

cohomology classes to H2(GQ, {±1}) ' Br(Q)[2] is as follows: Inf([cε2 ]) = (2,−1)Q,
Inf([cε−3

]) = (−3,−1)Q and Inf([c2,−3]) = (2,−3)Q.
We know that Inf([cB/K ]±) = (−6, 3)Q, and it is easy to check that the only

elements in H2(G, {±1}) whose inflation is (−6, 3)Q are [c2,−3] and [cε2 ] · [c2,−3];
this means that [cB/K ]± = [c2,−3] or [cB/K ]± = [cε2 ] · [c2,−3]. Since neither of the
two options belong to Ext(G, {±1}) we see that [cB/K ]± is not symmetric. This

means that B is not strongly modular over K; what is more, no variety Q-isogenous
to B is strongly modular over K.

Let L = K(
√
−1) and let γ =

√
6 +
√

18 which is in L. Let Cγ be the quadratic
twist of C:

Cγ : γY 2 =
(
−4 + 2

√
2
)
X6 − 122X5 − 72

(
28 + 2

√
2
)
X4 + 16 · 122X3

+ 123
(

28− 6
√

2
)
X2 − 48 · 123X + 8 · 123

(
4 + 2

√
2
)
.

and denote by Bγ its Jacobian. Now we can use [3, Lemma 6.1] to see that it
is strongly modular over L. First of all, since L/Q is Galois, we see that Bγ is
a building block also completely defined over K. Moreover, the cohomology class
[cBγ/L] is the product of [cB/L] with the cohomology class in H2(Gal(L/Q), {±1})
associated to the exact sequence

1→ Gal(L(
√
γ)/L) ' {±1} → Gal(L(

√
γ)/Q)→ Gal(L/Q)→ 1.

The cohomology class attached to this exact sequence turns out to be equal to
[cε−1 ] · [cε−3 ] · [cε−6 ] · [c2,−3]. This implies that [cBγ/L] is symmetric, because the
factor [c2,−3] vanishes. In conclusion, Bγ is strongly modular over L, so L(Bγ/L; s)
is equivalent to a product of L-series of newforms for Γ1(N).

We want to find the newforms the product of whose L-series is the L-function of
the variety Bγ/L. Since the curve Cγ has good reduction for primes different from
2 and 3 we must look for newforms of level a product of a power of two and a power
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of three. Using Magma [4] we found a modular form f ∈ S2(Γ1(24 · 34), χ), where χ
is the quadratic character of conductor 12, whose Fourier expansion begins with

f = q −
√

3 q5 + 3
√
−1 q7 − 3

√
3 q11 + q13 − 2

√
−3 q17 − 6

√
−1 q19

+3
√

3 q23 + 2 q25 − 5
√
−3 q29 − 3

√
−1 q31 + · · · ,

and a modular form g ∈ S2(Γ1(26 · 34), χ) whose Fourier expansion begins with:

g = q −
√

3 q5 + 3
√
−1 q7 − 3

√
3 q11 − q13 + 2

√
−3 q17 + 6

√
−1 q19

−3
√

3 q23 + 2 q25 − 5
√
−3 q29 − 3

√
−1 q31 + · · · .

We computed the p-th Euler factor of L(Bγ/L;T ) and checked the identity

Lp(Bγ/L;T ) = Lp(Af ;T )2 · Lp(Ag;T )2

for all primes p < 1000, p 6= 2, 3. Here, the L-series of Af means the product of the
L-series of the Galois conjugate forms of f , and similarly for g. We also checked
that no modular forms of smaller levels produce identities of this type.

These numerical verifications give a good checking of the correctness of the com-
putations in the paper and also provide a near certainty of the equivalence of
L-series

L(Bγ/L; s) ∼ L(Af ; s)2 · L(Ag; s)
2,

although in order to have a complete proof of this equivalence one should com-
pute the conductor of Bγ/L in order to bound the levels of the forms to look for
identities, and the standard mathematical software available cannot perform that
computation.
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