Fields of definition of elliptic k-curves with CM and Sato-Tate groups of abelian surfaces

Francesc Fité ${ }^{1}$ Xevi Guitart ${ }^{2}$

${ }^{1}$ Universität Duisburg-Essen
${ }^{2}$ Universitat de Barcelona

February 2016

Elliptic Curves over number fields

- An elliptic curve over a number field k is a projective curve

$$
E: y z^{2}=x^{3}+a x z^{2}+b z^{3}, \quad a, b \in \mathcal{O}_{k}
$$

- The set of points $E(k)$ admits a natural structure of abelian group.
- An endomorphism of E is an algebraic map $\varphi: E \rightarrow E$ (given by polynomials) which induces a group endomorphism on $E(k)$.
- The set of endomorphisms of E is a ring, and
- $\operatorname{End}(E) \simeq \mathbb{Z}$ (generic case)
- $\operatorname{End}(E)$ an order in an imaginary quadratic field M (E has CM by M)
- Given a prime $\mathfrak{p} \subset \mathcal{O}_{k}$ we can reduce the equation of E modulo \mathfrak{p}

$$
\bar{E}: y z^{2}=x^{3}+\bar{a} x z^{2}+\bar{b} z^{3}, \quad \bar{a}, \bar{b} \in \mathcal{O}_{k} / \mathfrak{p}
$$

- $\mathcal{O}_{k} / \mathfrak{p}$ is a finite field with $|\mathfrak{p}|$ elements
- $\bar{E}\left(\mathcal{O}_{k} / \mathfrak{p}\right)$ is now a finite set
- $a_{\mathfrak{p}}=|\mathfrak{p}|+1-\# \bar{E}\left(\mathcal{O}_{\mathfrak{p}} / \mathfrak{p}\right)$
- Hasse bound: $\left|a_{\mathfrak{p}}\right| \leq 2 \sqrt{|\mathfrak{p}|}$

Sato-Tate for elliptic curves

- k a number field and E / k an elliptic curve
- \mathfrak{p} a prime of $k \rightsquigarrow a_{\mathfrak{p}}:=|\mathfrak{p}|+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right)$
- Hasse bound: $\bar{a}_{\mathfrak{p}}=\frac{a_{\mathfrak{p}}}{\sqrt{|\mathfrak{p}|}} \in[-2,2]$
- Sato-Tate is about regarding $\mathfrak{p} \mapsto \bar{a}_{\mathfrak{p}}$ as a random variable, when \mathfrak{p} is uniformly distributed over the primes of k.
- infinitely many \mathfrak{p} 's, what does it mean to be uniformly distributed?
- fix N and consider \mathfrak{p} 's with $|\mathfrak{p}| \leq N$; there are finitely many
- give each \mathfrak{p} equal probability, so $\bar{a}_{\mathfrak{p}}$ is a random variable
- let $N \rightarrow \infty$ and see if there is a limiting distribution
- Equidistribution with respect to a measure
- X compact topological space, $C(X)=\{f: X \rightarrow \mathbb{C}$ continuous $\}$
- Measure μ on X is $\mu: C(X) \rightarrow \mathbb{C}$ continuous (positive and of mass 1)
- Notation: $f \mapsto \int f d \mu$
- A sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ is equidistributed w.r.t. a measure μ if

$$
\text { for every } f \in C(X): \quad \int f d \mu=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

Equidistribution for Elliptic Curves

- Suppose that E / k does not have Complex Multiplication (CM)

Sato-Tate Conjecture

The sequence $\left\{\bar{a}_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ of normalized Frobenius traces (ordered by $|\mathfrak{p}|$) is equidistributed in $[-2,2]$ w.r.t the measure $\frac{4}{\pi} \sqrt{4-x^{2}}$.

- Proved for k totally real (Clozel-Harris-Taylor-Stepherd-Barron).
- (Hecke) If E has CM by an imaginary quadratic M
- $M \subseteq k$: equidistributed by $\frac{1}{\pi} \frac{1}{\sqrt{4-x^{2}}}$
- $M \nsubseteq k:$ by $\frac{1}{2 \pi} \frac{1}{\sqrt{4-x^{2}}}+\frac{1}{2} \delta_{0}(x)$

Easy remark

The three distributions can be realized by curves over the same field.

- For example, any imaginary quadratic M of class number 1
- E_{1} / M without CM.
- E_{2} / \mathbb{Q} with CM by M, and base change to M.
- E_{3} / \mathbb{Q} with CM by $M^{\prime} \neq M$, and base to M.

Abelian varieties

- An abelian variety is an algebraic variety whose set of points has a group structure (with the addition law given by algebraic functions)
- Elliptic curves are the abelian varieties of dimension 1
- Abelian varieties of dimension 2 are called abelian surfaces
- It is difficult to give equations of an abelian variety of dim >1
- C curve of genus g over $k \rightsquigarrow$ the Jacobian $J(C)$
- It is an abelian variety over k of dimension g
- $J(C)(k) \simeq \operatorname{Div}^{0}(C) / \sim$
- $C: y^{2}=x^{5}-x$ is of genus $2 \rightsquigarrow J(C)$ is an abelian surface
- Abelian variety $A \rightsquigarrow \operatorname{End}(A)$ the ring of endomorphisms
- A special type of endomorphisms are the isogenies: those which are surjective.
- We work in a category where isogenies become isomorphisms.

A reformulation of ST for Elliptic curves

- $\bar{a}_{\mathfrak{p}} \in[-2,2] \Longleftrightarrow \bar{p}_{\mathfrak{p}}(T)=T^{2}-\bar{a}_{\mathfrak{p}} T+1$ is the characteristic polynomial of a matrix in

$$
\mathrm{SU}(2)=\left\{A \in \mathrm{GL}_{2}(\mathbb{C}): A^{-1}=A^{*}, \operatorname{det}(A)=1\right\}
$$

- Moreover, the matrices in $\operatorname{SU}(2)$ with characteristic polynomial $\bar{p}_{\mathfrak{p}}(T)$ form a conjugacy class:

$$
\operatorname{Conj}(\mathrm{SU}(2)) \xrightarrow{\text { tr }}[-2,2] \text { is a bijection }
$$

- Equidistribution result can be stated in terms of $\operatorname{Conj}(\mathrm{SU}(2))$.
- Any compact subgroup $G \subseteq \operatorname{SU}(2)$ gives rise to a measure in Conj(SU(2)): the push forward of the Haar measure in G via

$$
G \longrightarrow \operatorname{Conj}(G) \longrightarrow \operatorname{Conj}(\mathrm{SU}(2))
$$

Restatement of the Sato-Tate conjecture
$\left\{\bar{p}_{\mathfrak{p}}(T)=T^{2}-\bar{a}_{\mathfrak{p}} T+1\right\}_{\mathfrak{p}} \in \operatorname{Conj}(S U(2))$ is equidistributed w.r.t

- $\mathrm{SU}(2)$; $\mathrm{SO}(2)$; Normalizer of $\mathrm{SO}(2)$ in $\mathrm{SU}(2)$.

The Sato-Tate group

- A / k abelian variety of $\operatorname{dim} g$ and $\mathfrak{p} \subset \mathcal{O}_{k}$ prime, $\mathbb{F}_{q}=\mathcal{O}_{k} / \mathfrak{p}$
- (Weil) There is a polynomial $L_{\mathfrak{p}}(T)=\left(1-\alpha_{1} T\right) \ldots\left(1-\alpha_{2 g} T\right)$ s.t.

$$
\# A\left(\mathbb{F}_{q^{n}}\right)=\left(1-q^{n / 2} \alpha_{1}^{n}\right) \ldots\left(1-q^{n / 2} \alpha_{2 g}^{n}\right), \quad \forall n \geq 1
$$

- $\bar{L}_{p}(T)=L_{\mathfrak{p}}(T / \sqrt{|\mathfrak{p}|}) \rightsquigarrow$ unique element in $\operatorname{Conj}(\operatorname{USp}(2 g))$
- $\operatorname{USp}(2 g)=\left\{A \in \mathrm{GL}_{2 g}(\mathbb{C}): A^{-1}=A^{*}, A^{t} J A=J\right\}, \quad J=\operatorname{diag}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
- Equidistribution of $\left\{\bar{L}_{\mathfrak{p}}(A, T)\right\}_{\mathfrak{p}} \subseteq \operatorname{Conj}(\mathrm{USp}(2 g))$
- Compact subgroup of USp(2g) \rightsquigarrow measure in Conj(USp(2g))
- Serre gives a construction that associates to any A / k a certain compact subgroup ST_{A} of $\mathrm{USp}(2 g)$, the Sato-Tate group of A
- e.g. if $\operatorname{dim} A \leq 3$ and $\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$ then $\left.\operatorname{ST}_{A}=\operatorname{USp}(2 g)\right)$

Generalized Sato-Tate conjecture

The polynomials $\bar{L}_{p}(A, T) \in \operatorname{Conj}(\mathrm{USp}(2 g))$ are equidistributed with respect to the push forward of the Haar measure in ST_{A} under the map

$$
\mathrm{ST}_{A} \longrightarrow \operatorname{Conj}\left(\mathrm{ST}_{A}\right) \longrightarrow \operatorname{Conj}(\mathrm{USp}(2 g))
$$

- Elliptic curves: there are 3 possible distributions/Sato-Tate groups

The case of dimension 2

Theorem (Fité-Kedlaya-Rotger-Sutherland)

There are 52 groups (up to conjugacy in $\mathrm{USp}(4)$) that arise as Sato-Tate groups of abelian surfaces over number fields.

- An explicit list of 52 subgroups of $\mathrm{USp}(4)$ s.t. for every abelian surface A over a number field, ST_{A} is conjugate to one of these.
- For every G in the list, they exhibit an abelian surface A over a number field such that $\mathrm{ST}_{A}=G$
- The number field is not always the same, it depends on G...

Question

Does there exist a number field k_{0} such that there exist 52 abelian surfaces over k_{0} realizing all possible Sato-Tate groups?

- First idea: take k_{0} the compositum of the fields of definition of the 52 curves of [FKRS12], and base change the curves to k_{0}
- It doesn't work, the Sato-Tate group is sensitive to base change
- How to determine the Sato-Tate group of an abelian surface A ?

The Sato-Tate group via the arithmetic of A

Theorem (Fité-Kedlaya-Rotger-Sutherland)

The Sato-Tate group of A / k is completely determined by $\operatorname{End}\left(A_{\bar{k}}\right) \otimes_{\mathbb{Z}} \mathbb{R}$, viewed as a G_{k}-module. Moreover

- $\left(\mathrm{ST}_{A}\right)^{0}$ is determined by $\operatorname{End}\left(A_{\bar{k}}\right) \otimes_{\mathbb{Z}} \mathbb{R}$ (as an \mathbb{R}-algebra)
- $\mathrm{ST}_{A} /\left(\mathrm{ST}_{A}\right)^{0} \simeq \operatorname{Gal}(L / k)$ (smallest field of definition of $\operatorname{End}\left(A_{\bar{k}}\right)$)
- The G_{k}-module $\operatorname{End}\left(A_{\bar{k}}\right) \otimes_{\mathbb{Z}} \mathbb{R}$ is called the Galois type of A.
- [FKRS12]: dictionary between Galois types and Sato-Tate groups
- Observe that the component group is sensitive to base change
- But if $k^{\prime} \cap L=k$ then $\mathrm{ST}_{\mathrm{A}_{k^{\prime}}}=\mathrm{ST}_{A}$
- Base change is helpful, but it does not completely solve the problem
- To sum up: we need to find k_{0} and construct 52 abelian surfaces over k_{0} realizing all 52 possible Galois endomorphism types
- What kind of arithmetic problems this leads to?
- Why controlling fields of definition of CM curves is important?

A possible obstruction

- There are three Sato-Tate groups, called O, O_{1}, and $J(O)$, whose component group contains S_{4}.
- If A / k has one of these Sato-Tate groups $\rightsquigarrow \operatorname{Gal}(L / k) \supseteq \mathrm{S}_{4}$
- This implies that $A_{\bar{k}} \sim E^{2}$ with E a CM curve, say by M
- [FKRS12] prove that
- If the group is O then $M \subseteq k$
- If the group is O_{1} or $J(O)$, then $M \nsubseteq k$
- So far all examples in the literature of abelian surfaces A / k s.t.

$$
\begin{equation*}
A_{\bar{k}} \sim E^{2} \text { and } \operatorname{Gal}(L / k) \supseteq S_{4} \tag{1}
\end{equation*}
$$

had $M=\mathbb{Q}(\sqrt{-2})$.

- Are there examples with $M \neq \mathbb{Q}(\sqrt{-2})$?
- If not, one could not realize all Sato-Tate groups over a single k_{0} : one would have $\mathbb{Q}(\sqrt{-2}) \subseteq k_{0}$ and $\mathbb{Q}(\sqrt{-2}) \nsubseteq k_{0}$ at the same time!
- The answer is yes, and constructing such a variety is part of the solution to the problem

A more general question

Suppose that A / k is such that $A_{\bar{k}} \sim E^{2}$ and E has CM by M.

- What are the possibilities for M ?
- Does the prescription of $\operatorname{Gal}(L / k)$ impose extra restrictions on M ?
- Our techniques need to assume that $M \subseteq k$
- In fact, to control the possibilities for M we assume $k=M$
- This solves the case $k=\mathbb{Q}$ (by base change)

A result on the arithmetic of abelian surfaces

- Let A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$, where E has $C M$ by M.
- $L=$ smallest field of definition of $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$. Obs: $M \subseteq L$.
- Known that $\operatorname{Gal}(L / M) \simeq C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, A_{4}, S_{4}$
- $\mathcal{M}^{1}, \mathcal{M}^{2}=M$'s of class number 1 and $2 ; \mathcal{M}^{2,2,}=M$'s with class group $C_{2} \times C_{2}$

Theorem

The set of possibilities for M is

$\operatorname{Gal}(L / M)$	$\mathcal{M}(\operatorname{Gal}(L / M))$
C_{1}	\mathcal{M}^{1}
C_{2}	$\mathcal{M}^{1} \cup \mathcal{M}^{2}$
C_{3}	\mathcal{M}^{1}
C_{4}	$\{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^{2}$
C_{6}	$\{\mathbb{Q}(\sqrt{-3})\} \cup \mathcal{M}^{2}$
D_{2}	$\mathcal{M}^{1} \cup \mathcal{M}^{2} \cup \mathcal{M}^{2,2}$
D_{3}	$\mathcal{M}^{1} \cup \mathcal{M}^{2}$
D_{4}	$\{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^{2} \cup \mathcal{M}^{2,2}$
D_{6}	$\{\mathbb{Q}(\sqrt{-3})\} \cup \mathcal{M}^{2} \cup \mathcal{M}^{2,2}$
A_{4}	$\mathcal{M}^{1} \backslash\{\mathbb{Q}(\sqrt{-7})\}$
S_{4}	$\{\mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^{2} \backslash\{\mathbb{Q}(\sqrt{-15}), \mathbb{Q}(\sqrt{-35}), \mathbb{Q}(\sqrt{-51}), \mathbb{Q}(\sqrt{-115})\}$

- Control field of def. of E up to isogeny (control the class group)
- Restrictions coming from representation theory (excludes cases)

A field realizing all Sato-Tate groups

Theorem
 Set $k_{0}:=\mathbb{Q}(\sqrt{-40}, \sqrt{-51}, \sqrt{-163}, \sqrt{-67}, \sqrt{19 \cdot 43}, \sqrt{-57})$. Then, there exist 52 abelian surfaces defined over k_{0} realizing all possible Sato-Tate groups of abelian surfaces defined over number fields.

- Used several methods to find the 52 abelian surfaces:
- Restriction of Scalars construction
\star A surface A / k with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and $\operatorname{Gal}(L / k) \simeq S_{4}$ and $M \neq \mathbb{Q}(\sqrt{-2})$
\star We will see that $k=M=\mathbb{Q}(\sqrt{-40})$
- Base change the curves of [FKRS12] over \mathbb{Q}
\star For each C / \mathbb{Q}, we checked that $L \cap k_{0}=\mathbb{Q}$ so that $C_{k_{0}}$ works
- Finding an explicit equation of a genus two curve, and determining the endomorphisms of the Jacobian and the field of definition
\star Search methods (help of Sutherland)
\star looking into families with prescribed automorphisms (Cardona-Quer)

Restriction of scalars construction

- $M=\mathbb{Q}(\sqrt{-40})$ and $k=M$, Hilbert class field $F=M(\sqrt{5})$
- Take L / k an extension with $\operatorname{Gal}(L / k) \simeq S_{4}$, with $F \subseteq L$
- Galois closure of the extension given by $x^{4}-x^{3}+5 x^{2}-5 x+2$
- field with label 4.0.5780.1 in LMFDB
$E^{*}: y^{2}=x^{3}+(-3159295576475581808640 \sqrt{5}-7064399680052694220800) x$
$+144540688991650801621141888696320 \sqrt{5}+323202806099974987264542375936000$
- E^{*} is a k-curve with CM by M.
- For $\sigma \in \operatorname{Gal}(L / k)$ the isogeny $\mu_{\sigma}:{ }^{\sigma} E \longrightarrow E$ is defined over L
- Then $c_{E^{*}} \in H^{2}\left(\operatorname{Gal}(L / k), M^{*}\right)$ can be explicitly computed
- Need to take a twist: $E=\left(E^{*}\right)_{\beta}$ for some appropriate $\beta \in L$.
- Consider $R=\operatorname{Res}_{L / k} E$. It is defined over k and $R_{L} \sim E^{24}$.
- Gross-Ribet: $\operatorname{End}^{0}(R) \simeq M^{C_{E}}[\operatorname{Gal}(L / k)]$ (twisted group algebra)
- $M^{C_{E}}[\operatorname{Gal}(L / k)]=\bigoplus_{\sigma \in \operatorname{Gal}(L / k)} M \cdot u_{\sigma}$, with $u_{\sigma} \cdot u_{\tau}=c_{E}(\sigma, \tau) u_{\sigma \tau}$
- We can compute explicitly c_{E}, and therefore $\operatorname{End}^{0}(R)$.
- Choosing β carefully, R decomposes in the right way
- There is a simple factor A of dim 2 that has the sought properties

Fields of definition of elliptic k-curves with CM and Sato-Tate groups of abelian surfaces

Francesc Fité ${ }^{1}$ Xevi Guitart ${ }^{2}$

${ }^{1}$ Universität Duisburg-Essen
${ }^{2}$ Universitat de Barcelona

February 2016

