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Heegner points

E elliptic curve with rational coefficients

E : y2 + b1xy + b3y = x3 + b2x2 + b4x + b6, bi ∈ Z

Heegner points on E are a canonical collection of algebraic points
defined over (abelian extensions of) quadratic imaginary fields.
They are a key tool in the study of Mordell–Weil groups of E
(e.g., partial results on Birch-Swinnerton–Dyer Conjecture).
Can be computed explicitly efficient algorithms
Key fact for the construction of Heegner points: E is modular.
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Modular forms and elliptic curves

Poincaré upper half plane: H = {z = x + iy ∈ C | y > 0}
Γ0(N) = {

(
a b
c d

)
∈ SL2(Z) : N | c} ⊂ SL2(Z)

acts on H(
a b
c d

)
· z =

az + b
cz + d

Γ0(N)\H (suitably compactified) is a Riemann surface.
There is the modular curve X0(N)/Q, and X0(N)(C) ' Γ0(N)\H
A modular form f is a holomorphic function f : H→C such that
f (z)dz descends to a differential on X0(N)
They have a Fourier expansion: f (z) =

∑∞
n=0 ane2πinz .

Modularity Theorem (Wiles et. al.)
Let E be an elliptic curve over Q. Then for some N ∈ Z≥1:

1 (geometric version): There exists a morphism X0(N)→E over Q.

2 (automorphic version): There exists a modular form
fE (z) =

∑∞
n=0 ane2πinz such that ap = p + 1−#E(Z/pZ) for all primes p.
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Definition of Heegner points

K = Q(
√
−D) ⊂ C a quadratic imaginary field and τ ∈ K ∩H

A Heegner point Pτ is the image of τ under Γ0(N)\H→E

Theorem (consequence of the theory of Complex multiplication)
Pτ has coordinates in a finite abelian extension of K .

An explicit formula:

I Let Pτ = 2πi
∫ i∞
τ

fE (z)dz

∈ C/ΛE ' E(C)

Heegner points generalize to the following setting:
I E is defined over a totally real field F .
I K is a quadratic totally imaginary extension of F .
I Heegner points on E , defined over abelian extensions of K

What if F is totally real, but K is not totally imaginary?

I There are some conjectural constructions, proposed by H. Darmon.
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Elliptic curves over totally real fields

E an elliptic curve over F .
F a real quadratic field (h+

F = 1), so that v0, v1 : F ↪→ R

Modularity Theorem
There is a Hilbert modular form fE associated to E .

N ⊂ OF : Γ0(N) = {
(

a b
c d

)
∈ SL2(OF ) : N | c} ⊂ SL2(R)× SL2(R)

Γ0(N) acts on H×H
Γ0(N)\H ×H is an algebraic surface (the Hilbert modular surface)
A Hilbert modular form is a function f : H×H→C such that
f (z1, z2)dz1dz2 descends to a differential on Γ0(N)\H ×H.
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Darmon’s ATR points
K quadratic almost totally real extension of F
(one complex place and two real places)

Assume: all primes dividing NE split in K
Let τ ∈ K \ F  τ0 ∈ H and τ1, τ

′
1 ∈ R = ∂H:

H

τ0

H

τ1 τ ′1

γτ {τ0} × γτ in the
quotient is ' S1

{τ0} × γτ  Darmon cycle Cτ ∈ H1(Γ0(N)\H ×H,Z)
There is a 2-dim chain ∆τ with ∂∆τ = Cτ

Darmon point: Pτ =
∫ ∫

∆τ
f̃E (z1, z2)dz1dz2 ∈ C/ΛE

Conjecture (Darmon)
Pτ ∈ E(H) with H a finite abelian extension of K .

There is some numerical evidence in support of the conjecture
This can be generalized to arbitrary totally real F
Our aim: propose a similar construction if F is not totally real
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Outline

1 Heegner points

2 Darmon points (archimedean)

3 A construction over a cubic field of mixed signature

4 Numerical evidence for the conjecture
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Modular forms and modularity
F/Q cubic field of signature (1,1): v0 : F ↪→ R, v1, v̄1 : F ↪→ C.

Let E be an elliptic curve over F .
N ⊂ OF : Γ0(N) = {

(
a b
c d

)
∈ SL2(OF ) : N | c} ⊂ SL2(R)× SL2(C).

SL2(R) acts on the upper half plane H
SL2(C) acts on the upper half space

H3 = C× R>0

⊂ H = R⊕ R · i ⊕ R · j ⊕ R · k

(
a b
c d

)
· z = (az + b)(cz + d)−1

Consider Γ0(N)\H ×H3. It is not an algebraic variety (has real
dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture
There is a harmonic differential 2-form ωE on Γ0(N)\H ×H3
associated to E .

As before, ωE is determined by its Fourier–Bessel expansion.
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ωE has a “Fourier-Bessel expansion”:

ωE (z, x , y) =
∑
α∈OF
α0>0

a(α)

NF/Q(α)

α0

δ0
exp

(
−2πi

(
α0z̄
δ0

+
α1x
δ1

+
α2x̄
δ2

))
K
(
α1y
δ1

)
·


−dx

y ∧ dz̄
dy
y ∧ dz̄

dx̄
y ∧ dz̄

 ,

It is completely determined by its Fourier coefficients a(α)

We can compute the a(α) by counting points on E(OF/p)
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Construction of the points
K a totally imaginary quadratic extension of F

τ ∈ K \ F  τ0 ∈ H, τ1, τ
′
1 ∈ C = ∂H3

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!

We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Construction of the points
K a totally imaginary quadratic extension of F
τ ∈ K \ F  τ0 ∈ H, τ1, τ

′
1 ∈ C = ∂H3

H

τ0

H3

τ1

τ ′1

This gives a 1-cycle Cτ on Γ0(N) \ H ×H3

As before, there is a 2-dimensional chain ∆τ such that ∂∆τ = Cτ

Define: Pτ =
∫ ∫

∆τ
ωE ∈ C/ΛE ' E(C)

Conjecture
Pτ ∈ E(H) with H a finite abelian extension of K .

Cτ is not algebraic, but also this time Γ0(N)\H ×H3 is neither!
We found some numerical evidence for the conjecture.

Xevi Guitart, Marc Masdeu, Haluk Sengun (IEM, Warwick)Modular forms over cubic fields Bilbo July 2014 13 / 16



Outline

1 Heegner points

2 Darmon points (archimedean)

3 A construction over a cubic field of mixed signature

4 Numerical evidence for the conjecture
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A concrete calculation
F = Q(r) with r3 − r2 + 1

E : y2 + (r − 1)xy + (r2 − r)y = x3 + (−r2 − 1)x2 + r2x .

K = F (w), where w satisfies w2 + (r + 1)w + 2r2 − 3r + 3.
Take τ to be equal to w

Stabτ0(Γ0(N)) = 〈γτ 〉 with γτ =
(

−4r − 3 −r2 + 2r + 3
−2r2 − 4r − 3 −r2 + 4r + 2

)
Finding ∆τ such that ∂∆τ = Cτ can be reduced to decompose γτ
into elementary matrices (effective congruence subgroup
problem).

Pτ =
∑

i

∫ τ2
i

τ1
i

∫ γi ·O

O
ωE ' 0.141967077− 0.055099463

√
−1

The image of Jτ ∈ C/ΛE ' E(C) coincides (up to 32 digits of
accuracy) with 10P, where

P =
(

r − 1 : w − r2 + 2r : 1
)
∈ E(K )
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