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Computing equations of elliptic curves
K a number field

E/K : y2 = x3 + c4x + c6, with ci ∈ K

Conductor N ⊂ OK (supported on the primes of bad reduction)
There are finitely many curves with a given conductor

Problem
Compute equations of “the first” elliptic curves over K
(ordered by the norm of the conductor)

For K = Q we have the ANTWERP or Cremona tables
Other number fields: not many systematic tables yet
Naive enumeration algorithm:

I list tuples [c4, c6]
I compute the conductor (Tate’s algorithm)
I keep those of small conductor

Curves of small conductor might have ci ’s of large height
How do we know if the list is complete?
Modularity: elliptic curves (should) correspond to modular forms
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Modularity over number fields
K number field. Let us assume that h+

K = 1.
K of signature (n, s): K ↪→ Rn × Cs

Given an ideal N ⊂ OK

Γ0(N ) = {
(

a b
c d

)
∈ SL2(OK ) : N | c} ⊂ SL2(R)n × SL2(C)s

SL2(R) acts on H = {z = x + iy : y > 0} (upper half plane)
SL2(C) acts on H3 = C× R>0 (hyperbolic 3-space)
Y0(N ) = Γ0(N )\Hn ×Hs

3
I e.g. K = Q: it is the (open) modular curve

Hn+s(Y0(N ),C) finite dimensional vector space
I Admits a description in terms of modular forms for Γ0(N )
I Hecke operators Tl for primes l - N

Rational eigenclass f ∈ Hn+s(Y0(N ),C) such that

Tlf = alf with al ∈ Z for all l

Conjecture: f  Ef/K
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Modularity over number fields
f ∈ Hn+s(Y0(N ),C) a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve (∗) Ef/K of conductor N corresponding to f :
#Ef (OK/l) = |l|+ 1− al for all l - N

Conversely: any (non-CM) curve E/K is isogenous to Ef for some f .

(∗): If K is totally imaginary, Ef may be an abelian surface
It’s known for K = Q (Eichler–Shimura + Modularity Theorem)
and in many cases for K totally real.
Much less is known if K has a complex place
Hn+s(Y0(N ),C): very concrete and (let’s say) can be computed

Problem
Given a rational eigenclass f ∈ Hn+s(Y0(N ),C), construct Ef .

For K = Q this is the classical Eichler–Shimura construction
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The Eichler-Shimura construction
If K = Q then H1(Y0(N),C)←→ classical modular forms
f (z) =

∑
j≥1 aje2πijz with aj ∈ Z

Lattice Λf = {
∫ γτ
τ 2πif (z)dz : γ ∈ Γ0(N)} ⊂ C

Theorem (Manin)
Λf is the period lattice of Ef . That is, C/Λf ∼ Ef (C)

Explicit formulas for c4(Λf ) and c6(Λf ), hence an equation of Ef
I Cremona’s tables: curves up to N = 350,000 (and increasing)

Why does this work?
I There is some geometry behind: Jac(X0(N)) −→ Ef

K totally real f Hilbert modular form
I Eichler–Shimura generalizes, at least in some cases

(e.g. [K : Q] odd or there exists a prime p || N )
I Some computations (Voight–Willis, Nelson)
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What if K has a complex place?
Y0(N ) = Γ0(N )\Hn ×Hs

3 is not an algebraic variety anymore
Simplest case: K imaginary quadratic

I f  Bianchi modular form
I {
∫
γ
ωf : γ ∈ H1(Γ0(N )\H3,Z)} is a lattice in R: doesn’t give Ef

Apparently: no geometric construction of Ef for non-totally real K

Our goal
Propose a conjectural analytic construction of Ef , under the
additional assumption that there exists a prime p || N
Provide numerical evidence for the conjecture

The construction is a (rather straightforward) generalization of the
p-adic uniformizations arising in the theory of Stark–Heegner
points (Bertolini–Darmon, Dasgupta, M. Greenberg, Trifkovic,...)

Compute the p-adic lattice: replace C by Cp = Q̂p
I Tate’s uniformization: E(Cp) ' C×p /ΛE for some ΛE ⊂ C×p
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The p-adic integration pairing
Recall the integration pairing in the Eichler–Shimura construction

H0(Γ0(N),Ω1
H)× H0(Γ0(N),Div0(H)) −→ C

(f (z)dz, τ2 − τ1) 7−→
∫ τ2
τ1

f (z)dz

In fact: f (z)dz ∈ H0(Γ0(N),Ω1
H) and τ2 − τ1 ∈ H0(Γ0(N),Div0(H))

Replace H by the p-adic upper half plane Hp = Cp \ Kp
I Ω1

Hp
= rigid analytic differentials on Hp

I Coleman integral: ω ∈ Ω1
Hp
, τ1, τ2 ∈ Hp  

∫ τ1

τ2
ω ∈ Cp

I Multiplicative integral: ω ∈ Ω1
Hp

(Z) ×
∫ τ1

τ2
ω ∈ C×p

I ×
∫

: Ω1
Hp

(Z)× Div0(Hp) −→ C×p
Multiplicative integration pairing:

×
∫

: Hn+s(Γ,Ω1
Hp

(Z))× Hn+s(Γ,Div0(Hp)) −→ C×p

S-arithmetic group: Γ = {
(

a b
c d

)
∈ SL2(OK [1

p ]) : N | c}
More generally: Γ ⊂ B× non-split quaternion algebras

I n + s  number of infinite places of K at which B splits
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The p-adic lattice
×
∫

: Hn+s(Γ,Ω1
Hp

(Z))× Hn+s(Γ,Div0(Hp)) −→ C×p
Our data: f ∈ Hn+s(Γ0(N ),Q) rational eigenclass
Hn+s(Γ,Ω1

Hp
(Z)) is a Hecke module

I There exists ωf ∈ Hn+s(Γ,Ω1
Hp

(Z)) with the same eigenvalues as f

0 −→ Div0Hp −→ DivHp −→ Z −→ 0
I induces a connecting map Hn+s+1(Γ,Z)

δ→ Hn+s(Γ,Div0Hp)

Define Λf = {×
∫
δ∆ ωf : ∆ ∈ Hn+s+1(Γ,Z)} ⊂ C×p

Conjecture
C×p /Λf is isogenous to Ef/Cp

For K = Q this is proven (Darmon, [DG], [LRV])
For K 6= Q it is open

I Λf is explicitly computable in some cases
I extensive numerical evidence for the conjecture
I in practice, this can be used to compute Ef
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Algorithms and computations

Computational restriction: only work with H1 and H1

I This translates into: K must have at most one complex place
Homology and cohomology computations:

I Compute Γ0(N ) and Γ (algorithms of J. Voight and A. Page)
I Compute the Hecke action, diagonalize and find rational lines

Integration
I Teitelbaum: Ω1

Hp
(Z) ' Meas0(P1(Kp),Z)

I Need integrals of the form ×
∫
P1(Kp)

(
t − τ1

t − τ2

)
dµf (t)

I Riemann products exponential algorithm
I use overconvergent cohomology instead polynomial algorithm

(generalization of Steven’s overconvergent modular symbols)
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An explicit example
K = Q(r) with r4 − r2 − 4r − 1 = 0. Has signature (2,1)
N = (r3 − 4)OK , an ideal of norm 17
Γ0(N ) ⊂ B× ( disc(B/K ) = (1) and ramifies at the real places)
There is a rational eigenclass in f ∈ H1(Γ0(N ),Q)

I ωf ∈ H1(Γ,Meas0(P1(Q17,Z))) and γ ∈ H2(Γ0(N ),Z)

qE = ×
∫
δγ
ωf = 10 · 17−1 + 11 + 13 · 17 + 7 · 172 + 7 · 173 + 13 · 174 + 9 · 175 + · · ·+ O(17100)

We get 17-adic approximations to c4, c6 ∈ Q17
They are close to these elements in K :

c4 = −1325859270120180r3 − 2460982567523193r2 − 3242072888399232r

− 714309328055430

c6 = 78543185680947745285236r3 + 145787275553784015951756r2

+ 192058643480032231752528r + 42315298049698090866126

Check that the curve y2 = x3 + c4x + c6 has indeed conductor N
Similarly: over 300 curves over fields of degree 2, 3, 4, 5.
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