Modular forms over cubic fields and algebraic points on elliptic curves

Xevi Guitart¹ Marc Masdeu² Haluk Sengun²

¹Institute for Experimental Mathematics, Essen

²University of Warwick

Bilbo

Outline

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

Numerical evidence for the conjecture

Outline

Heegner points

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

- Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell–Weil groups of *E* (e.g., partial results on Birch-Swinnerton–Dyer Conjecture).

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

- Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell–Weil groups of *E* (e.g., partial results on Birch-Swinnerton–Dyer Conjecture).
- Can be computed explicitly ~> efficient algorithms

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

- Heegner points on *E* are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell–Weil groups of *E* (e.g., partial results on Birch-Swinnerton–Dyer Conjecture).
- Can be computed explicitly ~> efficient algorithms
- Key fact for the construction of Heegner points: *E* is modular.

• Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \mathrm{SL}_2(\mathbb{Z})$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

• $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that f(z)dz descends to a differential on $X_0(N)$

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that f(z)dz descends to a differential on $X_0(N)$
- They have a Fourier expansion: $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$.

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H} \}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that f(z)dz descends to a differential on $X_0(N)$
- They have a Fourier expansion: $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$.

Modularity Theorem (Wiles et. al.)

Let *E* be an elliptic curve over \mathbb{Q} . Then for some $N \in \mathbb{Z}_{\geq 1}$:

(geometric version): There exists a morphism $X_0(N) \rightarrow E$ over \mathbb{Q} .

- Poincaré upper half plane: $\mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$
- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \colon N \mid c \} \subset \mathrm{SL}_2(\mathbb{Z}) \text{ acts on } \mathcal{H}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- $\Gamma_0(N) \setminus \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_0(N)/\mathbb{Q}$, and $X_0(N)(\mathbb{C}) \simeq \Gamma_0(N) \setminus \mathcal{H}$
- A modular form *f* is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that f(z)dz descends to a differential on $X_0(N)$
- They have a Fourier expansion: $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$.

Modularity Theorem (Wiles et. al.)

Let *E* be an elliptic curve over \mathbb{Q} . Then for some $N \in \mathbb{Z}_{\geq 1}$:

- **(**geometric version): There exists a morphism $X_0(N) \rightarrow E$ over \mathbb{Q} .
- (automorphic version): There exists a modular form $f_E(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$ such that $a_p = p + 1 \# E(\mathbb{Z}/p\mathbb{Z})$ for all primes *p*.

• $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication) P_{τ} has coordinates in a finite abelian extension of *K*.

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication) P_{τ} has coordinates in a finite abelian extension of *K*.

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication) P_{τ} has coordinates in a finite abelian extension of *K*.

• Let
$$P_{\tau} = 2\pi i \int_{\tau}^{i\infty} f_E(z) dz$$

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication) P_{τ} has coordinates in a finite abelian extension of *K*.

• Let
$$P_{\tau} = 2\pi i \int_{\tau}^{t_{\infty}} f_E(z) dz \in \mathbb{C}/\Lambda_E \simeq E(\mathbb{C})$$

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication) P_{τ} has coordinates in a finite abelian extension of *K*.

• Let
$$P_{\tau} = 2\pi i \int_{\tau}^{i\infty} f_E(z) dz \in \mathbb{C}/\Lambda_E \simeq E(\mathbb{C})$$

- Heegner points generalize to the following setting:
 - *E* is defined over a totally real field *F*.
 - ► *K* is a quadratic totally imaginary extension of *F*.
 - Heegner points on E, defined over abelian extensions of K

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication) P_{τ} has coordinates in a finite abelian extension of *K*.

• Let
$$P_{\tau} = 2\pi i \int_{\tau}^{i\infty} f_E(z) dz \in \mathbb{C}/\Lambda_E \simeq E(\mathbb{C})$$

- Heegner points generalize to the following setting:
 - *E* is defined over a totally real field *F*.
 - ► *K* is a quadratic totally imaginary extension of *F*.
 - Heegner points on E, defined over abelian extensions of K
- What if *F* is totally real, but *K* is not totally imaginary?

- $K = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_0(N) \setminus \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication) P_{τ} has coordinates in a finite abelian extension of *K*.

• Let
$$P_{\tau} = 2\pi i \int_{\tau}^{i\infty} f_E(z) dz \in \mathbb{C}/\Lambda_E \simeq E(\mathbb{C})$$

- Heegner points generalize to the following setting:
 - *E* is defined over a totally real field *F*.
 - ► *K* is a quadratic totally imaginary extension of *F*.
 - Heegner points on E, defined over abelian extensions of K
- What if *F* is totally real, but *K* is not totally imaginary?
 - ► There are some conjectural constructions, proposed by H. Darmon.

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 : F \hookrightarrow \mathbb{R}$

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 \colon F \hookrightarrow \mathbb{R}$

Modularity Theorem

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 \colon F \hookrightarrow \mathbb{R}$

Modularity Theorem

There is a Hilbert modular form f_E associated to E.

• $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 \colon F \hookrightarrow \mathbb{R}$

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 : F \hookrightarrow \mathbb{R}$

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)

- E an elliptic curve over F.
- *F* a real quadratic field $(h_F^+ = 1)$, so that $v_0, v_1 : F \hookrightarrow \mathbb{R}$

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.

Darmon's ATR points

• *K* quadratic almost totally real extension of *F* (one complex place and two real places)

Darmon's ATR points

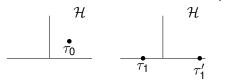
- *K* quadratic almost totally real extension of *F* (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K

- *K* quadratic almost totally real extension of *F* (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K

• Let
$$\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$$
 and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:

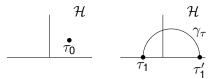
- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K

• Let
$$\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$$
 and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:



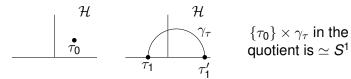
- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K

• Let
$$\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$$
 and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:

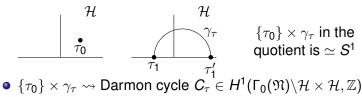


- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K

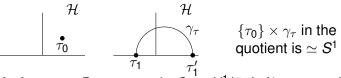
• Let
$$\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$$
 and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:



- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:

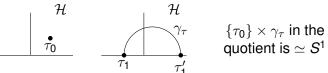


- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing n_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:



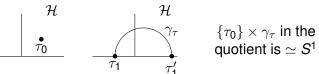
{τ₀} × γ_τ → Darmon cycle C_τ ∈ H¹(Γ₀(𝔅)\H × H, ℤ)
There is a 2-dim chain Δ_τ with ∂Δ_τ = C_τ

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing n_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:



- $\{\tau_0\} \times \gamma_{\tau} \rightsquigarrow \text{Darmon cycle } C_{\tau} \in H^1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_E$

- *K* quadratic almost totally real extension of *F* (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:

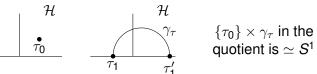


- $\{\tau_0\} \times \gamma_{\tau} \rightsquigarrow \text{Darmon cycle } C_{\tau} \in H^1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_E$

Conjecture (Darmon)

 $P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- *K* quadratic almost totally real extension of *F* (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:



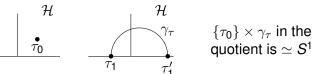
- $\{\tau_0\} \times \gamma_{\tau} \rightsquigarrow \text{Darmon cycle } C_{\tau} \in H^1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_E$

Conjecture (Darmon)

 $P_{\tau} \in E(H)$ with H a finite abelian extension of K.

• There is some numerical evidence in support of the conjecture

- *K* quadratic almost totally real extension of *F* (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:



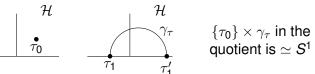
- $\{\tau_0\} \times \gamma_{\tau} \rightsquigarrow \text{Darmon cycle } C_{\tau} \in H^1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_E$

Conjecture (Darmon)

 $P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- There is some numerical evidence in support of the conjecture
- This can be generalized to arbitrary totally real F

- *K* quadratic almost totally real extension of *F* (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_E split in K
- Let $\tau \in \mathcal{K} \setminus \mathcal{F} \rightsquigarrow \tau_0 \in \mathcal{H}$ and $\tau_1, \tau'_1 \in \mathbb{R} = \partial \mathcal{H}$:



- $\{\tau_0\} \times \gamma_{\tau} \rightsquigarrow \text{Darmon cycle } C_{\tau} \in H^1(\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}, \mathbb{Z})$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau} = C_{\tau}$
- Darmon point: $P_{\tau} = \int \int_{\Delta_{\tau}} \tilde{f}_E(z_1, z_2) dz_1 dz_2 \in \mathbb{C} / \Lambda_E$

Conjecture (Darmon)

 $P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- There is some numerical evidence in support of the conjecture
- This can be generalized to arbitrary totally real F
- Our aim: propose a similar construction if F is not totally real

Xevi Guitart, Marc Masdeu, Haluk Sengun (IE

Modular forms over cubic fields

Outline

Heegner points

2 Darmon points (archimedean)

A construction over a cubic field of mixed signature

• F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane \mathcal{H}

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- SL₂(C) acts on the upper half space

$$\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $SL_2(\mathbb{C})$ acts on the upper half space

 $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- SL₂(C) acts on the upper half space

$$\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = (az+b)(cz+d)^{-1}$$

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $SL_2(\mathbb{C})$ acts on the upper half space

$$\mathcal{H}_{3} = \mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = (az+b)(cz+d)^{-1}$$

Consider Γ₀(𝔅)\H × H₃. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $SL_2(\mathbb{C})$ acts on the upper half space

$$\mathcal{H}_{3} = \mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = (az+b)(cz+d)^{-1}$$

Consider Γ₀(𝔅)\H × H₃. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_E on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ associated to *E*.

- F/\mathbb{Q} cubic field of signature (1, 1): $v_0 \colon F \hookrightarrow \mathbb{R}, v_1, \bar{v}_1 \colon F \hookrightarrow \mathbb{C}$.
- Let *E* be an elliptic curve over *F*.
- $\mathfrak{N} \subset \mathcal{O}_F$: $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}).$
- $SL_2(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $SL_2(\mathbb{C})$ acts on the upper half space

 $\mathcal{H}_{3} = \mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = (az+b)(cz+d)^{-1}$$

Consider Γ₀(𝔅)\H × H₃. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_E on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ associated to *E*.

• As before, ω_E is determined by its Fourier–Bessel expansion.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IE

Modular forms over cubic fields

• ω_E has a "Fourier-Bessel expansion":

$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \begin{pmatrix}\frac{-dx}{y} \wedge d\bar{z}\\ \frac{dy}{y} \wedge d\bar{z}\\ \frac{d\bar{z}}{y} \wedge d\bar{z} \end{pmatrix}$$

• ω_E has a "Fourier-Bessel expansion":

$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \left(\frac{\frac{-dx}{y} \wedge d\bar{z}}{\frac{dy}{y} \wedge d\bar{z}}\right)$$

It is completely determined by its Fourier coefficients a_(α)

• ω_E has a "Fourier-Bessel expansion":

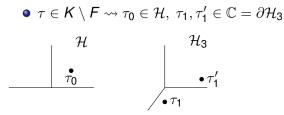
$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \begin{pmatrix}\frac{-dx}{y} \wedge d\bar{z}\\ \frac{dy}{y} \wedge d\bar{z}\\ \frac{d\bar{x}}{y} \wedge d\bar{z}\end{pmatrix}$$

- It is completely determined by its Fourier coefficients a_(α)
- We can compute the $a_{(\alpha)}$ by counting points on $E(\mathcal{O}_F/\mathfrak{p})$

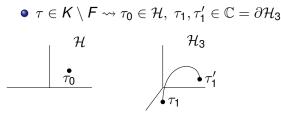
• K a totally imaginary quadratic extension of F

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$

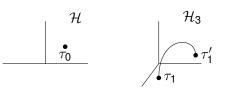
• K a totally imaginary quadratic extension of F



• K a totally imaginary quadratic extension of F

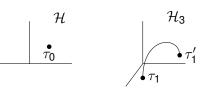


- K a totally imaginary quadratic extension of F
- $\tau \in K \setminus F \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$



• This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$



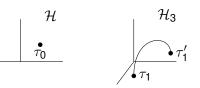
- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$



- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$
- Define: $P_{\tau} = \int \int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_E \simeq E(\mathbb{C})$

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$



- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

• Define:
$$P_{ au} = \int \int_{\Delta_{ au}} \omega_E \in \mathbb{C} / \Lambda_E \simeq E(\mathbb{C})$$

Conjecture

 $P_{\tau} \in E(H)$ with *H* a finite abelian extension of *K*.

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$

- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

• Define:
$$P_{ au} = \int \int_{\Delta_{ au}} \omega_E \in \mathbb{C} / \Lambda_E \simeq E(\mathbb{C})$$

Conjecture

 $P_{\tau} \in E(H)$ with *H* a finite abelian extension of *K*.

• C_{τ} is not algebraic, but also this time $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ is neither!

- K a totally imaginary quadratic extension of F
- $\tau \in \mathbf{K} \setminus \mathbf{F} \rightsquigarrow \tau_0 \in \mathcal{H}, \ \tau_1, \tau_1' \in \mathbb{C} = \partial \mathcal{H}_3$

- This gives a 1-cycle C_{τ} on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau} = C_{\tau}$

• Define:
$$P_{ au} = \int \int_{\Delta_{ au}} \omega_E \in \mathbb{C} / \Lambda_E \simeq E(\mathbb{C})$$

Conjecture

 $P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- C_{τ} is not algebraic, but also this time $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}_3$ is neither!
- We found some numerical evidence for the conjecture.

Outline

Heegner points

- 2 Darmon points (archimedean)
- 3 A construction over a cubic field of mixed signature

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

K = F(w), where w satisfies w² + (r + 1)w + 2r² - 3r + 3.
Take τ to be equal to w

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

K = *F*(*w*), where *w* satisfies *w*² + (*r* + 1)*w* + 2*r*² - 3*r* + 3.
 Take *τ* to be equal to *w*

• Stab_{$$\tau_0$$}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

- Take τ to be equal to w
- Stab_{τ_0}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
- Finding Δ_τ such that ∂Δ_τ = C_τ can be reduced to decompose γ_τ into elementary matrices (effective congruence subgroup problem).

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

- Take τ to be equal to w
- Stab_{τ_0}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
- Finding Δ_τ such that ∂Δ_τ = C_τ can be reduced to decompose γ_τ into elementary matrices (effective congruence subgroup problem).

•
$$P_{\tau} = \sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} \cdot O} \omega_{E} \simeq 0.141967077 - 0.055099463\sqrt{-1}$$

•
$$F = \mathbb{Q}(r)$$
 with $r^3 - r^2 + 1$
 $E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$

• K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 - 3r + 3$.

- Take τ to be equal to w
- Stab_{τ_0}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
- Finding Δ_τ such that ∂Δ_τ = C_τ can be reduced to decompose γ_τ into elementary matrices (effective congruence subgroup problem).

•
$$P_{\tau} = \sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} \cdot O} \omega_{E} \simeq 0.141967077 - 0.055099463\sqrt{-1}$$

The image of J_τ ∈ C/Λ_E ≃ E(C) coincides (up to 32 digits of accuracy) with 10P, where

$$P = \left(r-1: w-r^2+2r:1\right) \in E(K)$$

Modular forms over cubic fields and algebraic points on elliptic curves

Xevi Guitart¹ Marc Masdeu² Haluk Sengun²

¹Institute for Experimental Mathematics, Essen

²University of Warwick

Bilbo