Modular forms over fields of mixed signature and algebraic points in elliptic curves

Xevi Guitart¹ Marc Masdeu² Haluk Sengun³

¹Universitat de Barcelona

²University of Warwick

³University of Sheffield

Barcelona

Outline

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

Numerical evidence for the conjecture

Outline

Heegner points

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

- Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell–Weil groups of *E* (e.g., partial results on Birch-Swinnerton–Dyer Conjecture).

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

- Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell–Weil groups of E (e.g., partial results on Birch-Swinnerton–Dyer Conjecture).
- Can be computed explicitly ~> efficient algorithms

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

- Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell–Weil groups of E (e.g., partial results on Birch-Swinnerton–Dyer Conjecture).
- Can be computed explicitly ~> efficient algorithms
- Key fact for the construction of Heegner points: *E* is modular.

• Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$

• Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$

•
$$\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z})$$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

• $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic *f* : *H*→C such that *f*(*z*)*dz* is a differential on X₀(*N*).

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic *f* : *H*→C such that *f*(*z*)*dz* is a differential on X₀(*N*).
- Fourier expansion: $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$.

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic *f* : *H*→C such that *f*(*z*)*dz* is a differential on X₀(*N*).
- Fourier expansion: $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$.

Modularity Theorem (Wiles et. al.)

Let *E* be an elliptic curve over \mathbb{Q} . Then for some $N \in \mathbb{Z}_{\geq 1}$:

(geometric version): There exists a morphism $X_0(N) \rightarrow E$ over \mathbb{Q} .

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \mathrm{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic *f* : *H*→C such that *f*(*z*)*dz* is a differential on X₀(*N*).
- Fourier expansion: $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$.

Modularity Theorem (Wiles et. al.)

Let *E* be an elliptic curve over \mathbb{Q} . Then for some $N \in \mathbb{Z}_{\geq 1}$:

- **(**geometric version): There exists a morphism $X_0(N) \rightarrow E$ over \mathbb{Q} .
- (automorphic version): There exists a modular form $f_E(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$ such that $a_p = p + 1 \# E(\mathbb{Z}/p\mathbb{Z})$ for all primes *p*.

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

 $\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

 $\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

- Geometric construction
 - Points on X₀(N) parametrize pairs elliptic curves

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

- Geometric construction
 - Points on X₀(N) parametrize pairs elliptic curves
 - CM points on $X_0(N)$ (correspond to curves with CM by K)

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

- Geometric construction
 - Points on X₀(N) parametrize pairs elliptic curves
 - CM points on $X_0(N)$ (correspond to curves with CM by K)
 - ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Heegner points are the image under $X_0(N) \longrightarrow E$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Heegner points are the image under $X_0(N) \longrightarrow E$
- Explicit formula

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

• Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Heegner points are the image under $X_0(N) \longrightarrow E$

•
$$X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$$

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

• Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Heegner points are the image under $X_0(N) \longrightarrow E$

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

• Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ► Theory of Complex Multiplication: CM points ∈ X₀(N)(K^{ab})
- Heegner points are the image under $X_0(N) \longrightarrow E$

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$

• Let
$$P_{ au} = 2\pi i \int_{ au}^{i\infty} f_E(z) dz \in \mathbb{C}/\Lambda_{f_E}$$

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ► Theory of Complex Multiplication: CM points ∈ X₀(N)(K^{ab})
- Heegner points are the image under $X_0(N) \longrightarrow E$

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$

• Let
$$P_{ au} = 2\pi i \int_{ au}^{i\infty} f_{\mathcal{E}}(z) dz \in \mathbb{C} / \Lambda_{f_{\mathcal{E}}} \overset{\mathrm{Manin}}{\sim} \mathcal{E}(\mathbb{C})$$

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ► Theory of Complex Multiplication: CM points ∈ X₀(N)(K^{ab})
- Heegner points are the image under $X_0(N) \longrightarrow E$

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau} = 2\pi i \int_{\tau}^{i\infty} f_{E}(z) dz \in \mathbb{C}/\Lambda_{f_{E}} \overset{\text{Manin}}{\sim} E(\mathbb{C})$
- Heegner points generalize to the following setting:
 - (Certain) E defined over a totally real field F.
 - ► *K* is a quadratic totally imaginary extension of *F*.
 - Heegner points on E, defined over abelian extensions of K

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Heegner points are the image under $X_0(N) \longrightarrow E$

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau} = 2\pi i \int_{\tau}^{i\infty} f_E(z) dz \in \mathbb{C} / \Lambda_{f_E} \overset{\text{Manin}}{\sim} E(\mathbb{C})$
- Heegner points generalize to the following setting:
 - (Certain) E defined over a totally real field F.
 - ► *K* is a quadratic totally imaginary extension of *F*.
 - Heegner points on E, defined over abelian extensions of K
- What if F is totally real, but K is not totally imaginary?

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ► Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Heegner points are the image under $X_0(N) \longrightarrow E$

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau} = 2\pi i \int_{\tau}^{i\infty} f_{E}(z) dz \in \mathbb{C}/\Lambda_{f_{E}} \overset{\text{Manin}}{\sim} E(\mathbb{C})$
- Heegner points generalize to the following setting:
 - (Certain) E defined over a totally real field F.
 - ► *K* is a quadratic totally imaginary extension of *F*.
 - Heegner points on E, defined over abelian extensions of K
- What if \vec{F} is totally real, but K is not totally imaginary?
 - ► There are some conjectural constructions, proposed by H. Darmon.

Outline

1 Heegner points

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

Elliptic curves over totally real fields

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 \colon F \hookrightarrow \mathbb{R}$

Elliptic curves over totally real fields

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 \colon F \hookrightarrow \mathbb{R}$

Modularity Theorem (Freitas-Le Hung-Siksek)

There is a Hilbert modular form f_E associated to E.

Elliptic curves over totally real fields

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 \colon F \hookrightarrow \mathbb{R}$

Modularity Theorem (Freitas–Le Hung–Siksek) There is a Hilbert modular form f_F associated to E.

• $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 \colon F \hookrightarrow \mathbb{R}$

Modularity Theorem (Freitas–Le Hung–Siksek) There is a Hilbert modular form f_F associated to E.

• $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$ • $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 : F \hookrightarrow \mathbb{R}$

Modularity Theorem (Freitas–Le Hung–Siksek) There is a Hilbert modular form f_E associated to E.

- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 : F \hookrightarrow \mathbb{R}$

Modularity Theorem (Freitas–Le Hung–Siksek) There is a Hilbert modular form f_E associated to E.

- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 : F \hookrightarrow \mathbb{R}$

Modularity Theorem (Freitas–Le Hung–Siksek) There is a Hilbert modular form f_E associated to E.

- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- (But in this case there is no algebraic map $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H} \rightarrow E$)

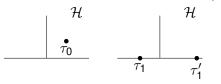
• K quadratic almost totally real extension of F (r = 2, s = 1)

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K

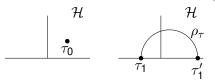
- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$

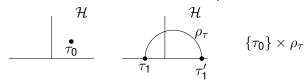
- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



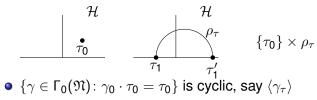
- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



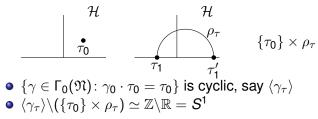
- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



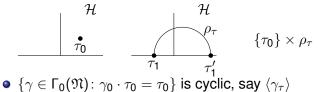
- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$

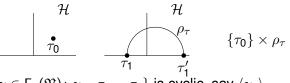


- K quadratic almost totally real extension of F (r = 2, s = 1)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



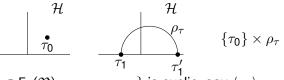
• $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



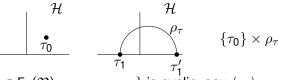
- { $\gamma \in \Gamma_0(\mathfrak{N}): \gamma_0 \cdot \tau_0 = \tau_0$ } is cyclic, say $\langle \gamma_\tau \rangle$
- $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



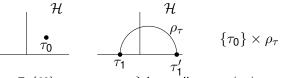
- $\{\gamma \in \Gamma_0(\mathfrak{N}) : \gamma_0 \cdot \tau_0 = \tau_0\}$ is cyclic, say $\langle \gamma_\tau \rangle$
- $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



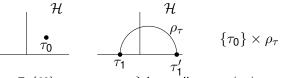
- $\{\gamma \in \Gamma_0(\mathfrak{N}) : \gamma_0 \cdot \tau_0 = \tau_0\}$ is cyclic, say $\langle \gamma_\tau \rangle$
- $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_{f_E}$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



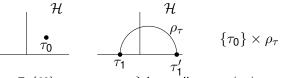
- $\{\gamma \in \Gamma_0(\mathfrak{N}) : \gamma_0 \cdot \tau_0 = \tau_0\}$ is cyclic, say $\langle \gamma_\tau \rangle$
- $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_{f_E}$ $\Lambda_{f_E} = \{ \int \int_Z \tilde{f}_E : Z \in H_2(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z}) \}$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



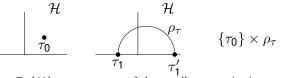
- $\{\gamma \in \Gamma_0(\mathfrak{N}) : \gamma_0 \cdot \tau_0 = \tau_0\}$ is cyclic, say $\langle \gamma_\tau \rangle$
- $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_{f_E}$ $\Lambda_{f_E} = \{ \int \int_{\mathcal{Z}} \tilde{f}_E \colon \mathcal{Z} \in H_2(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z}) \}$
- Oda's Conjecture: $\mathbb{C}/\Lambda_{f_E} \sim \mathbb{C}/\Lambda_E = E(\mathbb{C})$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



- $\{\gamma \in \Gamma_0(\mathfrak{N}) : \gamma_0 \cdot \tau_0 = \tau_0\}$ is cyclic, say $\langle \gamma_\tau \rangle$
- $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_{f_E}$ $\Lambda_{f_E} = \{ \int \int_{\mathcal{Z}} \tilde{f}_E \colon Z \in H_2(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z}) \}$
- Oda's Conjecture: $\mathbb{C}/\Lambda_{f_E} \sim \mathbb{C}/\Lambda_E = E(\mathbb{C}) \rightsquigarrow P_{\tau} \in E(\mathbb{C})$

- K quadratic almost totally real extension of F (r = 2, s = 1)
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$



- $\{\gamma \in \Gamma_0(\mathfrak{N}) : \gamma_0 \cdot \tau_0 = \tau_0\}$ is cyclic, say $\langle \gamma_\tau \rangle$
- $\langle \gamma_{\tau} \rangle \setminus (\{\tau_0\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1 \rightsquigarrow \text{ cycle } C_{\tau} \in H_1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_{f_E}$
 - $\Lambda_{f_E} = \{ \int \int_Z f_E \colon Z \in H_2(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z}) \}$
- Oda's Conjecture: $\mathbb{C}/\Lambda_{f_E} \sim \mathbb{C}/\Lambda_E = E(\mathbb{C}) \rightsquigarrow P_{\tau} \in E(\mathbb{C})$

Conjecture (Darmon)

Conjecture (Darmon)

Conjecture (Darmon)

 $P_{\tau} \in E(H)$ with H a finite abelian extension of K.

• $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is algebraic, but C_{τ} is just a topological cycle

Conjecture (Darmon)

- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is algebraic, but C_{τ} is just a topological cycle
- Numerical evidence
 - For the algebraicity of the points (Darmon–Logan)
 - For Oda's conjecture (Dembélé: algorithm for computing an equation of *E* from f_E)

Conjecture (Darmon)

- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is algebraic, but C_{τ} is just a topological cycle
- Numerical evidence
 - For the algebraicity of the points (Darmon–Logan)
 - For Oda's conjecture (Dembélé: algorithm for computing an equation of *E* from f_E)
- This can be generalized to arbitrary totally real F (Gartner)

Conjecture (Darmon)

- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is algebraic, but C_{τ} is just a topological cycle
- Numerical evidence
 - For the algebraicity of the points (Darmon–Logan)
 - For Oda's conjecture (Dembélé: algorithm for computing an equation of *E* from f_E)
- This can be generalized to arbitrary totally real F (Gartner)
- Our aim: propose a similar construction if F is not totally real

Outline

Heegner points

2 Darmon points (archimedean)

A construction over a cubic field of mixed signature

• F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane $\mathcal{H} = \mathbb{R} \times \mathbb{R}_{>0}$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane $\mathcal{H} = \mathbb{R} \times \mathbb{R}_{>0}$
- $SL_2(\mathbb{C})$ acts on the upper half space $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane $\mathcal{H} = \mathbb{R} \times \mathbb{R}_{>0}$
- $SL_2(\mathbb{C})$ acts on the upper half space $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$
 - $\blacktriangleright \mathcal{H}_3 \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane $\mathcal{H} = \mathbb{R} \times \mathbb{R}_{>0}$
- $SL_2(\mathbb{C})$ acts on the upper half space $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$
 - $\mathcal{H}_3 \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$

$$(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \cdot z = (az + b)(cz + d)^{-1}$$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane $\mathcal{H} = \mathbb{R} \times \mathbb{R}_{>0}$
- $SL_2(\mathbb{C})$ acts on the upper half space $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$
 - $\mathcal{H}_3 \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$

$$(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \cdot z = (az + b)(cz + d)^{-1}$$

Consider Γ₀(𝔅)\H × H₃. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane $\mathcal{H} = \mathbb{R} \times \mathbb{R}_{>0}$
- $SL_2(\mathbb{C})$ acts on the upper half space $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$
 - $\mathcal{H}_3 \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$
 - $(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \cdot z = (az + b)(cz + d)^{-1}$
- Consider Γ₀(𝔅)\H × H₃. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_E on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ associated to *E* (the eigenvalues of the Hecke operators match the a_p 's of *E*).

Modular forms and modularity

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane $\mathcal{H} = \mathbb{R} \times \mathbb{R}_{>0}$
- $SL_2(\mathbb{C})$ acts on the upper half space $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$
 - $\mathcal{H}_3 \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$
 - $(ab_{cd}) \cdot z = (az+b)(cz+d)^{-1}$
- Consider Γ₀(𝔅)\H × H₃. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_E on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ associated to *E* (the eigenvalues of the Hecke operators match the a_p 's of *E*).

• As before, ω_E is determined by its Fourier–Bessel expansion.

• ω_E has a "Fourier-Bessel expansion":

$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \begin{pmatrix} \frac{-\omega_{x}}{y} \wedge d\bar{z} \\ \frac{dy}{y} \wedge d\bar{z} \\ \frac{d\bar{z}}{y} \wedge d\bar{z} \end{pmatrix}$$

1 1

1

• ω_E has a "Fourier-Bessel expansion":

$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \begin{pmatrix}\frac{-\omega_{y}}{y} \wedge d\bar{z} \\ \frac{dy}{y} \wedge d\bar{z} \\ \frac{d\bar{x}}{y} \wedge d\bar{z} \end{pmatrix}$$
$$\mathbb{K}(t) = \left(-\frac{i}{2}t|t|K_{1}(4\pi|t|), |t|^{2}K_{0}(4\pi|t|), \frac{i}{2}\bar{t}|t|K_{1}(4\pi|t|)\right),$$

(K_0 and K_1 are the hyperbolic Bessel functions of the second kind)

• ω_E has a "Fourier-Bessel expansion":

$$\begin{split} \omega_{E}(z,x,y) &= \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \begin{pmatrix} \frac{-\omega_{x}}{y} \wedge d\bar{z} \\ \frac{dy}{y} \wedge d\bar{z} \\ \frac{d\bar{x}}{y} \wedge d\bar{z} \end{pmatrix} \\ \mathbb{K}(t) &= \left(-\frac{i}{2}t|t|\mathcal{K}_{1}(4\pi|t|), |t|^{2}\mathcal{K}_{0}(4\pi|t|), \frac{i}{2}\bar{t}|t|\mathcal{K}_{1}(4\pi|t|)\right), \end{split}$$

(K₀ and K₁ are the hyperbolic Bessel functions of the second kind)
ω_E is completely determined by its Fourier coefficients a_(α)

ω_E has a "Fourier-Bessel expansion":

$$\begin{split} \omega_{E}(z,x,y) &= \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \left(\frac{\frac{\omega_{1}y}{\delta_{1}} \wedge dz}{\frac{d\bar{y}}{y} \wedge d\bar{z}}\right) \\ \mathbb{K}(t) &= \left(-\frac{i}{2}t|t|\mathcal{K}_{1}(4\pi|t|), |t|^{2}\mathcal{K}_{0}(4\pi|t|), \frac{i}{2}\bar{t}|t|\mathcal{K}_{1}(4\pi|t|)\right), \end{split}$$

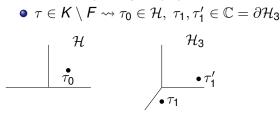
(K_0 and K_1 are the hyperbolic Bessel functions of the second kind)

- ω_E is completely determined by its Fourier coefficients $a_{(\alpha)}$
- We can compute the $a_{(\alpha)}$ by counting points on $E(\mathcal{O}_F/\mathfrak{p})$

• K a totally imaginary quadratic extension of F

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$

• K a totally imaginary quadratic extension of F



 \mathcal{H}

 $\tilde{\tau_0}$

• K a totally imaginary quadratic extension of F

 \mathcal{T}_{1}

 $\substack{\mathcal{H}_{\mathbf{3}}\\\rho_{\tau}}$

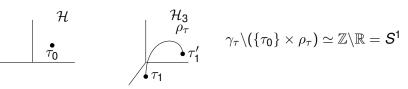
 $\neg \tau'_1$

 $\gamma_{ au} \setminus (\{ au_0\} imes
ho_{ au}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^1$

•
$$\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$$

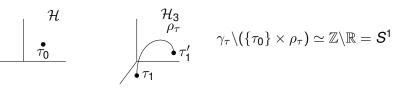
Xevi Guitart, Marc Masdeu, Haluk Sengun (U Modular forms over mixed signature field Barcelona November 2015 14 / 17

- K a totally imaginary quadratic extension of F
- $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau'_1 \in \mathbb{C} = \partial \mathcal{H}_3$



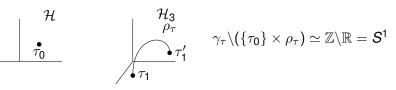
• This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau'_1 \in \mathbb{C} = \partial \mathcal{H}_3$



- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

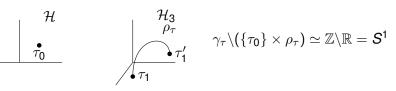
- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau'_1 \in \mathbb{C} = \partial \mathcal{H}_3$



- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

• Define:
$$P_{\tau} = \int \int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_{\omega_E}$$

- K a totally imaginary quadratic extension of F
- $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau'_1 \in \mathbb{C} = \partial \mathcal{H}_3$



- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} imes \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$
- Define: $P_{\tau} = \int \int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_{\omega_E} \overset{\text{conj}}{\sim} E(\mathbb{C})$

- K a totally imaginary quadratic extension of F
- $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau'_1 \in \mathbb{C} = \partial \mathcal{H}_3$

$$\begin{array}{c|c} \mathcal{H} & \mathcal{H}_{3} \\ \hline & \rho_{\tau} \\ \hline & \tau_{0} \end{array} & & \gamma_{\tau} \setminus (\{\tau_{0}\} \times \rho_{\tau}) \simeq \mathbb{Z} \setminus \mathbb{R} = S^{1} \end{array}$$

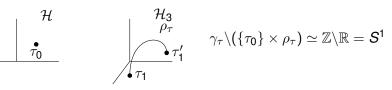
- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} imes \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

• Define:
$$P_{ au} = \int \int_{\Delta_{ au}} \omega_E \in \mathbb{C} / \Lambda_{\omega_E} \overset{\text{conj}}{\sim} E(\mathbb{C})$$

Conjecture

 $P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau'_1 \in \mathbb{C} = \partial \mathcal{H}_3$



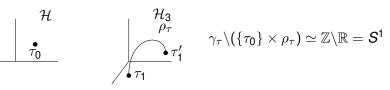
- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

• Define:
$$P_{\tau} = \int \int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_{\omega_E} \overset{\text{conj}}{\sim} E(\mathbb{C})$$

Conjecture

- $P_{\tau} \in E(H)$ with H a finite abelian extension of K.
 - C_{τ} is not algebraic, but also this time $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ is neither!

- K a totally imaginary quadratic extension of F
- $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau'_1 \in \mathbb{C} = \partial \mathcal{H}_3$



- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

• Define:
$$P_{ au} = \int \int_{\Delta_{ au}} \omega_E \in \mathbb{C} / \Lambda_{\omega_E} \overset{\text{conj}}{\sim} E(\mathbb{C})$$

Conjecture

- $P_{\tau} \in E(H)$ with H a finite abelian extension of K.
 - C_{τ} is not algebraic, but also this time $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ is neither!

14/17

• We found some numerical evidence for the conjecture.

Outline

Heegner points

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

K = F(w), where w satisfies w² + (r + 1)w + 2r² - 3r + 3.
Take τ to be equal to w

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

K = *F*(*w*), where *w* satisfies *w*² + (*r* + 1)*w* + 2*r*² - 3*r* + 3.
 Take *τ* to be equal to *w*

• Stab_{$$\tau_0$$}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

- Take τ to be equal to w
- Stab_{τ_0}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
- Finding Δ_τ such that ∂Δ_τ = C_τ can be reduced to decompose γ_τ into elementary matrices (effective congruence subgroup problem).

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

- Take τ to be equal to w
- Stab_{τ_0}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
- Finding Δ_τ such that ∂Δ_τ = C_τ can be reduced to decompose γ_τ into elementary matrices (effective congruence subgroup problem).

•
$$P_{\tau} = \sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} \cdot O} \omega_{E} \simeq 0.141967077 - 0.055099463\sqrt{-1}$$

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

- Take τ to be equal to w
- Stab_{τ_0}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
- Finding Δ_τ such that ∂Δ_τ = C_τ can be reduced to decompose γ_τ into elementary matrices (effective congruence subgroup problem).

•
$$P_{\tau} = \sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} \cdot O} \omega_{E} \simeq 0.141967077 - 0.055099463\sqrt{-1}$$

The image of J_τ ∈ C/Λ_E ≃ E(C) coincides (up to 32 digits of accuracy) with 10P, where

$$P = \left(r-1: w-r^2+2r:1\right) \in E(K)$$

Modular forms over fields of mixed signature and algebraic points in elliptic curves

Xevi Guitart¹ Marc Masdeu² Haluk Sengun³

¹Universitat de Barcelona

²University of Warwick

³University of Sheffield

Barcelona