Fields of definition of elliptic *k*-curves with CM and Sato–Tate groups of abelian surfaces

Francesc Fité¹ Xevi Guitart²

¹Universität Duisburg–Essen

²Universitat de Barcelona

February 2016

Sato-Tate for elliptic curves

- k a number field and E/k an elliptic curve
- \mathfrak{p} a prime of $k \rightsquigarrow a_{\mathfrak{p}} := |\mathfrak{p}| + 1 \# E(\mathbb{F}_{\mathfrak{p}})$

• Hasse bound:
$$\bar{a}_{\mathfrak{p}} = \frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in [-2, 2]$$

- Sato–Tate is about regarding p → ā_p as a random variable, when p is uniformly distributed over the primes of k.
- infinitely many p's, what does it mean to be uniformly distributed?
 - ▶ fix *N* and consider p's with $|p| \le N$; there are finitely many
 - give each p equal probability, so \bar{a}_p is a random variable
 - let $N \to \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure
 - ▶ *X* compact topological space, $C(X) = \{f : X \rightarrow \mathbb{C} \text{ continuous}\}$
 - Measure μ on X is μ : $C(X) \rightarrow \mathbb{C}$ continuous (positive and of mass 1)
 - Notation: $f \mapsto \int f d\mu$
 - A sequence $\{x_n\}_{n\geq 1} \subseteq X$ is equidistributed w.r.t. a measure μ if

for every
$$f \in C(X)$$
: $\int f d\mu = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i)$

Equidistribution for Elliptic Curves

• Suppose that *E*/*k* does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\{\bar{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in [-2, 2] w.r.t the measure $\frac{4}{\pi}\sqrt{4-x^2}$.

Proved for k totally real (Clozel–Harris–Taylor–Shepherd-Barron).
(Hecke) If E has CM by an imaginary quadratic M

•
$$M \subseteq k$$
: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$

•
$$M \not\subseteq k$$
: by $\frac{1}{2\pi} \frac{1}{\sqrt{4-x^2}} + \frac{1}{2} \delta_0(x)$

Easy remark

The three distributions can be realized by curves over the same field.

• For example, any imaginary quadratic *M* of class number 1

- E_1/M without CM.
- E_2/\mathbb{Q} with CM by *M*, and base change to *M*.
- E_3/\mathbb{Q} with CM by $M' \neq M$, and base to M.

A reformulation of ST for Elliptic curves

ā_p ∈ [-2, 2] ⇐⇒ p
_p(T) = T² - ā_pT + 1 is the characteristic polynomial of a matrix in

$$\mathrm{SU}(2) = \{ A \in \mathrm{GL}_2(\mathbb{C}) \colon A^{-1} = A^*, \ \det(A) = 1 \}.$$

• Moreover, the matrices in SU(2) with characteristic polynomial $\bar{p}_{p}(T)$ form a conjugacy class:

$$\operatorname{Conj}(\operatorname{SU}(2)) \stackrel{\operatorname{tr}}{\longrightarrow} [-2,2]$$
 is a bijection

- Equidistribution result can be stated in terms of Conj(SU(2)).
- Any compact subgroup G ⊆ SU(2) gives rise to a measure in Conj(SU(2)): the push forward of the Haar measure in G via

$$G \longrightarrow \operatorname{Conj}(G) \longrightarrow \operatorname{Conj}(\operatorname{SU}(2)).$$

Restatement of the Sato-Tate conjecture

 $\{\bar{p}_{\mathfrak{p}}(T) = T^2 - \bar{a}_{\mathfrak{p}}T + 1\}_{\mathfrak{p}} \in \operatorname{Conj}(SU(2))$ is equidistributed w.r.t

• SU(2); SO(2); Normalizer of SO(2) in SU(2).

The Sato–Tate group

- A/k abelian variety of dim $g \ge 1$ and $\mathfrak{p} \subset \mathcal{O}_k$ a prime
- $L_{\mathfrak{p}}(A, T) = \det(\mathrm{Id} T \cdot \mathrm{Fr}_{\mathfrak{p}|V_{\ell}(A)})$ polynomial of degree 2g
 - $L_{\mathfrak{p}}(A, |\mathfrak{p}|^{-s})$ is the factor at \mathfrak{p} of the *L*-function of *A*.
- Normalization $\overline{L}_{\mathfrak{p}}(A, T) = L_{\mathfrak{p}}(A, T/\sqrt{|\mathfrak{p}|})$
 - corresponds to a unique element in Conj(USp(2g))

 $\mathrm{USp}(2g) = \{ A \in \mathrm{GL}_{2g}(\mathbb{C}) \colon A^{-1} = A^*, A^t J A = J \}, \quad J = \mathrm{diag} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$

- Equidistribution of $\{\overline{L}_{\mathfrak{p}}(A, T)\}_{\mathfrak{p}} \subseteq \operatorname{Conj}(\operatorname{USp}(2g))$
 - Compact subgroup of USp(2g) → measure in Conj(USp(2g))
- Serre gives a construction that associates to any A/k a certain compact subgroup ST_A of USp(2g), the Sato–Tate group of A
 - ▶ e.g. if dim $A \leq 3$ and $End(A_{\overline{\mathbb{Q}}}) = \mathbb{Z}$ then $ST_A = USp(2g)$)

Generalized Sato-Tate conjecture

The polynomials $\overline{L}_{\mathfrak{p}}(A, T) \in \operatorname{Conj}(\operatorname{USp}(2g))$ are equidistributed with respect to the push forward of the Haar measure in ST_A under the map $\operatorname{ST}_A \longrightarrow \operatorname{Conj}(\operatorname{ST}_A) \longrightarrow \operatorname{Conj}(\operatorname{USp}(2g))$

Elliptic curves: there are 3 possible distributions/Sato–Tate groups

The case of dimension 2

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in USp(4)) that arise as Sato–Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of USp(4) s.t. for every abelian surface A over a number field, ST_A is conjugate to one of these.
- For every *G* in the list, they exhibit an abelian surface *A* over a number field such that $ST_A = G$
 - ▶ The number field is not always the same, it depends on G...

Question

Does there exist a number field k_0 such that there exist 52 abelian surfaces over k_0 realizing all possible Sato–Tate groups?

- First idea: take *k*₀ the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to *k*₀
 - It doesn't work, the Sato–Tate group is sensitive to base change
- How to determine the Sato-Tate group of an abelian surface A?

The Sato–Tate group via the arithmetic of A

Theorem (Fité-Kedlaya-Rotger-Sutherland)

The Sato–Tate group of A/k is completely determined by $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$, viewed as a G_k -module. Moreover

- $(ST_A)^0$ is determined by $End(A_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R} -algebra)
- $ST_A/(ST_A)^0 \simeq Gal(L/k)$ (smallest field of definition of $End(A_{\bar{k}})$)
- The G_k -module $\operatorname{End}(A_{\overline{k}}) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato-Tate groups
- Observe that the component group is sensitive to base change
 - But if $k' \cap L = k$ then $ST_{A_{k'}} = ST_A$
 - Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find *k*₀ and construct 52 abelian surfaces over *k*₀ realizing all 52 possible Galois endomorphism types
 - What kind of arithmetic problems this leads to?
 - Why controlling fields of definition of CM curves is important?

A possible obstruction

- There are three Sato–Tate groups, called O, O₁, and J(O), whose component group contains S₄.
- If A/k has one of these Sato–Tate groups → Gal(L/k) ⊇ S₄
- This implies that $A_{\bar{k}} \sim E^2$ with *E* a CM curve, say by *M*
- [FKRS12] prove that
 - If the group is *O* then $M \subseteq k$
 - If the group is O_1 or J(O), then $M \not\subseteq k$
- So far all examples in the literature of abelian surfaces A/k s.t.

$$A_{\bar{k}} \sim E^2 \text{ and } \operatorname{Gal}(L/k) \supseteq \mathrm{S}_4$$
 (1)

had $M = \mathbb{Q}(\sqrt{-2})$.

- Are there examples with $M \neq \mathbb{Q}(\sqrt{-2})$?
 - If not, one could not realize all Sato–Tate groups over a single k₀: one would have Q(√-2) ⊆ k₀ and Q(√-2) ⊈ k₀ at the same time!
 - The answer is yes, and constructing such a variety is part of the solution to the problem

A more general question

Suppose that A/k is such that $A_{\bar{k}} \sim E^2$ and E has CM by M.

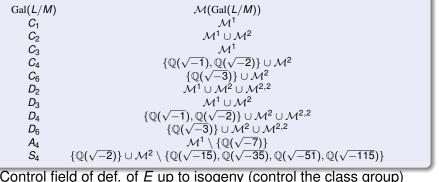
- What are the possibilities for M?
- Does the prescription of Gal(L/k) impose extra restrictions on *M*?
- Our techniques need to assume that $M \subseteq k$
 - In fact, to control the possibilities for M we assume k = M
 - This solves the case $k = \mathbb{Q}$ (by base change)

A result on the arithmetic of abelian surfaces

- Let A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$, where *E* has CM by *M*.
- L = smallest field of definition of $End(A_{\overline{O}})$. Obs: $M \subseteq L$.
 - Known that $\operatorname{Gal}(L/M) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$
- $\mathcal{M}^1, \mathcal{M}^2 = M$'s of class number 1 and 2; $\mathcal{M}^{2,2,} = M$'s with class group $C_2 \times C_2$

Theorem

The set of possibilities for *M* is



Control field of def. of *E* up to isogeny (control the class group)
Restrictions coming from representation theory (excludes cases)

Francesc Fité, Xevi Guitart (U. Duisburg-Esse

Ingredients of the proof: fields of definition

- A/k such that $A_{\bar{k}} \sim E^2$ and E has CM by M. Suppose $M \subseteq k$.
- L the smallest field of definition of the endomorphisms of A.
 - Known that $\operatorname{Gal}(L/k) \simeq C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4$

Proposition

E is \overline{k} -isogenous to a curve over $F \subseteq L$, with $\operatorname{Gal}(F/k) \simeq C_2^r$, $r \leq 2$.

- If k = M then $H_M \subseteq F \rightsquigarrow \operatorname{Gal}(H_M/M) \simeq C_2^r$ (and $r \leq 2$)
- Key fact: *E* is an elliptic *k*-curve
 - For $\sigma \in G_k$ there is an isogeny $\mu_{\sigma} \colon {}^{\sigma}E \longrightarrow E$
 - compatibly with End(E): μ_σ ∘ ^σφ = φ ∘ μ_σ for all φ ∈ End(E) (For non-CM E this is automatic; for CM E it is crucial that M ⊆ k)
- By work of Ribet, fields of definition of *k*-curves are controlled by a certain cohomology class c_E ∈ H²(G_k, End⁰(E)*) = H²(G_k, M*)
 - $c_E(\sigma,\tau) := \mu_\sigma \circ {}^\sigma \mu_\tau \circ \mu_{\sigma\tau}^{-1} \in \operatorname{End}^0(E)^* = M^*$
 - ► E is isogenous to a curve E'/F if and only if the restriction of c_E to H²(G_F, M^{*}) is trivial (Weil descent criterion)

- Theorem (Ribet): if *C* is a *k*-curve without CM, then it is isogenous to a curve defined over a polyquadratic extension of *k*.
 - In the non-CM case, the cohomology class is 2-torsion
 - ► The result follows from analyzing the structure of H²(G_k, Q*)[2] (2-torsion classes can be trivialized over polyquadratic extensions)
- If *E* has CM it is not true in general that *c_E* is 2-torsion
 - If $E^2 \sim A$ with A/k, then c_E is 2-torsion
 - Result follows from the structure of H²(G_k, M^{*})[2] (very similar to Ribet's argument)
- Generalization: If A/k is such that A_{k̄} ~ E^g (here E has CM by M ⊆ k), E is isogenous to a curve def/ F ⊆ L, with Gal(F/k) ≃ C^r_a
 - Moreover, if g is a prime then $r \leq 2$
 - Follows from a result of Silvelberg bounding the maximum power of g dividing the order of Gal(L/k))

A field realizing all Sato–Tate groups

Theorem

Set $k_0 := \mathbb{Q}(\sqrt{-40}, \sqrt{-51}, \sqrt{-163}, \sqrt{-67}, \sqrt{19 \cdot 43}, \sqrt{-57})$. Then, there exist 52 abelian surfaces defined over k_0 realizing all possible Sato–Tate groups of abelian surfaces defined over number fields.

- Used several methods to find the 52 abelian surfaces:
 - Restriction of Scalars construction
 - ★ A surface A/k with $A_{\overline{\mathbb{Q}}} \sim E^2$ and $\operatorname{Gal}(L/k) \simeq S_4$ and $M \neq \mathbb{Q}(\sqrt{-2})$
 - ★ We will see that $k = M = \mathbb{Q}(\sqrt{-40})$
 - Base change the curves of [FKRS12] over Q
 - ★ For each C/\mathbb{Q} , we checked that $L \cap k_0 = \mathbb{Q}$ so that C_{k_0} works
 - Finding an explicit equation of a genus two curve, and determining the endomorphisms of the Jacobian and the field of definition
 - Search methods (help of Sutherland)
 - looking into families with prescribed automorphisms (Cardona–Quer)

Restriction of scalars construction

- $M = \mathbb{Q}(\sqrt{-40})$ and k = M, Hilbert class field $F = M(\sqrt{5})$
- Take L/k an extension with $Gal(L/k) \simeq S_4$, with $F \subseteq L$
 - Galois closure of the extension given by $x^4 x^3 + 5x^2 5x + 2$
 - field with label 4.0.5780.1 in LMFDB

 $E^* \colon y^2 = x^3 + (-3159295576475581808640\sqrt{5} - 7064399680052694220800)x$

 $+144540688991650801621141888696320\sqrt{5}+323202806099974987264542375936000$

- E^* is a *k*-curve with CM by *M*.
 - For $\sigma \in \text{Gal}(L/k)$ the isogeny $\mu_{\sigma} \colon {}^{\sigma}E \longrightarrow E$ is defined over L
 - Then $c_{E^*} \in H^2(\text{Gal}(L/k), M^*)$ can be explicitly computed
- Need to take a twist: $E = (E^*)_{\beta}$ for some appropriate $\beta \in L$.

• Consider $R = \operatorname{Res}_{L/k} E$. It is defined over k and $R_L \sim E^{24}$.

• Gross–Ribet: End⁰(R) $\simeq M^{c_{E}}$ [Gal(L/k)] (twisted group algebra)

•
$$M^{c_E}[\operatorname{Gal}(L/k)] = \bigoplus_{\sigma \in \operatorname{Gal}(L/k)} M \cdot u_{\sigma}$$
, with $u_{\sigma} \cdot u_{\tau} = c_E(\sigma, \tau) u_{\sigma\tau}$

- We can compute explicitly c_E , and therefore $\text{End}^0(R)$.
 - Choosing β carefully, R decomposes in the right way
 - There is a simple factor A of dim 2 that has the sought properties

Fields of definition of elliptic *k*-curves with CM and Sato–Tate groups of abelian surfaces

Francesc Fité¹ Xevi Guitart²

¹Universität Duisburg–Essen

²Universitat de Barcelona

February 2016