Endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q}

Francesc Fité¹ Xevi Guitart²

¹Universitat Politècnica de Catalunya,

²Universitat de Barcelona

Building Bridges, Budapest

A conjecture and a particular case

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define

 $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\mathbb{Q}}^{0}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $A_{g,d}$ is finite.

- We are interested in $\mathcal{A}_{2,1}$: possible endomorfism algebras of abelian surfaces A/\mathbb{Q}
 - If $A_{\overline{\mathbb{O}}}$ is simple \rightsquigarrow completely open
 - We are interested in the cases where $A_{\overline{0}}$ is not simple

A theorem

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

- **2** $\mathbb{Q} \times K$, $K \times K'$, where K, K' are quadratic imaginary fields of class number 1;
- $M_2(K)$ where K is a quadratic imaginary field with class group 1, $\mathbb{Z}/2\mathbb{Z}$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and distinct from

 $\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})$

In particular, the set $\overline{\mathcal{A}}_{2,1}$ has cardinality 92.