Modular forms over cubic fields and algebraic points on elliptic curves

Xevi Guitart ${ }^{1}$ Marc Masdeu ${ }^{2}$ Haluk Sengun²
${ }^{1}$ Institute for Experimental Mathematics, Essen
${ }^{2}$ University of Warwick

Bilbo

Outline

(9) Heegner points

2 Darmon points (archimedean)
(3) A construction over a cubic field of mixed signature
(4) Numerical evidence for the conjecture

Outline

(1) Heegner points

2 Darmon points (archimedean)
(3) A construction over a cubic field of mixed signature
4. Numerical evidence for the conjecture

Heegner points

- E elliptic curve with rational coefficients

$$
E: y^{2}+b_{1} x y+b_{3} y=x^{3}+b_{2} x^{2}+b_{4} x+b_{6}, \quad b_{i} \in \mathbb{Z}
$$

Heegner points

- E elliptic curve with rational coefficients

$$
E: y^{2}+b_{1} x y+b_{3} y=x^{3}+b_{2} x^{2}+b_{4} x+b_{6}, \quad b_{i} \in \mathbb{Z}
$$

- Heegner points on E are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.

Heegner points

- E elliptic curve with rational coefficients

$$
E: y^{2}+b_{1} x y+b_{3} y=x^{3}+b_{2} x^{2}+b_{4} x+b_{6}, \quad b_{i} \in \mathbb{Z}
$$

- Heegner points on E are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).

Heegner points

- E elliptic curve with rational coefficients

$$
E: y^{2}+b_{1} x y+b_{3} y=x^{3}+b_{2} x^{2}+b_{4} x+b_{6}, \quad b_{i} \in \mathbb{Z}
$$

- Heegner points on E are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).
- Can be computed explicitly \rightsquigarrow efficient algorithms

Heegner points

- E elliptic curve with rational coefficients

$$
E: y^{2}+b_{1} x y+b_{3} y=x^{3}+b_{2} x^{2}+b_{4} x+b_{6}, \quad b_{i} \in \mathbb{Z}
$$

- Heegner points on E are a canonical collection of algebraic points defined over (abelian extensions of) quadratic imaginary fields.
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).
- Can be computed explicitly \rightsquigarrow efficient algorithms
- Key fact for the construction of Heegner points: E is modular.

Modular forms and elliptic curves

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{Z})$

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H}

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H}

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- $\Gamma_{0}(N) \backslash \mathcal{H}$ (suitably compactified) is a Riemann surface.

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H}

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- $\Gamma_{0}(N) \backslash \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_{0}(N) / \mathbb{Q}$, and $X_{0}(N)(\mathbb{C}) \simeq \Gamma_{0}(N) \backslash \mathcal{H}$

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H}

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- $\Gamma_{0}(N) \backslash \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_{0}(N) / \mathbb{Q}$, and $X_{0}(N)(\mathbb{C}) \simeq \Gamma_{0}(N) \backslash \mathcal{H}$
- A modular form f is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z) d z$ descends to a differential on $X_{0}(N)$

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H}

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- $\Gamma_{0}(N) \backslash \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_{0}(N) / \mathbb{Q}$, and $X_{0}(N)(\mathbb{C}) \simeq \Gamma_{0}(N) \backslash \mathcal{H}$
- A modular form f is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z) d z$ descends to a differential on $X_{0}(N)$
- They have a Fourier expansion: $f(z)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z}$.

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H}

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- $\Gamma_{0}(N) \backslash \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_{0}(N) / \mathbb{Q}$, and $X_{0}(N)(\mathbb{C}) \simeq \Gamma_{0}(N) \backslash \mathcal{H}$
- A modular form f is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z) d z$ descends to a differential on $X_{0}(N)$
- They have a Fourier expansion: $f(z)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z}$.

Modularity Theorem (Wiles et. al.)

Let E be an elliptic curve over \mathbb{Q}. Then for some $N \in \mathbb{Z}_{\geq 1}$:
(1) (geometric version): There exists a morphism $X_{0}(N) \rightarrow E$ over \mathbb{Q}.

Modular forms and elliptic curves

- Poincaré upper half plane: $\mathcal{H}=\{z=x+i y \in \mathbb{C} \mid y>0\}$
- $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}): N \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H}

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- $\Gamma_{0}(N) \backslash \mathcal{H}$ (suitably compactified) is a Riemann surface.
- There is the modular curve $X_{0}(N) / \mathbb{Q}$, and $X_{0}(N)(\mathbb{C}) \simeq \Gamma_{0}(N) \backslash \mathcal{H}$
- A modular form f is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z) d z$ descends to a differential on $X_{0}(N)$
- They have a Fourier expansion: $f(z)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z}$.

Modularity Theorem (Wiles et. al.)

Let E be an elliptic curve over \mathbb{Q}. Then for some $N \in \mathbb{Z}_{\geq 1}$:
(1) (geometric version): There exists a morphism $X_{0}(N) \rightarrow E$ over \mathbb{Q}.
(2) (automorphic version): There exists a modular form $f_{E}(z)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z}$ such that $a_{p}=p+1-\# E(\mathbb{Z} / p \mathbb{Z})$ for all primes p.

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication)
P_{τ} has coordinates in a finite abelian extension of K.

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication)
P_{τ} has coordinates in a finite abelian extension of K.

- An explicit formula:

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication)
P_{τ} has coordinates in a finite abelian extension of K.

- An explicit formula:
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z$

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication)
P_{τ} has coordinates in a finite abelian extension of K.

- An explicit formula:
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication)

P_{τ} has coordinates in a finite abelian extension of K.

- An explicit formula:
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$
- Heegner points generalize to the following setting:
- E is defined over a totally real field F.
- K is a quadratic totally imaginary extension of F.
- Heegner points on E, defined over abelian extensions of K

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication)

P_{τ} has coordinates in a finite abelian extension of K.

- An explicit formula:
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$
- Heegner points generalize to the following setting:
- E is defined over a totally real field F.
- K is a quadratic totally imaginary extension of F.
- Heegner points on E, defined over abelian extensions of K
- What if F is totally real, but K is not totally imaginary?

Definition of Heegner points

- $K=\mathbb{Q}(\sqrt{-D}) \subset \mathbb{C}$ a quadratic imaginary field and $\tau \in K \cap \mathcal{H}$
- A Heegner point P_{τ} is the image of τ under $\Gamma_{0}(N) \backslash \mathcal{H} \rightarrow E$

Theorem (consequence of the theory of Complex multiplication)

P_{τ} has coordinates in a finite abelian extension of K.

- An explicit formula:
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$
- Heegner points generalize to the following setting:
- E is defined over a totally real field F.
- K is a quadratic totally imaginary extension of F.
- Heegner points on E, defined over abelian extensions of K
- What if F is totally real, but K is not totally imaginary?
- There are some conjectural constructions, proposed by H. Darmon.

Outline

(9) Heegner points
(2) Darmon points (archimedean)
(3) A construction over a cubic field of mixed signature
4. Numerical evidence for the conjecture

Elliptic curves over totally real fields

- E an elliptic curve over F.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$

Elliptic curves over totally real fields

- E an elliptic curve over F.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$

Modularity Theorem
There is a Hilbert modular form f_{E} associated to E.

Elliptic curves over totally real fields

- E an elliptic curve over F.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$

Modularity Theorem

There is a Hilbert modular form f_{E} associated to E.

- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{R}) \times \operatorname{SL}_{2}(\mathbb{R})$

Elliptic curves over totally real fields

- E an elliptic curve over F.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$

Modularity Theorem

There is a Hilbert modular form f_{E} associated to E.

- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$
- $\Gamma_{0}(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$

Elliptic curves over totally real fields

- E an elliptic curve over F.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$

Modularity Theorem

There is a Hilbert modular form f_{E} associated to E.

- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$
- $\Gamma_{0}(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)

Elliptic curves over totally real fields

- E an elliptic curve over F.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$

Modularity Theorem

There is a Hilbert modular form f_{E} associated to E.

- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{R}) \times \operatorname{SL}_{2}(\mathbb{R})$
- $\Gamma_{0}(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f\left(z_{1}, z_{2}\right) d z_{1} d z_{2}$ descends to a differential on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$.

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$\left\{\tau_{0}\right\} \times \gamma_{\tau}$ in the quotient is $\simeq S^{1}$

Darmon's ATR points

- K quadratic almost totally real extension of F
(one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$\left\{\tau_{0}\right\} \times \gamma_{\tau}$ in the quotient is $\simeq S^{1}$
- $\left\{\tau_{0}\right\} \times \gamma_{\tau} \rightsquigarrow$ Darmon cycle $C_{\tau} \in H^{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$

Darmon's ATR points

- K quadratic almost totally real extension of F
(one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$\left\{\tau_{0}\right\} \times \gamma_{\tau}$ in the quotient is $\simeq S^{1}$
- $\left\{\tau_{0}\right\} \times \gamma_{\tau} \rightsquigarrow$ Darmon cycle $C_{\tau}^{\tau_{1}} \in H^{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2 -dim chain Δ_{τ} with $\partial \Delta_{\tau}=C_{\tau}$

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$$
\left\{\tau_{0}\right\} \times \gamma_{\tau} \text { in the }
$$ quotient is $\simeq S^{1}$

- $\left\{\tau_{0}\right\} \times \gamma_{\tau} \rightsquigarrow$ Darmon cycle $C_{\tau}^{\tau_{1}} \in H^{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2 -dim chain Δ_{τ} with $\partial \Delta_{\tau}=C_{\tau}$
- Darmon point: $P_{\tau}=\iint_{\Delta_{\tau}} \tilde{f}_{E}\left(z_{1}, z_{2}\right) d z_{1} d z_{2} \in \mathbb{C} / \Lambda_{E}$

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$$
\left\{\tau_{0}\right\} \times \gamma_{\tau} \text { in the }
$$ quotient is $\simeq S^{1}$

- $\left\{\tau_{0}\right\} \times \gamma_{\tau} \rightsquigarrow$ Darmon cycle $C_{\tau}^{\tau_{1}} \in H^{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2 -dim chain Δ_{τ} with $\partial \Delta_{\tau}=C_{\tau}$
- Darmon point: $P_{\tau}=\iint_{\Delta_{\tau}} \tilde{f}_{E}\left(z_{1}, z_{2}\right) d z_{1} d z_{2} \in \mathbb{C} / \Lambda_{E}$

Conjecture (Darmon)

$P_{\tau} \in E(H)$ with H a finite abelian extension of K.

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$$
\left\{\tau_{0}\right\} \times \gamma_{\tau} \text { in the }
$$ quotient is $\simeq S^{1}$

- $\left\{\tau_{0}\right\} \times \gamma_{\tau} \rightsquigarrow$ Darmon cycle $C_{\tau}^{\tau_{1}} \in H^{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau}=C_{\tau}$
- Darmon point: $P_{\tau}=\iint_{\Delta_{\tau}} \tilde{f}_{E}\left(z_{1}, z_{2}\right) d z_{1} d z_{2} \in \mathbb{C} / \Lambda_{E}$

Conjecture (Darmon)

$P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- There is some numerical evidence in support of the conjecture

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$\left\{\tau_{0}\right\} \times \gamma_{\tau}$ in the quotient is $\simeq S^{1}$
- $\left\{\tau_{0}\right\} \times \gamma_{\tau} \rightsquigarrow$ Darmon cycle $C_{\tau}^{\tau_{1}} \in H^{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2 -dim chain Δ_{τ} with $\partial \Delta_{\tau}=C_{\tau}$
- Darmon point: $P_{\tau}=\iint_{\Delta_{\tau}} \tilde{f}_{E}\left(z_{1}, z_{2}\right) d z_{1} d z_{2} \in \mathbb{C} / \Lambda_{E}$

Conjecture (Darmon)

$P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- There is some numerical evidence in support of the conjecture
- This can be generalized to arbitrary totally real F

Darmon's ATR points

- K quadratic almost totally real extension of F (one complex place and two real places)
- Assume: all primes dividing \mathfrak{N}_{E} split in K
- Let $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}$ and $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$:

$\left\{\tau_{0}\right\} \times \gamma_{\tau}$ in the quotient is $\simeq S^{1}$
- $\left\{\tau_{0}\right\} \times \gamma_{\tau} \rightsquigarrow$ Darmon cycle $C_{\tau} \in H^{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{τ} with $\partial \Delta_{\tau}=C_{\tau}$
- Darmon point: $P_{\tau}=\iint_{\Delta_{\tau}} \tilde{f}_{E}\left(z_{1}, z_{2}\right) d z_{1} d z_{2} \in \mathbb{C} / \Lambda_{E}$

Conjecture (Darmon)

$P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- There is some numerical evidence in support of the conjecture
- This can be generalized to arbitrary totally real F
- Our aim: propose a similar construction if F is not totally real

Outline

(1) Heegner points

(2) Darmon points (archimedean)
(3) A construction over a cubic field of mixed signature

(4) Numerical evidence for the conjecture

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane \mathcal{H}

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space

$$
\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}
$$

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space

$$
\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H}=\mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k
$$

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space

$$
\begin{gathered}
\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H}=\mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=(a z+b)(c z+d)^{-1}
\end{gathered}
$$

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space

$$
\begin{gathered}
\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H}=\mathbb{R} \oplus \mathbb{R} \cdot \boldsymbol{i} \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=(a z+b)(c z+d)^{-1}
\end{gathered}
$$

- Consider $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space

$$
\begin{gathered}
\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H}=\mathbb{R} \oplus \mathbb{R} \cdot \boldsymbol{i} \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=(a z+b)(c z+d)^{-1}
\end{gathered}
$$

- Consider $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_{E} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ associated to E.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F.
- $\mathfrak{N} \subset \mathcal{O}_{F}: \Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane \mathcal{H}
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space

$$
\begin{gathered}
\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0} \subset \mathbb{H}=\mathbb{R} \oplus \mathbb{R} \cdot \boldsymbol{i} \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=(a z+b)(c z+d)^{-1}
\end{gathered}
$$

- Consider $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_{E} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ associated to E.

- As before, ω_{E} is determined by its Fourier-Bessel expansion.
- ω_{E} has a "Fourier-Bessel expansion":

$$
\omega_{E}(z, x, y)=\sum_{\substack{\alpha \in \mathcal{O}_{F} \\
\alpha_{0}>0}} \frac{a_{(\alpha)}}{N_{F / \mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp \left(-2 \pi i\left(\frac{\alpha_{0} \bar{z}}{\delta_{0}}+\frac{\alpha_{1} x}{\delta_{1}}+\frac{\alpha_{2} \bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1} y}{\delta_{1}}\right) \cdot\left(\begin{array}{l}
\frac{-d x}{y} \wedge d \bar{z} \\
\frac{d y}{y} \wedge d \bar{z} \\
\frac{d \bar{x}}{y} \wedge d \bar{z}
\end{array}\right)
$$

- ω_{E} has a "Fourier-Bessel expansion":

$$
\omega_{E}(z, x, y)=\sum_{\substack{\alpha \in \mathcal{O}_{F} \\
\alpha_{0}>0}} \frac{a_{(\alpha)}}{N_{F / \mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp \left(-2 \pi i\left(\frac{\alpha_{0} \bar{z}}{\delta_{0}}+\frac{\alpha_{1} x}{\delta_{1}}+\frac{\alpha_{2} \bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1} y}{\delta_{1}}\right) \cdot\left(\begin{array}{c}
\frac{-d x}{d x} \wedge d \bar{z} \\
\frac{d y}{d y} \wedge d \bar{z} \\
\frac{d \bar{x}}{y} \wedge d \bar{z}
\end{array}\right)
$$

- It is completely determined by its Fourier coefficients $a_{(\alpha)}$
- ω_{E} has a "Fourier-Bessel expansion":

$$
\omega_{E}(z, x, y)=\sum_{\substack{\alpha \in \mathcal{O}_{F} \\
\alpha_{0}>0}} \frac{a_{(\alpha)}}{N_{F / \mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp \left(-2 \pi i\left(\frac{\alpha_{0} \bar{z}}{\delta_{0}}+\frac{\alpha_{1} x}{\delta_{1}}+\frac{\alpha_{2} \bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1} y}{\delta_{1}}\right) \cdot\left(\begin{array}{c}
\frac{-d x}{y x} \wedge d \bar{z} \\
\frac{d y}{d y} \wedge d \bar{z} \\
\frac{d \bar{x}}{y} \wedge d \bar{z}
\end{array}\right)
$$

- It is completely determined by its Fourier coefficients $a_{(\alpha)}$
- We can compute the $a_{(\alpha)}$ by counting points on $E\left(\mathcal{O}_{F} / \mathfrak{p}\right)$

Construction of the points

- K a totally imaginary quadratic extension of F

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

- This gives a 1-cycle C_{τ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

- This gives a 1-cycle C_{τ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

- This gives a 1-cycle C_{τ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$
- Define: $P_{\tau}=\iint_{\Delta_{\tau}} \omega_{E} \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

- This gives a 1-cycle C_{τ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$
- Define: $P_{\tau}=\iint_{\Delta_{\tau}} \omega_{E} \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$

Conjecture

$P_{\tau} \in E(H)$ with H a finite abelian extension of K.

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

- This gives a 1-cycle C_{τ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$
- Define: $P_{\tau}=\iint_{\Delta_{\tau}} \omega_{E} \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$

Conjecture

$P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- C_{τ} is not algebraic, but also this time $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ is neither!

Construction of the points

- K a totally imaginary quadratic extension of F
- $\tau \in K \backslash F \rightsquigarrow \tau_{0} \in \mathcal{H}, \tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

- This gives a 1-cycle C_{τ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$
- Define: $P_{\tau}=\iint_{\Delta_{\tau}} \omega_{E} \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$

Conjecture

$P_{\tau} \in E(H)$ with H a finite abelian extension of K.

- C_{τ} is not algebraic, but also this time $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ is neither!
- We found some numerical evidence for the conjecture.

Outline

(1) Heegner points

2 Darmon points (archimedean)
(3) A construction over a cubic field of mixed signature
(4) Numerical evidence for the conjecture

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x .
$$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x .
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3$.

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3$.
- Take τ to be equal to w

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3$.
- Take τ to be equal to w
- $\operatorname{Stab}_{\tau_{0}}\left(\Gamma_{0}(\mathfrak{N})\right)=\left\langle\gamma_{\tau}\right\rangle$ with $\gamma_{\tau}=\left(\begin{array}{rr}-4 r-3 & -r^{2}+2 r+3 \\ -2 r^{2}-4 r-3 & -r^{2}+4 r+2\end{array}\right)$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3$.
- Take τ to be equal to w
- $\operatorname{Stab}_{\tau_{0}}\left(\Gamma_{0}(\mathfrak{N})\right)=\left\langle\gamma_{\tau}\right\rangle$ with $\gamma_{\tau}=\left(\begin{array}{rr}-4 r-3 & -r^{2}+2 r+3 \\ -2 r^{2}-4 r-3 & -r^{2}+4 r+2\end{array}\right)$
- Finding Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$ can be reduced to decompose γ_{τ} into elementary matrices (effective congruence subgroup problem).

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3$.
- Take τ to be equal to w
- $\operatorname{Stab}_{\tau_{0}}\left(\Gamma_{0}(\mathfrak{N})\right)=\left\langle\gamma_{\tau}\right\rangle$ with $\gamma_{\tau}=\left(\begin{array}{rr}-4 r-3 & -r^{2}+2 r+3 \\ -2 r^{2}-4 r-3 & -r^{2}+4 r+2\end{array}\right)$
- Finding Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$ can be reduced to decompose γ_{τ} into elementary matrices (effective congruence subgroup problem).
- $P_{\tau}=\sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} O} \omega_{E} \simeq 0.141967077-0.055099463 \sqrt{-1}$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3$.
- Take τ to be equal to w
- $\operatorname{Stab}_{\tau_{0}}\left(\Gamma_{0}(\mathfrak{N})\right)=\left\langle\gamma_{\tau}\right\rangle$ with $\gamma_{\tau}=\left(\begin{array}{rl}-4 r-3 & -r^{2}+2 r+3 \\ -2 r^{2}-4 r-3 & -r^{2}+4 r+2\end{array}\right)$
- Finding Δ_{τ} such that $\partial \Delta_{\tau}=C_{\tau}$ can be reduced to decompose γ_{τ} into elementary matrices (effective congruence subgroup problem).
- $P_{\tau}=\sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} O} \omega_{E} \simeq 0.141967077-0.055099463 \sqrt{-1}$
- The image of $J_{\tau} \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$ coincides (up to 32 digits of accuracy) with 10P, where

$$
P=\left(r-1: w-r^{2}+2 r: 1\right) \in E(K)
$$

Modular forms over cubic fields and algebraic points on elliptic curves

Xevi Guitart ${ }^{1}$ Marc Masdeu ${ }^{2}$ Haluk Sengun²
${ }^{1}$ Institute for Experimental Mathematics, Essen
${ }^{2}$ University of Warwick

Bilbo

