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BSD over totally real fields

F totally real field, E/F elliptic curve of conductor N ⊆ F .
Suppose that E/F is modular:

I L(E/F , s) = L(f , s) for some Hilbert modular form f .
I Let ran(E/F ) = ords=1L(E/F , s).

Jacquet-Langlands hypothesis:
(JL) either [F : Q] is odd or vp(N ) = 1 for some p ⊆ F .

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and ran(E/F ) ≤ 1 then

ran(E/F ) = r(E/F ).

Condition (JL) is needed to ensure geometric modularity:

πE : Jac(X ) −→ E , X/F Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to
Jac(X )(K ab) and can be projected to E(K ab)

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill) Rational points over ATC fields Comof 2011 4 / 16



BSD over totally real fields
F totally real field, E/F elliptic curve of conductor N ⊆ F .

Suppose that E/F is modular:
I L(E/F , s) = L(f , s) for some Hilbert modular form f .
I Let ran(E/F ) = ords=1L(E/F , s).

Jacquet-Langlands hypothesis:
(JL) either [F : Q] is odd or vp(N ) = 1 for some p ⊆ F .

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and ran(E/F ) ≤ 1 then

ran(E/F ) = r(E/F ).

Condition (JL) is needed to ensure geometric modularity:

πE : Jac(X ) −→ E , X/F Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to
Jac(X )(K ab) and can be projected to E(K ab)

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill) Rational points over ATC fields Comof 2011 4 / 16



BSD over totally real fields
F totally real field, E/F elliptic curve of conductor N ⊆ F .
Suppose that E/F is modular:

I L(E/F , s) = L(f , s) for some Hilbert modular form f .
I Let ran(E/F ) = ords=1L(E/F , s).

Jacquet-Langlands hypothesis:
(JL) either [F : Q] is odd or vp(N ) = 1 for some p ⊆ F .

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and ran(E/F ) ≤ 1 then

ran(E/F ) = r(E/F ).

Condition (JL) is needed to ensure geometric modularity:

πE : Jac(X ) −→ E , X/F Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to
Jac(X )(K ab) and can be projected to E(K ab)

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill) Rational points over ATC fields Comof 2011 4 / 16



BSD over totally real fields
F totally real field, E/F elliptic curve of conductor N ⊆ F .
Suppose that E/F is modular:

I L(E/F , s) = L(f , s) for some Hilbert modular form f .
I Let ran(E/F ) = ords=1L(E/F , s).

Jacquet-Langlands hypothesis:
(JL) either [F : Q] is odd or vp(N ) = 1 for some p ⊆ F .

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and ran(E/F ) ≤ 1 then

ran(E/F ) = r(E/F ).

Condition (JL) is needed to ensure geometric modularity:

πE : Jac(X ) −→ E , X/F Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to
Jac(X )(K ab) and can be projected to E(K ab)

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill) Rational points over ATC fields Comof 2011 4 / 16



BSD over totally real fields
F totally real field, E/F elliptic curve of conductor N ⊆ F .
Suppose that E/F is modular:

I L(E/F , s) = L(f , s) for some Hilbert modular form f .
I Let ran(E/F ) = ords=1L(E/F , s).

Jacquet-Langlands hypothesis:
(JL) either [F : Q] is odd or vp(N ) = 1 for some p ⊆ F .

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and ran(E/F ) ≤ 1 then

ran(E/F ) = r(E/F ).

Condition (JL) is needed to ensure geometric modularity:

πE : Jac(X ) −→ E , X/F Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to
Jac(X )(K ab) and can be projected to E(K ab)

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill) Rational points over ATC fields Comof 2011 4 / 16



BSD over totally real fields
F totally real field, E/F elliptic curve of conductor N ⊆ F .
Suppose that E/F is modular:

I L(E/F , s) = L(f , s) for some Hilbert modular form f .
I Let ran(E/F ) = ords=1L(E/F , s).

Jacquet-Langlands hypothesis:
(JL) either [F : Q] is odd or vp(N ) = 1 for some p ⊆ F .

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and ran(E/F ) ≤ 1 then

ran(E/F ) = r(E/F ).

Condition (JL) is needed to ensure geometric modularity:

πE : Jac(X ) −→ E , X/F Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to
Jac(X )(K ab) and can be projected to E(K ab)

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill) Rational points over ATC fields Comof 2011 4 / 16



BSD over totally real fields
F totally real field, E/F elliptic curve of conductor N ⊆ F .
Suppose that E/F is modular:

I L(E/F , s) = L(f , s) for some Hilbert modular form f .
I Let ran(E/F ) = ords=1L(E/F , s).

Jacquet-Langlands hypothesis:
(JL) either [F : Q] is odd or vp(N ) = 1 for some p ⊆ F .

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and ran(E/F ) ≤ 1 then

ran(E/F ) = r(E/F ).

Condition (JL) is needed to ensure geometric modularity:

πE : Jac(X ) −→ E , X/F Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to
Jac(X )(K ab) and can be projected to E(K ab)

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill) Rational points over ATC fields Comof 2011 4 / 16



BSD over totally real fields
When F = Q they can be explicitly computed:

I Let f be the newform such that L(E/Q; s) = L(f ; s).
I Let ωf = 2πif (z)dz, a differential on X = X0(N).
I Λf = {

∫
γ
ωf | γ ∈ H1(X ,Z)} ⊆ C

I C/Λf ∼ E
I K = Q(τ) then the CM point is

Jτ =

∫
∆τ

ωf ∈ C/Λf ∼ E ,

where ∆τ = {τ→∞} ∈ C1(X ,Z).

When F 6= Q, what if (JL) is not satisfied?
The simplest case: F real quadratic field, E/F with N = 1.
If M/F is a quadratic extension such that sign L(E/M, s) = −1, is
there a way of analytically constructing points on E(Mab)?
sign L(E/M, s) = −1 if and only if M is Almost Totally Real (ATR)
(i.e. M has exactly one complex place)
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Definition of the ATR points

F a real quadratic field, E/F an elliptic curve of conductor 1.
M/F quadratic ATR extension, think M ⊆ C via the complex place.

Let f ∈ S2(SL2(OF )) be the Hilbert modular form attached to E .
Let X = H×H/SL2(OF ) be the Hilbert modular surface.
Let ωf be the differential 2-form on X

ωf = (2πi)2f (z0, z1)dz0dz1 − (2πi)2f (u0z0,u1z̄1)d(u0z0)d(u1z̄1)

and let Λf =
{∫

γ ωf , γ ∈ H2(X (C),Z)
}
⊆ C.

Conjecture (Oda)
C/Λf is isogenous to E .
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Definition of the ATR points

Let M = F (τ).
Darmon defines 2-dimensional chain ∆τ ∈ C2(X ,Z) so that the
ATR point is defined as

Jτ =

∫
∆τ

ωf ∈ C/Λf
ι∼ E

Analogous to Heegner points, and it is explicitly computable.

Conjecture (Darmon)
The isogeny ι can be chosen such that ι(Jτ ) belongs to E(Mab).

It does not assume (JL): it also applies to elliptic curves which are
not expected to be geometrically modular in general.
There is a special type of elliptic curves called Q-curves. Even if
they do not satisfy (JL), they are known to be geometrically
modular. Maybe a construction using Heegner points is available.
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Heegner points on Q-curves
N a squarefree odd integer, and let F = Q(

√
N)

ε be a quadratic character of conductor N.
Let fQ ∈ S2(N, ε) be a modular form over Q such that dim AfQ = 2.

Then AfQ ∼F E2, where E/F is a Q-curve of conductor 1.
In this case E is geometrically modular:

Let M = F (
√
α) be an ATR extension, and −d = NmF/Q(α) < 0.
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The idea is to use Heegner points on Xε(N) attached to K to
construct point on E(Mab).

Xε(N)
2:1−→ X0(N)

Pτ ∈ X0(N)(H) gives rise to points P̃τ ∈ Xε(N)(L̃), P̃ ′
τ ∈ Xε(N)(L̃′)

Project P̃τ , P̃ ′
τ via Xε(N) −→ Jε(N) −→ AfQ −→ E and add them

The “Heegner Point” on E is defined as

zτ =

∫ ∞

τ
(ωfQ + ωfQ|WN

)dz +

∫ ∞

τ ′
(ωfQ + ωfQ|WN

)dz ∈ C/ΛfQ ,

where now

ΛfQ =

〈∫
γ

(ωfQ + ωfQ|WN
)dz | γ ∈ H1(X1(N),Z)

〉

Theorem (Darmon-Rotger-Zhao)
There exist τ ∈ M and η : C/ΛfQ→E such that η(zτ ) ∈ E(Mab).
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More general fields
Returning to the general case:

I F totally real number field of arbitrary degree (and narrow class
number 1),

I E/F not satisfying (JL),
I M/F a quadratic extension.

If M is ATR, Darmon’s theory can be adapted.
Now, sign L(E/M, s) = −1 in many situations where M in not ATR.

Goal
To analytically construct points on E(Mab), for a class of fields M which
are not ATR. We want it to be explicitly computable.

We can do it under the following hypothesis:
I There exists F0 ⊆ F with [F : F0] = 2 such that E is an F0-curve

(i.e. E is F -isogenous to its Gal(F/F0)-conjugate)
I M = F (

√
α) a quadratic Almost Totally Complex extension (ATC)

(in this case sign(L(E/M, s) = −1))
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Now K is ATR: we can play the same game as before, with
Darmon’s ATR points replacing Heegner points
There exists a HMF over F0 such that Af ∼F E2 (E-S, S-T)
Idea: generalize Darmon’s construction to obtain ATR points on
Af , and project them to E to get points on E(Mab): if K = F0(τ)

zτ =

∫
∆τ

ωf + ωf |WN
+

∫
∆τ ′

ωf + ωf |WN
∈ C/Λf

ι∼ E

Theorem: if Darmon’s conjecture on ATR points holds, then there
exists τ ∈ M such that ι(zτ ) belongs to E(Mab)
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Concrete example

F = Q(
√

2,
√

5), F0 = Q(
√

2)

E : y2 = x3 − 54(63 + 46
√

2 + 27
√

5 + 18
√

10)x − 116(409 +
287
√

2 + 189
√

5 + 135
√

10)

E is an F0-curve, but it is also a Q-curve (computed by J. Quer).
The HMF f is base change to F0 of a modular form fQ ∈ S2(40, ε10)

M = F (
√√

10 +
√

5 +
√

2) is ATC
We can compute the ATC point zτ ∈ C/Λf

We (Magma) computed znt ∈ C/ΛE , a non-torsion point in E(M).
We numerically find the relation

7 · 14 · ι(zτ ) + 239 · znt = 0 mod ΛE

(checked up to certain numerical precision), which gives evidence
that zτ belongs to E(M) and it has infinite order.
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