Oda's Conjecture

Cardedeu 28 Novembre 2024

< A

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

- Modularity has two equivalent meanings:
 - ∃ newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). ■ *E* is a quotient of $Jac(X_0(N))$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow Jac(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f \in S_2(N)$ eigenform with $a_n(f) \in \mathbb{Q}$, constructs E_f/\mathbb{Q} such that

- $1 L(E_f, s) = L(f, s)$
- ² E_f is a quotient of $Jac(X_0(N))$
- Modularity theorem: every E/\mathbb{Q} arises from this construction

• • • • • • • • •

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

Modularity has two equivalent meanings:

- ① \exists newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). ② *E* is a quotient of $Jac(X_0(N))$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow Jac(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f \in S_2(N)$ eigenform with $a_n(f) \in \mathbb{Q}$, constructs E_f/\mathbb{Q} such that

- $1 L(E_f, s) = L(f, s)$
- \bigcirc E_f is a quotient of $Jac(X_0(N))$

• Modularity theorem: every E/\mathbb{Q} arises from this construction

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

- Modularity has two equivalent meanings:
 - ∃ newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). ● *E* is a quotient of $Jac(X_0(N))$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow Jac(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f \in S_2(N)$ eigenform with $a_n(f) \in \mathbb{Q}$, constructs E_f/\mathbb{Q} such that

- $1 L(E_f, s) = L(f, s)$
- $E_f \text{ is a quotient of } Jac(X_0(N))$

• Modularity theorem: every E/\mathbb{Q} arises from this construction

A D b 4 A b

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

- Modularity has two equivalent meanings:
 - **1** ∃ newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). **2** *E* is a quotient of Jac($X_0(N)$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow Jac(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f \in S_2(N)$ eigenform with $a_n(f) \in \mathbb{Q}$, constructs E_f/\mathbb{Q} such that

- $1 L(E_f, s) = L(f, s)$
- ² E_f is a quotient of $Jac(X_0(N))$

• Modularity theorem: every E/\mathbb{Q} arises from this construction

A D b 4 A b

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

- Modularity has two equivalent meanings:
 - **1** ∃ newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). **2** *E* is a quotient of Jac($X_0(N)$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow Jac(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f\in S_2(N)$ eigenform with $a_n(f)\in \mathbb{Q},$ constructs E_f/\mathbb{Q} such that

- $1 L(E_f, s) = L(f, s)$
- 2 E_f is a quotient of $Jac(X_0(N))$

• Modularity theorem: every E/\mathbb{Q} arises from this construction

A D b 4 A b

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

- Modularity has two equivalent meanings:
 - 1 a newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). *E* is a quotient of $Jac(X_0(N))$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow \text{Jac}(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f\in S_2(N)$ eigenform with $a_n(f)\in \mathbb{Q},$ constructs E_f/\mathbb{Q} such that

- $1 L(E_f, s) = L(f, s)$
- 2 E_f is a quotient of $Jac(X_0(N))$

• Modularity theorem: every E/\mathbb{Q} arises from this construction

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

- Modularity has two equivalent meanings:
 - 1 \exists newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). 2 E is a quotient of $Jac(X_0(N))$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow \text{Jac}(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f \in S_2(N)$ eigenform with $a_n(f) \in \mathbb{Q}$, constructs E_f/\mathbb{Q} such that

$$L(E_f, s) = L(f, s)$$

2 E_f is a quotient of $Jac(X_0(N))$

• Modularity theorem: every E/\mathbb{Q} arises from this construction

Modularity Theorem

Every elliptic curve E/\mathbb{Q} is modular.

- Modularity has two equivalent meanings:
 - 1 \exists newform $f = \sum a_n q^n \in S_2(N)$ with $a_n \in \mathbb{Q}$ and L(E, s) = L(f, s). 2 E is a quotient of $Jac(X_0(N))$.
- 1 gives analytic continuation of L(E, s)
- 2 provides Heegner points: $X_0(N) \rightarrow \text{Jac}(X_0(N)) \rightarrow E$

Eichler-Shimura construction

Given $f \in S_2(N)$ eigenform with $a_n(f) \in \mathbb{Q}$, constructs E_f/\mathbb{Q} such that

$$L(E_f, s) = L(f, s)$$

2 E_f is a quotient of $Jac(X_0(N))$

• Modularity theorem: every E/\mathbb{Q} arises from this construction

• $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon \operatorname{Im}(z) > 0 \}$

• The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

Definition of modular form of weight 2

 $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$

- ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
- If f is a cusp form ω_f descends to a differential on $X_0(N)$
- $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
- $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee} / H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

• $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon \operatorname{Im}(z) > 0 \}$

• The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

Definition of modular form of weight 2

 $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$

- ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
- If f is a cusp form ω_f descends to a differential on $X_0(N)$
- $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
- $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee} / H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon Im(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

Definition of modular form of weight 2

 $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$

- ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
- If f is a cusp form ω_f descends to a differential on $X_0(N)$
- $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
- $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee} / H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon Im(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
 - $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee}/H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon Im(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
 - $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee} / H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon Im(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
 - $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee}/H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon Im(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
 - $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee}/H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon \operatorname{Im}(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$
 - $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee} / H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon Im(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

Definition of modular form of weight 2

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$

• $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee} / H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon \operatorname{Im}(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

Definition of modular form of weight 2

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$

• $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

• $\operatorname{Jac}(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee} / H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$

To break it: use Hecke operators

- $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \colon N \mid c \} \text{ acts on } \mathcal{H} = \{ z \in \mathbb{C} \colon Im(z) > 0 \}$
- The modular curve $X_0(N)/\mathbb{Q} \rightsquigarrow X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$

Definition of modular form of weight 2

- $f: \mathcal{H} \longrightarrow \mathbb{C}$ holomorphic s.t. $\omega_f = f(z) dz$ invariant by action of $\Gamma_0(N)$
 - ω_f descends to a differential on $\Gamma_0(N) \setminus \mathcal{H}$
 - If f is a cusp form ω_f descends to a differential on $X_0(N)$
 - $S_2(\Gamma_0(N)) \simeq H^0(X_0(N)_{\mathbb{C}}, \Omega^1)$

• $H^1(X_0(N)_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{C}\simeq H^1_{\mathrm{dR}}(X_0(N)_{\mathbb{C}})\simeq H^0(X_0(N)_{\mathbb{C}},\Omega^1)\oplus\overline{H^0(X_0(N)_{\mathbb{C}},\Omega^1)}$

$$\begin{array}{rccc} H_1(X_0(N)_{\mathbb{C}},\mathbb{Z}) & \hookrightarrow & H^0(X_0(N)_{\mathbb{C}},\Omega^1)^{\vee} \\ \gamma & \longmapsto & \left(\omega \mapsto \int_{\gamma} \omega\right) \end{array}$$

- Jac $(X_0(N) = H^0(X_0(N)_{\mathbb{C}}, \Omega^1)^{\vee}/H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})$
- To break it: use Hecke operators

• Hecke operators T_p acting on $S_2(\Gamma_0(N))$ and $H_1(X_0(N)_{\mathbb{C}},\mathbb{Z})$

- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N),\mathbb{Z})_f = \{\gamma \in H_1(X_0(N),\mathbb{Z}) : T_p\gamma = a_p(f)\gamma \text{ for all } p\}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_ℂ, ℚ)_{*f*} has rank 2, and we can decompose it further using the action of complex conjugation
- $H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$
- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

イロト イポト イラト イラ

- Hecke operators T_{ρ} acting on $S_2(\Gamma_0(N))$ and $H_1(X_0(N)_{\mathbb{C}},\mathbb{Z})$
- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N),\mathbb{Z})_f = \{\gamma \in H_1(X_0(N),\mathbb{Z}) : T_p\gamma = a_p(f)\gamma \text{ for all } p\}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_ℂ, ℚ)_{*f*} has rank 2, and we can decompose it further using the action of complex conjugation
- $H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$
- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

4 **A** N A **B** N A **B** N

- Hecke operators *T_p* acting on *S*₂(Γ₀(*N*)) and *H*₁(*X*₀(*N*)_C, ℤ)
- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N), \mathbb{Z})_f = \{ \gamma \in H_1(X_0(N), \mathbb{Z}) \colon T_p \gamma = a_p(f) \gamma \text{ for all } p \}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_C, ℚ)_f has rank 2, and we can decompose it further using the action of complex conjugation
- $H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$
- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Hecke operators T_p acting on $S_2(\Gamma_0(N))$ and $H_1(X_0(N)_{\mathbb{C}},\mathbb{Z})$
- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N), \mathbb{Z})_f = \{ \gamma \in H_1(X_0(N), \mathbb{Z}) \colon T_p \gamma = a_p(f)\gamma \text{ for all } p \}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_C, ℚ)_{*f*} has rank 2, and we can decompose it further using the action of complex conjugation
- $H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$
- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Hecke operators *T_ρ* acting on *S*₂(Γ₀(*N*)) and *H*₁(*X*₀(*N*)_C, ℤ)
- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N), \mathbb{Z})_f = \{ \gamma \in H_1(X_0(N), \mathbb{Z}) \colon T_p \gamma = a_p(f)\gamma \text{ for all } p \}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_ℂ, ℚ)_f has rank 2, and we can decompose it further using the action of complex conjugation
- $H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$
- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

4 **A** N A **B** N A **B** N

- Hecke operators *T_ρ* acting on *S*₂(Γ₀(*N*)) and *H*₁(*X*₀(*N*)_C, ℤ)
- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N), \mathbb{Z})_f = \{ \gamma \in H_1(X_0(N), \mathbb{Z}) \colon T_p \gamma = a_p(f)\gamma \text{ for all } p \}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_ℂ, ℚ)_f has rank 2, and we can decompose it further using the action of complex conjugation

•
$$H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$$

- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

- Hecke operators *T_ρ* acting on *S*₂(Γ₀(*N*)) and *H*₁(*X*₀(*N*)_C, ℤ)
- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N), \mathbb{Z})_f = \{ \gamma \in H_1(X_0(N), \mathbb{Z}) \colon T_p \gamma = a_p(f)\gamma \text{ for all } p \}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_ℂ, ℚ)_f has rank 2, and we can decompose it further using the action of complex conjugation
- $H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$
- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$

• The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

A (10) A (10)

- Hecke operators *T_p* acting on *S*₂(Γ₀(*N*)) and *H*₁(*X*₀(*N*)_C, ℤ)
- *f* newform with rational coefficients: $T_{\rho}f = a_{\rho}(f)f$ with $a_{\rho}(f) \in \mathbb{Z}$
- $H_1(X_0(N), \mathbb{Z})_f = \{ \gamma \in H_1(X_0(N), \mathbb{Z}) \colon T_p \gamma = a_p(f) \gamma \text{ for all } p \}$
- $\Lambda_f = \{\int_{\gamma} \omega_f \colon \gamma \in H_1(X_0(N)_{\mathbb{C}}, \mathbb{Z})_f\}$ is a lattice in \mathbb{C} and $\mathbb{C}/\Lambda_f \sim E_{f,\mathbb{C}}$
- *H*₁(*X*₀(*N*)_ℂ, ℚ)_f has rank 2, and we can decompose it further using the action of complex conjugation
- $H_1(X_0(N)_{\mathbb{C}}, \mathbb{Q})_f^{\pm} = \langle \gamma^{\pm} \rangle \rightsquigarrow \Omega^{\pm} = \int_{\gamma^{\pm}} \omega_f$
- $E_{f,\mathbb{C}} \sim \mathbb{C}/(\mathbb{Z}\Omega^+ + \mathbb{Z}\Omega^-)$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega^+}{\Omega^-}$

A B A A B A

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\bullet\ \Gamma_0(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/Q
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathbb{R}}$

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/Q
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathfrak{N}}$

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathbb{R}^{n} \to \mathbb{R}^{n}}$

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

Every elliptic curve E/F is modular: there is a Hilbert modular form f_E such that $L(f_E, s) = L(E, s)$.

• $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$

- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/Q
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathbb{R}}$

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- Γ₀(𝔅)\H × H is an algebraic surface (the Hilbert modular surface)
 Its compactification admits a model X₀(𝔅)/Q
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathbb{R}}$

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\Gamma_0(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/𝔅
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathbb{R}}$

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/𝔅
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathfrak{N}}$

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/𝔅
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$

• But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E_{\mathbb{R}}$

Modularity over totally real fields

- E an elliptic curve over a totally real F
- For simplicity of exposition assume
 - $[F: \mathbb{Q}] = 2$, so that there are two infinite places $v_1, v_2: F \hookrightarrow \mathbb{R}$
 - F has narrow class number 1

Modularity Theorem

Every elliptic curve E/F is modular: there is a Hilbert modular form f_E such that $L(f_E, s) = L(E, s)$.

- $\mathfrak{N} \subset \mathcal{O}_F \rightsquigarrow \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathcal{H}$ diagonally via v_1 and v_2
- $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$ is an algebraic surface (the Hilbert modular surface)
 - ► Its compactification admits a model X₀(𝔅)/𝔅
- A Hilbert modular form is a function $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ such that $f(z_1, z_2)dz_1dz_2$ descends to a differential on $\Gamma_0(\mathfrak{N}) \setminus \mathcal{H} \times \mathcal{H}$.
- f_E is associated to E means that $L(f_E, s) = L(E, s)$
- But now there is no morphism $X_0(\mathfrak{N}) \longrightarrow E$

Conjecture (Eichler-Shimura construction)

- It is implied by the Hodge conjecture (Blasius)
- Known if $[F : \mathbb{Q}]$ is odd or there is a prime $\mathfrak{q} \mid\mid \mathfrak{N}$
 - In this case the system {a_p(f)} of T_p-eigenvalues of f appears in the cohomology of a Shimura curve, and we have geometry.

Conjecture (Eichler-Shimura construction)

- It is implied by the Hodge conjecture (Blasius)
- Known if [F: Q] is odd or there is a prime q || π
 - In this case the system {a_p(f)} of T_p-eigenvalues of f appears in the cohomology of a Shimura curve, and we have geometry.

Conjecture (Eichler-Shimura construction)

- It is implied by the Hodge conjecture (Blasius)
- $\bullet\,$ Known if $[{\it F}\colon {\mathbb Q}]$ is odd or there is a prime ${\mathfrak q}\mid\mid {\mathfrak N}$
 - In this case the system {a_p(f)} of T_p-eigenvalues of f appears in the cohomology of a Shimura curve, and we have geometry.

Conjecture (Eichler-Shimura construction)

- It is implied by the Hodge conjecture (Blasius)
- Known if $[F \colon \mathbb{Q}]$ is odd or there is a prime $\mathfrak{q} \mid\mid \mathfrak{N}$
 - In this case the system {a_p(f)} of T_p-eigenvalues of f appears in the cohomology of a Shimura curve, and we have geometry.

• $[F: \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$

- B/F quaternion algebra: B = F + iF + jF + ijF, i², j² ∈ F, ij = -ji
 splits at a single real place: B ⊗_{F,V1} ℝ ≃ M₂(ℝ) and B ⊗_{F,V2} ℝ ≃ ℍ
 has discriminant g: B ⊗_F F₁ ≄ M₂(F₁) ⇔ 1 = g
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - ► $\Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F,\nu_1} \mathbb{R})^{\times} \subset SL_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$ ► $X_0^B(\mathfrak{M}) \text{ is a curve, and has a model over } F$
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\blacktriangleright \ \Lambda_{f_{B}} = \{\int_{\gamma} \omega_{f_{B}} \colon \gamma \in H_{1}(X_{0}^{B}(\mathfrak{M}), \mathbb{Z})_{f_{B}}\} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{B}}\}$
 - $\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

- $[F: \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,v_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,v_2} \mathbb{R} \simeq \mathbb{H}$
 - ▶ has discriminant q: $B \otimes_F F_{\mathfrak{l}} \neq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - ▶ $\Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F,v}, \mathbb{R})^{\times} \subset SL_2(\mathbb{R})$ acts on $\mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$ ▶ $X_0^B(\mathfrak{M})$ is a curve, and has a model over F
- Modular form: $g: \mathcal{H} \to \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\blacktriangleright \ \Lambda_{f_{B}} = \{\int_{\gamma} \omega_{f_{B}} \colon \gamma \in H_{1}(X_{0}^{B}(\mathfrak{M}), \mathbb{Z})_{f_{B}}\} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{B}}\}$
 - $\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

- $[F: \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ► has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - Γ^B₀(𝔅) ⊂ (B ⊗_{F,ν}, ℝ)[×] ⊂ SL₂(ℝ) acts on H → X^B₀(𝔅) = Γ^B₀(𝔅) \H
 X^B₀(𝔅) is a curve, and has a model over F
- Modular form: $g: \mathcal{H} \to \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\blacktriangleright \ \Lambda_{f_{B}} = \{\int_{\gamma} \omega_{f_{B}} \colon \gamma \in H_{1}(X_{0}^{B}(\mathfrak{M}), \mathbb{Z})_{f_{B}}\} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{B}}\}$
 - $\blacktriangleright \ \Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ▶ has discriminant q: $B \otimes_F F_{\mathfrak{l}} \neq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - Γ^B₀(𝔅) ⊂ (B ⊗_{F,ν1} ℝ)[×] ⊂ SL₂(ℝ) acts on H → X^B₀(𝔅) = Γ^B₀(𝔅)\H
 X^B₀(𝔅) is a curve, and has a model over F
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\blacktriangleright \ \Lambda_{f_{B}} = \{\int_{\gamma} \omega_{f_{B}} \colon \gamma \in H_{1}(X_{0}^{B}(\mathfrak{M}), \mathbb{Z})_{f_{B}}\} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{B}}\}$
 - $\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ► has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - Γ^B₀(𝔅) ⊂ (B ⊗_{F,v1} ℝ)[×] ⊂ SL₂(ℝ) acts on H → X^B₀(𝔅) = Γ^B₀(𝔅)\H
 X^B₀(𝔅) is a curve, and has a model over F
- Modular form: $g: \mathcal{H} \to \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\blacktriangleright \ \Lambda_{f_{B}} = \{\int_{\gamma} \omega_{f_{B}} \colon \gamma \in H_{1}(X_{0}^{B}(\mathfrak{M}), \mathbb{Z})_{f_{B}}\} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{B}}\}$
 - $\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ▶ has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\models \ \Gamma^B_{0_{-}}(\mathfrak{M}) \subset (B \otimes_{F, v_1} \mathbb{R})^{\times} \subset \mathrm{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X^B_0(\mathfrak{M}) = \Gamma^B_0(\mathfrak{M}) \backslash \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \to \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\models \Lambda_{f_{\theta}} = \{ \int_{\gamma} \omega_{f_{\theta}} \colon \gamma \in H_1(X_0^B(\mathfrak{M}), \mathbb{Z})_{f_{\theta}} \} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{\theta}} \}$
 - $\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ▶ has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*

• Modular form: $g: \mathcal{H} \to \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\blacktriangleright \Lambda_{f_{B}} = \{\int_{\gamma} \omega_{f_{B}} \colon \gamma \in H_{1}(X_{0}^{B}(\mathfrak{M}), \mathbb{Z})_{f_{B}}\} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{B}}\}$
 - $\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ▶ has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

There is $f_B \in S^B_2(\mathfrak{M})$ such that $T_\mathfrak{p} f_B = a_\mathfrak{p}(f) f_B$ for almost all \mathfrak{p}

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\blacktriangleright \Lambda_{f_{B}} = \{\int_{\gamma} \omega_{f_{B}} \colon \gamma \in H_{1}(X_{0}^{B}(\mathfrak{M}), \mathbb{Z})_{f_{B}}\} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_{B}}\}$
 - $\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of E_{f,C} (up to isogeny) is ;

A B F A B F

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ► has discriminant \mathfrak{q} : $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

There is $f_B \in S_2^B(\mathfrak{M})$ such that $T_{\mathfrak{p}}f_B = a_{\mathfrak{p}}(f)f_B$ for almost all \mathfrak{p}

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\Lambda_{f_B} = \{ \int_{\gamma} \omega_{f_B} \colon \gamma \in H_1(X_0^B(\mathfrak{M}), \mathbb{Z})_{f_B} \}$ is a lattice in \mathbb{C} and $E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_B}$
 - $\blacktriangleright \ \Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\bullet \ E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of $E_{f,C}$ (up to isogeny) is

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ► has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

There is $f_B \in S_2^B(\mathfrak{M})$ such that $T_{\mathfrak{p}}f_B = a_{\mathfrak{p}}(f)f_B$ for almost all \mathfrak{p}

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\Lambda_{f_B} = \{\int_{\gamma} \omega_{f_B} \colon \gamma \in H_1(X_0^B(\mathfrak{M}), \mathbb{Z})_{f_B}\}$ is a lattice in \mathbb{C} and $E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_B}$
 - $\blacktriangleright \ \Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\models E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - ► The period of $E_{f,C}$ (up to isogeny) is $\frac{\Omega_B^+}{\Omega_B^-}$

A D A A B A A B A A B A B B

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ► has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

There is $f_B \in S_2^B(\mathfrak{M})$ such that $T_{\mathfrak{p}}f_B = a_{\mathfrak{p}}(f)f_B$ for almost all \mathfrak{p}

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\Lambda_{f_B} = \{\int_{\gamma} \omega_{f_B} \colon \gamma \in H_1(X_0^{\mathcal{B}}(\mathfrak{M}), \mathbb{Z})_{f_B}\}$ is a lattice in \mathbb{C} and $E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_B}$
 - $\blacktriangleright \ \Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$
 - $\models E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
 - The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega_B^+}{\Omega_R^-}$

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,v_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,v_2} \mathbb{R} \simeq \mathbb{H}$
 - ► has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

There is $f_B \in S_2^B(\mathfrak{M})$ such that $T_{\mathfrak{p}}f_B = a_{\mathfrak{p}}(f)f_B$ for almost all \mathfrak{p}

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\land \Lambda_{f_B} = \{ \int_{\gamma} \omega_{f_B} \colon \gamma \in H_1(X_0^{\mathcal{B}}(\mathfrak{M}), \mathbb{Z})_{f_B} \} \text{ is a lattice in } \mathbb{C} \text{ and } E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_B} \}$

•
$$\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$$

- $\models E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega_B^+}{\Omega_R^-}$

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ▶ has discriminant q: $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

There is $f_B \in S_2^B(\mathfrak{M})$ such that $T_{\mathfrak{p}}f_B = a_{\mathfrak{p}}(f)f_B$ for almost all \mathfrak{p}

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\Lambda_{f_B} = \{\int_{\gamma} \omega_{f_B} \colon \gamma \in H_1(X_0^{\mathcal{B}}(\mathfrak{M}), \mathbb{Z})_{f_B}\}$ is a lattice in \mathbb{C} and $E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_B}$

•
$$\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$$

• $E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$

• The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega_B^+}{\Omega_R^-}$

- $[F : \mathbb{Q}] = 2, f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \mathfrak{q}\mathfrak{M}$ with $\mathfrak{q} \nmid \mathfrak{M}$
- B/F quaternion algebra: B = F + iF + jF + ijF, $i^2, j^2 \in F$, ij = -ji
 - ▶ splits at a single real place: $B \otimes_{F,\nu_1} \mathbb{R} \simeq M_2(\mathbb{R})$ and $B \otimes_{F,\nu_2} \mathbb{R} \simeq \mathbb{H}$
 - ► has discriminant \mathfrak{q} : $B \otimes_F F_{\mathfrak{l}} \simeq M_2(F_{\mathfrak{l}}) \iff \mathfrak{l} = \mathfrak{q}$
- $\Gamma_0^B(\mathfrak{M}) \subset B^{\times}$ arithmetic group
 - $\blacktriangleright \ \Gamma_0^B(\mathfrak{M}) \subset (B \otimes_{F, \nu_1} \mathbb{R})^{\times} \subset \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathcal{H} \rightsquigarrow X_0^B(\mathfrak{M}) = \Gamma_0^B(\mathfrak{M}) \setminus \mathcal{H}$
 - $X_0^B(\mathfrak{M})$ is a curve, and has a model over *F*
- Modular form: $g: \mathcal{H} \rightarrow \mathbb{C}$ s.t. g(z)dz descends to $X_0^B(\mathfrak{M})$

Jacquet-Langlands correspondence

There is $f_B \in S_2^B(\mathfrak{M})$ such that $T_{\mathfrak{p}}f_B = a_{\mathfrak{p}}(f)f_B$ for almost all \mathfrak{p}

- E_f is a factor of $Jac(X_0^B(\mathfrak{M}))$
 - $\Lambda_{f_B} = \{\int_{\gamma} \omega_{f_B} \colon \gamma \in H_1(X_0^{\mathcal{B}}(\mathfrak{M}), \mathbb{Z})_{f_B}\}$ is a lattice in \mathbb{C} and $E_{f,\mathbb{C}} \sim \mathbb{C}/\Lambda_{f_B}$

•
$$\Omega_B^{\pm} = \int_{\gamma^{\pm}} \omega_f$$

- $E_{f,\mathbb{C}} \sim \mathbb{C}/\mathbb{Z}\Omega_B^+ + \mathbb{Z}\Omega_B^-$
- The period of $E_{f,\mathbb{C}}$ (up to isogeny) is $\frac{\Omega_B^2}{\Omega_{-}^2}$

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_v
 - $\models H^2(X_0(\mathfrak{N}), \mathbb{Q})_t^{++} \oplus H^2(X_0(\mathfrak{N}), \mathbb{Q})_t^{+-} \oplus H^2(X_0(\mathfrak{N}), \mathbb{Q})_t^{-+} \oplus H^2(X_0(\mathfrak{N}), \mathbb{Q})_t^{--}$
 - $\Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{+-}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$

Oda Conjecture

- $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$
 - Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$
 - $\blacktriangleright \ \Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{+-}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$

Oda Conjecture

- $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$
 - Oda: it is true if f is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$
 - $\blacktriangleright \ \Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{+-}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$

Oda Conjecture

- $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$
 - Oda: it is true if f is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $H^{2}(X_{0}(\mathfrak{N}), \mathbb{Q})_{f}^{++} \oplus H^{2}(X_{0}(\mathfrak{N}), \mathbb{Q})_{f}^{+-} \oplus H^{2}(X_{0}(\mathfrak{N}), \mathbb{Q})_{f}^{-+} \oplus H^{2}(X_{0}(\mathfrak{N}), \mathbb{Q})_{f}^{--}$
 - $\blacktriangleright \ \Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{+-}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$

Oda Conjecture

- $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$
 - Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$

 $\blacktriangleright \ \Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{+-}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$

Oda Conjecture

 $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f\otimes_{
u_1}\mathbb{R}$

• Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$

•
$$\Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{+-}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$$

Oda Conjecture

 $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f\otimes_{v_1}\mathbb{R}$

• Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$

•
$$\Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{--}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$$

Oda Conjecture

 $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$

• Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$

•
$$\Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{+-}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$$

Oda Conjecture

 $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$

• Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$

•
$$\Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{--}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$$

Oda Conjecture

- $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$
 - Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- What happens if $[F : \mathbb{Q}] = 2$ and $f \in S_2(\Gamma_0(\mathfrak{N}))$ and $\mathfrak{N} = \Box$?
- $H^2(X_0(\mathfrak{N}), \mathbb{Q})_f$ now has rank 4
 - Now we have two involutions T_{v_1} and T_{v_2}
 - $\blacktriangleright H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{++} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{+-} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{-+} \oplus H^2(X_0(\mathfrak{N}),\mathbb{Q})_f^{--}$

•
$$\Omega^{++} = \int_{\gamma^{++}} \omega_f, \ \Omega^{+-} = \int_{\gamma^{--}} \omega_f, \ \Omega^{-+} = \int_{\gamma^{-+}} \omega_f, \ \Omega^{--} = \int_{\gamma^{--}} \omega_f$$

Oda Conjecture

- $rac{\Omega^{++}}{\Omega^{-+}}$ is the period of $E_f \otimes_{v_1} \mathbb{R}$
 - Oda: it is true if *f* is a base change from a form f_0/\mathbb{Q}

Theorem (G-Molina, in progress)

Oda's conjecture is true if f admits a JL lift f_B to a Shimura curve

- *f* Hilbert modular form $\rightsquigarrow \Omega^{++}, \Omega^{-+}$
- f_B quaternionic form over $B \rightsquigarrow \Omega_B^+, \Omega_B^-$

Theorem (Shimura)

Let χ_K : Gal(K/F) \rightarrow { \pm 1} and $\varepsilon_i \in$ { \pm }, $\varepsilon_i = +$ if v_i splits

 $L(1, f \otimes \chi_K) \doteq \Omega^{\varepsilon_0 \varepsilon_1}$

Theorem (Molina)

M/F quadratic, split at v_1 and ramified at v_2 $\xi: \operatorname{Gal}(N/M) \rightarrow \{\pm 1\}$ anticyclotomic, $\varepsilon = +$ iff the places above v_1 split

 $L(1, f_M \otimes \xi) \doteq (\Omega_B^{\varepsilon})^2$

- If $N = M \cdot K$ then $L(1, f_M \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_K \chi_M)$
- If $\mathfrak{N} \neq \Box$ can find τ of any infinity type such that $L(1, \underline{f} \otimes \tau) \neq 0$

- *f* Hilbert modular form $\rightsquigarrow \Omega^{++}, \Omega^{-+}$
- f_B quaternionic form over $B \rightsquigarrow \Omega_B^+, \Omega_B^-$

```
Theorem (Shimura)
Let \chi_{\mathcal{K}}: Gal(\mathcal{K}/\mathcal{F})\rightarrow{\pm1} and \varepsilon_i \in {\pm}, \varepsilon_i = + if v_i splits
L(1, f \otimes \chi_{\mathcal{K}}) \doteq \Omega^{\varepsilon_0 \varepsilon_1}
```

Theorem (Molina)

M/F quadratic, split at v_1 and ramified at v_2 $\xi: \operatorname{Gal}(N/M) \rightarrow \{\pm 1\}$ anticyclotomic, $\varepsilon = +$ iff the places above v_1 split

 $L(1, f_M \otimes \xi) \doteq (\Omega_B^{\varepsilon})^2$

• If $N = M \cdot K$ then $L(1, f_M \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_K \chi_M)$

• If $\mathfrak{N} \neq \Box$ can find τ of any infinity type such that $L(1, \underline{f} \otimes \tau) \neq 0$

- *f* Hilbert modular form $\rightsquigarrow \Omega^{++}, \Omega^{-+}$
- f_B quaternionic form over $B \rightsquigarrow \Omega_B^+, \Omega_B^-$

```
Theorem (Shimura)
Let \chi_{\mathcal{K}}: Gal(\mathcal{K}/\mathcal{F})\rightarrow{\pm1} and \varepsilon_i \in {\pm}, \varepsilon_i = + if v_i splits
```

 $L(\mathbf{1}, f \otimes \chi_{K}) \doteq \Omega^{\varepsilon_0 \varepsilon_1}$

Theorem (Molina)

M/F quadratic, split at v_1 and ramified at v_2 $\xi: \operatorname{Gal}(N/M) \rightarrow \{\pm 1\}$ anticyclotomic, $\varepsilon = +$ iff the places above v_1 split

 $L(1, f_M \otimes \xi) \doteq (\Omega_B^{\varepsilon})^2$

- If $N = M \cdot K$ then $L(1, f_M \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_K \chi_M)$
- If $\mathfrak{N} \neq \Box$ can find τ of any infinity type such that $L(1, f \otimes \tau) \neq 0$

- *f* Hilbert modular form $\rightsquigarrow \Omega^{++}, \Omega^{-+}$
- f_B quaternionic form over $B \rightsquigarrow \Omega_B^+, \Omega_B^-$

```
Theorem (Shimura)
```

```
Let \chi_{\mathcal{K}}: Gal(\mathcal{K}/\mathcal{F}) \rightarrow \{\pm 1\} and \varepsilon_i \in \{\pm\}, \varepsilon_i = + if v_i splits
```

 $L(\mathbf{1}, f \otimes \chi_{K}) \doteq \Omega^{\varepsilon_{0}\varepsilon_{1}}$

Theorem (Molina)

M/F quadratic, split at v_1 and ramified at v_2 $\xi: \operatorname{Gal}(N/M) \rightarrow \{\pm 1\}$ anticyclotomic, $\varepsilon = +$ iff the places above v_1 split

 $L(1, f_M \otimes \xi) \doteq (\Omega_B^{\varepsilon})^2$

• If $N = M \cdot K$ then $L(1, f_M \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_K \chi_M)$

• If $\mathfrak{N} \neq \Box$ can find τ of any infinity type such that $L(1, f \otimes \tau) \neq 0$

- *f* Hilbert modular form $\rightsquigarrow \Omega^{++}, \Omega^{-+}$
- f_B quaternionic form over $B \rightsquigarrow \Omega_B^+, \Omega_B^-$

```
Theorem (Shimura)
```

```
Let \chi_{\mathcal{K}}: Gal(\mathcal{K}/\mathcal{F}) \rightarrow \{\pm 1\} and \varepsilon_i \in \{\pm\}, \varepsilon_i = + if v_i splits
```

 $L(\mathbf{1}, f \otimes \chi_{K}) \doteq \Omega^{\varepsilon_{0}\varepsilon_{1}}$

Theorem (Molina)

M/F quadratic, split at v_1 and ramified at v_2 $\xi: \operatorname{Gal}(N/M) \rightarrow \{\pm 1\}$ anticyclotomic, $\varepsilon = +$ iff the places above v_1 split

 $L(1, f_M \otimes \xi) \doteq (\Omega_B^{\varepsilon})^2$

• If $N = M \cdot K$ then $L(1, f_M \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_K \chi_M)$

• If $\mathfrak{N} \neq \Box$ can find τ of any infinity type such that $L(1, \underline{f} \otimes \tau) \neq 0$

- *f* Hilbert modular form $\rightsquigarrow \Omega^{++}, \Omega^{-+}$
- f_B quaternionic form over $B \rightsquigarrow \Omega_B^+, \Omega_B^-$

```
Theorem (Shimura)
```

```
Let \chi_{\mathcal{K}}: Gal(\mathcal{K}/\mathcal{F}) \rightarrow \{\pm 1\} and \varepsilon_i \in \{\pm\}, \varepsilon_i = + if v_i splits
```

 $L(\mathbf{1}, f \otimes \chi_{K}) \doteq \Omega^{\varepsilon_{0}\varepsilon_{1}}$

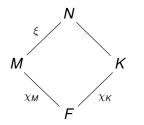
Theorem (Molina)

M/F quadratic, split at v_1 and ramified at v_2 $\xi: \operatorname{Gal}(N/M) \rightarrow \{\pm 1\}$ anticyclotomic, $\varepsilon = +$ iff the places above v_1 split

 $L(1, f_M \otimes \xi) \doteq (\Omega_B^{\varepsilon})^2$

• If $N = M \cdot K$ then $L(1, f_M \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_K \chi_M)$

• If $\mathfrak{N} \neq \Box$ can find τ of any infinity type such that $L(1, f \otimes \tau) \neq 0$



- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

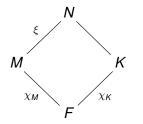
4 6 1 1 4

• $L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$

- $\blacktriangleright \quad \text{If } \chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++} \Omega^{+-}$
- If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--} \Omega^-$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^-}$$



- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

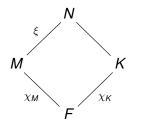
4 6 1 1 4

• $L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$

- $\blacktriangleright \quad \text{If } \chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++} \Omega^{+-}$
- If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--} \Omega^-$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^-}$$



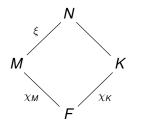
- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

• $L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$

- $\blacktriangleright \quad \text{If } \chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++} \Omega^{+-}$
- If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--} \Omega^-$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^-}$$



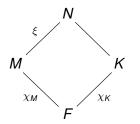
- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

• $L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$

- $\blacktriangleright \text{ If } \chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++} \Omega^{+-}$
- If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--} \Omega^-$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^-}$$



- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

• $L(1, f_{\mathcal{K}} \otimes \xi) = L(1, f \otimes \chi_{\mathcal{K}}) \cdot L(1, f \otimes \chi_{\mathcal{M}}\chi_{\mathcal{K}})$

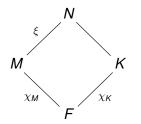
• If $\chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++} \Omega^{+-}$ • If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--} \Omega^{-+}$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$$

• Period relations of Riemann–Hodge (Oda): $\Omega^{++}\Omega^{--} = \Omega^{+-}\Omega^{-+}$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^-}$$

12 N A 12



- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

• $L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$

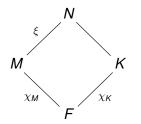
• If $\chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++}\Omega^{+-}$ • If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--}\Omega^{-+}$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$$

• Period relations of Riemann–Hodge (Oda): $\Omega^{++}\Omega^{--} = \Omega^{+-}\Omega^{-+}$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^+}$$

周 ト イ ヨ ト イ ヨ ト

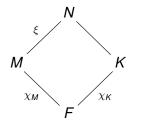


- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

•
$$L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$$

• If $\chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++}\Omega^{+-}$
• If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--}\Omega^{-+}$
• $\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$

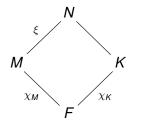
•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^+}$$



- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

•
$$L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$$

• If $\chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++}\Omega^{+-}$
• If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--}\Omega^{-+}$
• $\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$

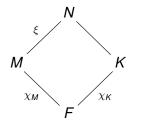


• $\left(\frac{\Omega_B^+}{\Omega_-^+}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in$

- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

•
$$L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$$

• If $\chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++}\Omega^{+-}$
• If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--}\Omega^{-+}$
• $\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$

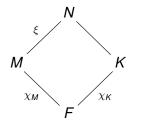


- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

•
$$L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$$

• If $\chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++}\Omega^{+-}$
• If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--}\Omega^{-+}$
• $\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^-}$$



- $\chi_{M,\infty} = +-$
- If $\chi_{K,\infty} = ++$ then $\xi_{\infty} = +$
- If $\chi_{K,\infty} = --$ then $\xi_{\infty} = -$

•
$$L(1, f_K \otimes \xi) = L(1, f \otimes \chi_K) \cdot L(1, f \otimes \chi_M \chi_K)$$

• If $\chi_{K,\infty} = ++ \rightsquigarrow (\Omega_B^+)^2 \doteq \Omega^{++}\Omega^{+-}$
• If $\chi_{K,\infty} = -- \rightsquigarrow (\Omega_B^-)^2 \doteq \Omega^{--}\Omega^{-+}$
• $\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \frac{\Omega^{++}\Omega^{+-}}{\Omega^{--}\Omega^{-+}}$

•
$$\left(\frac{\Omega_B^+}{\Omega_B^-}\right)^2 \doteq \left(\frac{\Omega^{++}}{\Omega^{-+}}\right)^2 \rightsquigarrow \frac{\Omega^{++}}{\Omega^{-+}} \in \sqrt{\mathbb{Q}} \frac{\Omega_B^+}{\Omega_B^-}$$

Cardedeu 28 Novembre 2024