Computing equations of elliptic curves over number fields via *p*-adic methods

Xevi Guitart¹ Marc Masdeu² Haluk Sengun³

¹Institut für Experimentelle Mathematik, Essen

²University of Warwick

³University of Sheffield

Conference for young researchers in arithmetic and algebraic geometry, Bonn Oct 2014

Computing equations of elliptic curves

• *K* a number field

$$E/K$$
: $y^2 = x^3 + c_4x + c_6$, with $c_i \in K$

- Conductor $\mathcal{N} \subset \mathcal{O}_{\mathcal{K}}$ (supported on the primes of bad reduction)
- There are finitely many curves with a given conductor

Problem

Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

- For $K = \mathbb{Q}$ we have the ANTWERP or Cremona tables
- Other number fields: not many systematic tables yet
- Naive enumeration algorithm:
 - list tuples [c₄, c₆]
 - compute the conductor (Tate's algorithm)
 - keep those of small conductor
- Curves of small conductor might have c_i's of large height
- How do we know if the list is complete?
- Modularity: elliptic curves (should) correspond to modular forms

Xevi Guitart, Marc Masdeu, Haluk Sengun (IE

Equations of elliptic curves

Modularity over number fields

- *K* number field. Let us assume that $h_K^+ = 1$.
- *K* of signature (n, s): $K \hookrightarrow \mathbb{R}^n \times \mathbb{C}^s$
- Given an ideal $\mathcal{N} \subset \mathcal{O}_K$

 $\mathsf{F}_{0}(\mathcal{N}) = \{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \mathrm{SL}_{2}(\mathcal{O}_{\mathcal{K}}) \colon \mathcal{N} \mid c \} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}$

- SL₂(ℝ) acts on H = {z = x + iy: y > 0} (upper half plane)
- $SL_2(\mathbb{C})$ acts on $\mathcal{H}_3 = \mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3-space)

•
$$Y_0(\mathcal{N}) = \Gamma_0(\mathcal{N}) \setminus \mathcal{H}^n \times \mathcal{H}_3^s$$

- e.g. $K = \mathbb{Q}$: it is the (open) modular curve
- *H^{n+s}*(*Y*₀(*N*), ℂ) finite dimensional vector space
 - Admits a description in terms of modular forms for $\Gamma_0(\mathcal{N})$
 - Hecke operators $T_{\mathfrak{l}}$ for primes $\mathfrak{l} \nmid \mathcal{N}$
- Rational eigenclass $f \in H^{n+s}(Y_0(\mathcal{N}), \mathbb{C})$ such that

$$T_{\mathfrak{l}}f=a_{\mathfrak{l}}f$$
 with $a_{\mathfrak{l}}\in\mathbb{Z}$ for all \mathfrak{l}

• Conjecture: $f \rightsquigarrow E_f/K$

Modularity over number fields

• $f \in H^{n+s}(Y_0(\mathcal{N}), \mathbb{C})$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve ^(*) E_f/K of conductor \mathcal{N} corresponding to f: $\#E_f(\mathcal{O}_K/\mathfrak{l}) = |\mathfrak{l}| + 1 - a_\mathfrak{l}$ for all $\mathfrak{l} \nmid \mathcal{N}$

Conversely: any (non-CM) curve E/K is isogenous to E_f for some f.

- (*): If K is totally imaginary, E_f may be an abelian surface
 - It's known for K = Q (Eichler−Shimura + Modularity Theorem) and in many cases for K totally real.
 - Much less is known if K has a complex place
 - $H^{n+s}(Y_0(\mathcal{N}), \mathbb{C})$: very concrete and (let's say) can be computed

Problem

Given a rational eigenclass $f \in H^{n+s}(Y_0(\mathcal{N}), \mathbb{C})$, construct E_f .

• For $K = \mathbb{Q}$ this is the classical Eichler–Shimura construction

The Eichler-Shimura construction

- If $K = \mathbb{Q}$ then $H^1(Y_0(N), \mathbb{C}) \longleftrightarrow$ classical modular forms
- $f(z) = \sum_{j \ge 1} a_j e^{2\pi i j z}$ with $a_j \in \mathbb{Z}$
- Lattice $\Lambda_f = \{\int_{\tau}^{\gamma \tau} 2\pi i f(z) dz \colon \gamma \in \Gamma_0(N)\} \subset \mathbb{C}$

Theorem (Manin)

 Λ_f is the period lattice of E_f . That is, $\mathbb{C}/\Lambda_f \sim E_f(\mathbb{C})$

- Explicit formulas for $c_4(\Lambda_f)$ and $c_6(\Lambda_f)$, hence an equation of E_f
 - Cremona's tables: curves up to N = 350,000 (and increasing)
- Why does this work?
 - There is some geometry behind: $Jac(X_0(N)) \longrightarrow E_f$
- *K* totally real ~→ *f* Hilbert modular form
 - ► Eichler–Shimura generalizes, at least in some cases (e.g. [K: ℚ] odd or there exists a prime p || N)
 - Some computations (Voight–Willis, Nelson)

What if *K* has a complex place?

- $Y_0(\mathcal{N}) = \Gamma_0(\mathcal{N}) \setminus \mathcal{H}^n \times \mathcal{H}_3^s$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
 - $f \rightsquigarrow$ Bianchi modular form
 - $\{\int_{\gamma} \omega_f : \gamma \in H_1(\Gamma_0(\mathcal{N}) \setminus \mathcal{H}_3, \mathbb{Z})\}$ is a lattice in \mathbb{R} : doesn't give E_f
- Apparently: no geometric construction of *E_f* for non-totally real *K*

Our goal

- Propose a conjectural analytic construction of *E_f*, under the additional assumption that there exists a prime p || *N*
- Provide numerical evidence for the conjecture
- The construction is a (rather straightforward) generalization of the *p*-adic uniformizations arising in the theory of Stark–Heegner points (Bertolini–Darmon, Dasgupta, M. Greenberg, Trifkovic,...)
- Compute the p-adic lattice: replace \mathbb{C} by $\mathbb{C}_{\rho} = \overline{\mathbb{Q}}_{\rho}$
 - Tate's uniformization: $E(\mathbb{C}_p) \simeq \mathbb{C}_p^{\times} / \Lambda_E$ for some $\Lambda_E \subset \mathbb{C}_p^{\times}$

The p-adic integration pairing

• Recall the integration pairing in the Eichler–Shimura construction

$$\begin{array}{ccc} H^{0}(\Gamma_{0}(N),\Omega_{\mathcal{H}}^{1}) \times H_{0}(\Gamma_{0}(N),\operatorname{Div}^{0}(\mathcal{H})) & \longrightarrow & \mathbb{C} \\ (f(z)dz,\tau_{2}-\tau_{1}) & \longmapsto & \int_{\tau_{1}}^{\tau_{2}} f(z)dz \end{array}$$

In fact: f(z)dz ∈ H⁰(Γ₀(N), Ω¹_H) and τ₂ − τ₁ ∈ H₀(Γ₀(N), Div⁰(H))
Replace H by the p-adic upper half plane H_p = C_ρ \ K_p

- $\Omega^1_{\mathcal{H}_\mathfrak{p}} = \text{rigid analytic differentials on } \mathcal{H}_\mathfrak{p}$
- Coleman integral: $\omega \in \Omega^1_{\mathcal{H}_p}, \ \tau_1, \tau_2 \in \mathcal{H}_p \rightsquigarrow \int_{\tau_2}^{\tau_1} \omega \in \mathbb{C}_p$
- Multiplicative integral: $\omega \in \Omega^1_{\mathcal{H}_p}(\mathbb{Z}) \rightsquigarrow \oint_{\tau_2}^{\tau_1} \omega \in \mathbb{C}_p^{\times}$

•
$$\oint : \Omega^1_{\mathcal{H}_p}(\mathbb{Z}) \times \operatorname{Div}^0(\mathcal{H}_p) \longrightarrow \mathbb{C}_p^2$$

• Multiplicative integration pairing:

$$f: H^{n+s}(\Gamma, \Omega^1_{\mathcal{H}_{\mathfrak{p}}}(\mathbb{Z})) \times H_{n+s}(\Gamma, \operatorname{Div}^0(\mathcal{H}_{\mathfrak{p}})) \longrightarrow \mathbb{C}_{\rho}^{\times}$$

- S-arithmetic group: $\Gamma = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_{\mathcal{K}}[\frac{1}{p}]) \colon \mathcal{N} \mid c \}$
- More generally: $\Gamma \subset B^{\times}$ non-split quaternion algebras
 - $n + s \rightarrow$ number of infinite places of *K* at which *B* splits

The p-adic lattice

- $\oint : H^{n+s}(\Gamma, \Omega^1_{\mathcal{H}_p}(\mathbb{Z})) \times H_{n+s}(\Gamma, \operatorname{Div}^0(\mathcal{H}_p)) \longrightarrow \mathbb{C}_p^{\times}$
- Our data: $f \in H^{n+s}(\Gamma_0(\mathcal{N}), \mathbb{Q})$ rational eigenclass
- $H^{n+s}(\Gamma, \Omega^1_{\mathcal{H}_n}(\mathbb{Z}))$ is a Hecke module
 - ► There exists $\omega_f \in H^{n+s}(\Gamma, \Omega^1_{\mathcal{H}_p}(\mathbb{Z}))$ with the same eigenvalues as f

• 0
$$\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div}\mathcal{H}_{\mathfrak{p}} \longrightarrow \mathbb{Z} \longrightarrow 0$$

• induces a connecting map $H_{n+s+1}(\Gamma, \mathbb{Z}) \stackrel{\delta}{\to} H_{n+s}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$

• Define
$$\Lambda_f = \{ \oint_{\delta \Delta} \omega_f \colon \Delta \in H_{n+s+1}(\Gamma, \mathbb{Z}) \} \subset \mathbb{C}_p^{\times}$$

Conjecture

 $\mathbb{C}_p^{\times}/\Lambda_f$ is isogenous to E_f/\mathbb{C}_p

- For $K = \mathbb{Q}$ this is proven (Darmon, [DG], [LRV])
- For $K \neq \mathbb{Q}$ it is open
 - Λ_f is explicitly computable in some cases
 - extensive numerical evidence for the conjecture
 - in practice, this can be used to compute E_f

Algorithms and computations

- Computational restriction: only work with H₁ and H¹
 - ► This translates into: K must have at most one complex place
- Homology and cohomology computations:
 - Compute $\Gamma_0(\mathcal{N})$ and Γ (algorithms of J. Voight and A. Page)
 - Compute the Hecke action, diagonalize and find rational lines
- Integration
 - Teitelbaum: $\Omega^1_{\mathcal{H}_p}(\mathbb{Z}) \simeq Meas_0(\mathbb{P}^1(K_p),\mathbb{Z})$
 - Need integrals of the form $\oint_{\mathbb{P}^1(K_p)} \left(\frac{t-\tau_1}{t-\tau_2}\right) d\mu_f(t)$
 - Riemann products ~> exponential algorithm
 - use overconvergent cohomology instead ~> polynomial algorithm (generalization of Steven's overconvergent modular symbols)

An explicit example

- K = Q(r) with $r^4 r^2 4r 1 = 0$. Has signature (2, 1)
- $\mathcal{N} = (r^3 4)\mathcal{O}_K$, an ideal of norm 17
- $\Gamma_0(\mathcal{N}) \subset B^{\times}$ ($\operatorname{disc}(B/K) = (1)$ and ramifies at the real places)
- There is a rational eigenclass in $f \in H^1(\Gamma_0(\mathcal{N}), \mathbb{Q})$
 - $\omega_f \in H^1(\Gamma, \text{Meas}_0(\mathbb{P}^1(\mathbb{Q}_{17}, \mathbb{Z}))) \text{ and } \gamma \in H_2(\Gamma_0(\mathcal{N}), \mathbb{Z})$

 $q_E = \oint_{\delta\gamma} \omega_f = 10 \cdot 17^{-1} + 11 + 13 \cdot 17 + 7 \cdot 17^2 + 7 \cdot 17^3 + 13 \cdot 17^4 + 9 \cdot 17^5 + \dots + O(17^{100})$

- We get 17-adic approximations to $c_4, c_6 \in \mathbb{Q}_{17}$
- They are close to these elements in *K*:
 - $c_4 = -1325859270120180r^3 2460982567523193r^2 3242072888399232r$
 - -714309328055430
 - $c_6 = 78543185680947745285236r^3 + 145787275553784015951756r^2$
 - $+\ 192058643480032231752528r + 42315298049698090866126$
- Check that the curve $y^2 = x^3 + c_4 x + c_6$ has indeed conductor \mathcal{N}
- Similarly: over 300 curves over fields of degree 2, 3, 4, 5.

Computing equations of elliptic curves over number fields via *p*-adic methods

Xevi Guitart¹ Marc Masdeu² Haluk Sengun³

¹Institut für Experimentelle Mathematik, Essen

²University of Warwick

³University of Sheffield

Conference for young researchers in arithmetic and algebraic geometry, Bonn Oct 2014