Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart¹ Víctor Rotger² Yu Zhao³

¹Universitat Politècnica de Catalunya

²Universitat Politècnica de Catalunya

³McGill University

Comof 2011, Heidelberg

Outline

2 Darmon's ATR points

BSD for Q-curves: Darmon-Rotger-Zhao's work

4 ATC points

Outline

2 Darmon's ATR points

BSD for Q-curves: Darmon-Rotger-Zhao's work

ATC points

• *F* totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.

- *F* totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that *E*/*F* is modular:
 - L(E/F, s) = L(f, s) for some Hilbert modular form *f*.
 - Let $r_{an}(E/F) = \operatorname{ord}_{s=1}L(E/F, s)$.

- *F* totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that *E*/*F* is modular:
 - L(E/F, s) = L(f, s) for some Hilbert modular form f.
 - Let $r_{an}(E/F) = \operatorname{ord}_{s=1}L(E/F, s)$.
- Jacquet-Langlands hypothesis:
 (JL) either [F: ℚ] is odd or v_p(N) = 1 for some p ⊆ F.

- *F* totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that *E*/*F* is modular:
 - L(E/F, s) = L(f, s) for some Hilbert modular form *f*.
 - Let $r_{an}(E/F) = \operatorname{ord}_{s=1}L(E/F, s)$.

Jacquet-Langlands hypothesis: (JL) either [F: ℚ] is odd or v_p(N) = 1 for some p ⊆ F.

Theorem (Gross-Zagier, Kolyvagin, Zhang)

If *E* satisfies (JL) and
$$r_{an}(E/F) \le 1$$
 then
 $r_{an}(E/F) = r(E/F)$.

- *F* totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that *E*/*F* is modular:
 - L(E/F, s) = L(f, s) for some Hilbert modular form *f*.
 - Let $r_{an}(E/F) = \operatorname{ord}_{s=1}L(E/F, s)$.

Jacquet-Langlands hypothesis: (JL) either [F: ℚ] is odd or v_p(N) = 1 for some p ⊆ F.

Theorem (Gross-Zagier, Kolyvagin, Zhang)

If *E* satisfies (JL) and
$$r_{an}(E/F) \le 1$$
 then
 $r_{an}(E/F) = r(E/F)$.

• Condition (JL) is needed to ensure geometric modularity:

$$\pi_E: Jac(X) \longrightarrow E, X/F$$
 Shimura curve.

- *F* totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that *E*/*F* is modular:
 - L(E/F, s) = L(f, s) for some Hilbert modular form *f*.
 - Let $r_{an}(E/F) = \operatorname{ord}_{s=1}L(E/F, s)$.

Jacquet-Langlands hypothesis: (JL) either [F: ℚ] is odd or v_p(N) = 1 for some p ⊆ F.

Theorem (Gross-Zagier, Kolyvagin, Zhang)

If *E* satisfies (JL) and
$$r_{an}(E/F) \le 1$$
 then
 $r_{an}(E/F) = r(E/F)$.

• Condition (JL) is needed to ensure geometric modularity:

 $\pi_E: Jac(X) \longrightarrow E, X/F$ Shimura curve.

Heegner points: for a quadratic CM extension K/F they belong to Jac(X)(K^{ab}) and can be projected to E(K^{ab})

• When $F = \mathbb{Q}$ they can be explicitly computed:

• When $F = \mathbb{Q}$ they can be explicitly computed:

- Let *f* be the newform such that $L(E/\mathbb{Q}; s) = L(f; s)$.
- Let $\omega_f = 2\pi i f(z) dz$, a differential on $X = X_0(N)$.
- $\Lambda_f = \{\int_{\gamma} \omega_f \mid \gamma \in H_1(X, \mathbb{Z})\} \subseteq \mathbb{C}$
- $\mathbb{C}/\Lambda_f \sim E$
- $K = \mathbb{Q}(\tau)$ then the CM point is

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C}/\Lambda_f \sim E,$$

• When $F = \mathbb{Q}$ they can be explicitly computed:

- Let *f* be the newform such that $L(E/\mathbb{Q}; s) = L(f; s)$.
- Let $\omega_f = 2\pi i f(z) dz$, a differential on $X = X_0(N)$.

•
$$\Lambda_f = \{\int_{\gamma} \omega_f \mid \gamma \in H_1(X, \mathbb{Z})\} \subseteq \mathbb{C}$$

- $\mathbb{C}/\Lambda_f \sim E$
- $K = \mathbb{Q}(\tau)$ then the CM point is

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C}/\Lambda_f \sim E,$$

where $\Delta_{\tau} = \{\tau \rightarrow \infty\} \in C_1(X, \mathbb{Z}).$

• When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?

• When $F = \mathbb{Q}$ they can be explicitly computed:

- Let *f* be the newform such that $L(E/\mathbb{Q}; s) = L(f; s)$.
- Let $\omega_f = 2\pi i f(z) dz$, a differential on $X = X_0(N)$.

•
$$\Lambda_f = \{\int_{\gamma} \omega_f \mid \gamma \in H_1(X, \mathbb{Z})\} \subseteq \mathbb{C}$$

- $\mathbb{C}/\Lambda_f \sim E$
- $K = \mathbb{Q}(\tau)$ then the CM point is

$$J_{\tau} = \int_{\Delta_{\tau}} \omega_f \in \mathbb{C}/\Lambda_f \sim E,$$

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
- The simplest case: *F* real quadratic field, E/F with $\mathcal{N} = 1$.

• When $F = \mathbb{Q}$ they can be explicitly computed:

- Let *f* be the newform such that $L(E/\mathbb{Q}; s) = L(f; s)$.
- Let $\omega_f = 2\pi i f(z) dz$, a differential on $X = X_0(N)$.

•
$$\Lambda_f = \{\int_{\gamma} \omega_f \mid \gamma \in H_1(X, \mathbb{Z})\} \subseteq \mathbb{C}$$

- $\mathbb{C}/\Lambda_f \sim E$
- $K = \mathbb{Q}(\tau)$ then the CM point is

$$J_{\tau} = \int_{\Delta_{\tau}} \omega_f \in \mathbb{C}/\Lambda_f \sim E,$$

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
- The simplest case: *F* real quadratic field, E/F with $\mathcal{N} = 1$.
- If M/F is a quadratic extension such that sign L(E/M, s) = -1, is there a way of analytically constructing points on $E(M^{ab})$?

• When $F = \mathbb{Q}$ they can be explicitly computed:

- Let *f* be the newform such that $L(E/\mathbb{Q}; s) = L(f; s)$.
- Let $\omega_f = 2\pi i f(z) dz$, a differential on $X = X_0(N)$.

•
$$\Lambda_f = \{\int_{\gamma} \omega_f \mid \gamma \in H_1(X, \mathbb{Z})\} \subseteq \mathbb{C}$$

- $\mathbb{C}/\Lambda_f \sim E$
- $K = \mathbb{Q}(\tau)$ then the CM point is

$$J_{\tau} = \int_{\Delta_{\tau}} \omega_f \in \mathbb{C}/\Lambda_f \sim E,$$

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
- The simplest case: *F* real quadratic field, E/F with $\mathcal{N} = 1$.
- If M/F is a quadratic extension such that sign L(E/M, s) = -1, is there a way of analytically constructing points on $E(M^{ab})$?
- sign L(E/M, s) = -1 if and only if M is Almost Totally Real (ATR) (i.e. M has exactly one complex place)

Outline

Heegner points and the BSD conjecture

2 Darmon's ATR points

3 BSD for Q-curves: Darmon-Rotger-Zhao's work

ATC points

- F a real quadratic field, E/F an elliptic curve of conductor 1.
- M/F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.

- F a real quadratic field, E/F an elliptic curve of conductor 1.
- M/F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_2(SL_2(\mathcal{O}_F))$ be the Hilbert modular form attached to *E*.

- F a real quadratic field, E/F an elliptic curve of conductor 1.
- M/F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_2(SL_2(\mathcal{O}_F))$ be the Hilbert modular form attached to E.
- Let $X = \mathcal{H} \times \mathcal{H} / SL_2(\mathcal{O}_F)$ be the Hilbert modular surface.

- F a real quadratic field, E/F an elliptic curve of conductor 1.
- M/F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_2(SL_2(\mathcal{O}_F))$ be the Hilbert modular form attached to E.
- Let $X = \mathcal{H} \times \mathcal{H}/\mathrm{SL}_2(\mathcal{O}_F)$ be the Hilbert modular surface.
- Let ω_f be the differential 2-form on X

 $\omega_f = (2\pi i)^2 f(z_0, z_1) dz_0 dz_1$

- F a real quadratic field, E/F an elliptic curve of conductor 1.
- M/F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_2(SL_2(\mathcal{O}_F))$ be the Hilbert modular form attached to E.
- Let $X = \mathcal{H} \times \mathcal{H}/\mathrm{SL}_2(\mathcal{O}_F)$ be the Hilbert modular surface.
- Let ω_f be the differential 2-form on X

$$\omega_f = (2\pi i)^2 f(z_0, z_1) dz_0 dz_1 - (2\pi i)^2 f(u_0 z_0, u_1 \bar{z}_1) d(u_0 z_0) d(u_1 \bar{z}_1)$$

- F a real quadratic field, E/F an elliptic curve of conductor 1.
- M/F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_2(SL_2(\mathcal{O}_F))$ be the Hilbert modular form attached to E.
- Let $X = \mathcal{H} \times \mathcal{H} / SL_2(\mathcal{O}_F)$ be the Hilbert modular surface.
- Let ω_f be the differential 2-form on X

$$\begin{split} \omega_f &= (2\pi i)^2 f(z_0, z_1) dz_0 dz_1 - (2\pi i)^2 f(u_0 z_0, u_1 \bar{z}_1) d(u_0 z_0) d(u_1 \bar{z}_1) \\ \text{and let } \Lambda_f &= \left\{ \int_{\gamma} \omega_f, \ \gamma \in H_2(X(\mathbb{C}), \mathbb{Z}) \right\} \subseteq \mathbb{C}. \end{split}$$

- F a real quadratic field, E/F an elliptic curve of conductor 1.
- M/F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_2(SL_2(\mathcal{O}_F))$ be the Hilbert modular form attached to E.
- Let $X = \mathcal{H} \times \mathcal{H} / SL_2(\mathcal{O}_F)$ be the Hilbert modular surface.
- Let ω_f be the differential 2-form on X

$$\begin{split} \omega_f &= (2\pi i)^2 f(z_0, z_1) dz_0 dz_1 - (2\pi i)^2 f(u_0 z_0, u_1 \bar{z}_1) d(u_0 z_0) d(u_1 \bar{z}_1) \\ \text{and let } \Lambda_f &= \left\{ \int_{\gamma} \omega_f, \ \gamma \in H_2(X(\mathbb{C}), \mathbb{Z}) \right\} \subseteq \mathbb{C}. \end{split}$$

Conjecture (Oda)

 \mathbb{C}/Λ_f is isogenous to *E*.

• Let
$$M = F(\tau)$$
.

- Let $M = F(\tau)$.
- Darmon defines 2-dimensional chain Δ_τ ∈ C₂(X, ℤ) so that the ATR point is defined as

$$J_{ au} = \int_{\Delta_{ au}} \omega_f$$

- Let $M = F(\tau)$.
- Darmon defines 2-dimensional chain Δ_τ ∈ C₂(X, ℤ) so that the ATR point is defined as

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C}/\Lambda_f$$

- Let $M = F(\tau)$.
- Darmon defines 2-dimensional chain Δ_τ ∈ C₂(X, ℤ) so that the ATR point is defined as

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C} / \Lambda_f \stackrel{\iota}{\sim} E$$

- Let $M = F(\tau)$.
- Darmon defines 2-dimensional chain Δ_τ ∈ C₂(X, ℤ) so that the ATR point is defined as

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C} / \Lambda_f \stackrel{\iota}{\sim} E$$

• Analogous to Heegner points, and it is explicitly computable.

- Let $M = F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_2(X, \mathbb{Z})$ so that the ATR point is defined as

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C} / \Lambda_f \stackrel{\iota}{\sim} E$$

• Analogous to Heegner points, and it is explicitly computable.

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota(J_{\tau})$ belongs to $E(M^{ab})$.

- Let $M = F(\tau)$.
- Darmon defines 2-dimensional chain Δ_τ ∈ C₂(X, ℤ) so that the ATR point is defined as

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C} / \Lambda_f \stackrel{\iota}{\sim} E$$

• Analogous to Heegner points, and it is explicitly computable.

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota(J_{\tau})$ belongs to $E(M^{ab})$.

 It does not assume (JL): it also applies to elliptic curves which are not expected to be geometrically modular in general.

- Let $M = F(\tau)$.
- Darmon defines 2-dimensional chain Δ_τ ∈ C₂(X, ℤ) so that the ATR point is defined as

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C}/\Lambda_f \stackrel{\iota}{\sim} E$$

• Analogous to Heegner points, and it is explicitly computable.

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota(J_{\tau})$ belongs to $E(M^{ab})$.

- It does not assume (JL): it also applies to elliptic curves which are not expected to be geometrically modular in general.
- There is a special type of elliptic curves called Q-curves. Even if they do not satisfy (JL), they are known to be geometrically modular. Maybe a construction using Heegner points is available.

Outline

Heegner points and the BSD conjecture

2 Darmon's ATR points

3 BSD for Q-curves: Darmon-Rotger-Zhao's work

4 ATC points

Heegner points on Q-curves

- *N* a squarefree odd integer, and let $F = \mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor *N*.
- Let $f_{\mathbb{Q}} \in S_2(N, \varepsilon)$ be a modular form over \mathbb{Q} such that dim $A_{f_{\mathbb{Q}}} = 2$.

Heegner points on Q-curves

- *N* a squarefree odd integer, and let $F = \mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor *N*.
- Let $f_{\mathbb{Q}} \in S_2(N, \varepsilon)$ be a modular form over \mathbb{Q} such that dim $A_{f_{\mathbb{Q}}} = 2$.
- Then $A_{f_{\mathbb{Q}}} \sim_F E^2$, where E/F is a \mathbb{Q} -curve of conductor 1.

- *N* a squarefree odd integer, and let $F = \mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor *N*.
- Let $f_{\mathbb{Q}} \in S_2(N, \varepsilon)$ be a modular form over \mathbb{Q} such that dim $A_{f_{\mathbb{Q}}} = 2$.
- Then $A_{f_{\mathbb{Q}}} \sim_F E^2$, where E/F is a \mathbb{Q} -curve of conductor 1.
- In this case *E* is geometrically modular:

$$\pi_E\colon J_1(N)=\operatorname{Jac}(X_1(N))\longrightarrow A_{f_{\mathbb{Q}}}\longrightarrow E.$$

- *N* a squarefree odd integer, and let $F = \mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor *N*.
- Let $f_{\mathbb{Q}} \in S_2(N, \varepsilon)$ be a modular form over \mathbb{Q} such that dim $A_{f_{\mathbb{Q}}} = 2$.
- Then $A_{f_{\mathbb{Q}}} \sim_F E^2$, where E/F is a \mathbb{Q} -curve of conductor 1.
- In this case *E* is geometrically modular:

$$\pi_E\colon J_{\varepsilon}(N)=\operatorname{Jac}(X_{\varepsilon}(N))\longrightarrow A_{f_{\mathbb{Q}}}\longrightarrow E.$$

- *N* a squarefree odd integer, and let $F = \mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor *N*.
- Let $f_{\mathbb{Q}} \in S_2(N, \varepsilon)$ be a modular form over \mathbb{Q} such that dim $A_{f_{\mathbb{Q}}} = 2$.
- Then $A_{f_{\mathbb{Q}}} \sim_F E^2$, where E/F is a \mathbb{Q} -curve of conductor 1.
- In this case *E* is geometrically modular:

 $\pi_{\boldsymbol{E}}\colon J_{\varepsilon}(\boldsymbol{N})=\operatorname{Jac}(\boldsymbol{X}_{\varepsilon}(\boldsymbol{N}))\longrightarrow \boldsymbol{A}_{\boldsymbol{f}_{\mathbb{Q}}}\longrightarrow \boldsymbol{E}.$

• Let $M = F(\sqrt{\alpha})$ be an ATR extension, and $-d = \operatorname{Nm}_{F/\mathbb{Q}}(\alpha) < 0$.

- *N* a squarefree odd integer, and let $F = \mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor *N*.
- Let $f_{\mathbb{Q}} \in S_2(N, \varepsilon)$ be a modular form over \mathbb{Q} such that dim $A_{f_{\mathbb{Q}}} = 2$.
- Then $A_{f_{\mathbb{Q}}} \sim_F E^2$, where E/F is a \mathbb{Q} -curve of conductor 1.
- In this case *E* is geometrically modular:

The idea is to use Heegner points on X_ε(N) attached to K to construct point on E(M^{ab}).

- The idea is to use Heegner points on X_ε(N) attached to K to construct point on E(M^{ab}).
- $X_{\varepsilon}(N) \xrightarrow{2:1} X_0(N)$

- The idea is to use Heegner points on X_ε(N) attached to K to construct point on E(M^{ab}).
- $X_{\varepsilon}(N) \xrightarrow{2:1} X_0(N)$ $P_{\tau} \in X_0(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}'_{\tau} \in X_{\varepsilon}(N)(\tilde{L}')$

The idea is to use Heegner points on X_ε(N) attached to K to construct point on E(M^{ab}).

• $X_{\varepsilon}(N) \xrightarrow{2:1} X_0(N)$ $P_{\tau} \in X_0(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}'_{\tau} \in X_{\varepsilon}(N)(\tilde{L}')$ Project $\tilde{P}_{\tau}, \tilde{P}'_{\tau}$ via $X_{\varepsilon}(N) \longrightarrow J_{\varepsilon}(N) \longrightarrow A_{f_{\mathbb{Q}}} \longrightarrow E$ and add them

- The idea is to use Heegner points on X_ε(N) attached to K to construct point on E(M^{ab}).
- $X_{\varepsilon}(N) \xrightarrow{2:1} X_0(N)$ $P_{\tau} \in X_0(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}'_{\tau} \in X_{\varepsilon}(N)(\tilde{L}')$ Project $\tilde{P}_{\tau}, \tilde{P}'_{\tau}$ via $X_{\varepsilon}(N) \longrightarrow J_{\varepsilon}(N) \longrightarrow A_{f_{\mathbb{Q}}} \longrightarrow E$ and add them
- The "Heegner Point" on E is defined as

$$z_{\tau} = \int_{\tau}^{\infty} (\omega_{f_{\mathbb{Q}}} + \omega_{f_{\mathbb{Q}}|W_{N}}) dz + \int_{\tau'}^{\infty} (\omega_{f_{\mathbb{Q}}} + \omega_{f_{\mathbb{Q}}|W_{N}}) dz \in \mathbb{C}/\Lambda_{f_{\mathbb{Q}}},$$

where now

$$\Lambda_{f_{\mathbb{Q}}} = \left\langle \int_{\gamma} (\omega_{f_{\mathbb{Q}}} + \omega_{f_{\mathbb{Q}}|W_{N}}) dz \mid \gamma \in H_{1}(X_{1}(N), \mathbb{Z}) \right\rangle$$

- The idea is to use Heegner points on X_ε(N) attached to K to construct point on E(M^{ab}).
- $X_{\varepsilon}(N) \xrightarrow{2:1} X_0(N)$ $P_{\tau} \in X_0(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}'_{\tau} \in X_{\varepsilon}(N)(\tilde{L}')$ Project $\tilde{P}_{\tau}, \tilde{P}'_{\tau}$ via $X_{\varepsilon}(N) \longrightarrow J_{\varepsilon}(N) \longrightarrow A_{f_{\mathbb{Q}}} \longrightarrow E$ and add them
- The "Heegner Point" on E is defined as

$$z_{\tau} = \int_{\tau}^{\infty} (\omega_{f_{\mathbb{Q}}} + \omega_{f_{\mathbb{Q}}|W_{N}}) dz + \int_{\tau'}^{\infty} (\omega_{f_{\mathbb{Q}}} + \omega_{f_{\mathbb{Q}}|W_{N}}) dz \in \mathbb{C}/\Lambda_{f_{\mathbb{Q}}},$$

where now

$$\Lambda_{f_{\mathbb{Q}}} = \left\langle \int_{\gamma} (\omega_{f_{\mathbb{Q}}} + \omega_{f_{\mathbb{Q}}|W_{N}}) dz \mid \gamma \in H_{1}(X_{1}(N), \mathbb{Z}) \right\rangle$$

Theorem (Darmon-Rotger-Zhao)

There exist $\tau \in M$ and $\eta \colon \mathbb{C}/\Lambda_{f_{\mathbb{C}}} \rightarrow E$ such that $\eta(z_{\tau}) \in E(M^{ab})$.

X. Guitart, V. Rotger, Y. Zhao (UPC, Mcgill)

Rational points over ATC fields

Outline

Heegner points and the BSD conjecture

2 Darmon's ATR points

3 BSD for Q-curves: Darmon-Rotger-Zhao's work

- Returning to the general case:
 - F totally real number field of arbitrary degree (and narrow class number 1),
 - E/F not satisfying (JL),
 - M/F a quadratic extension.

- Returning to the general case:
 - F totally real number field of arbitrary degree (and narrow class number 1),
 - E/F not satisfying (JL),
 - M/F a quadratic extension.
- If *M* is ATR, Darmon's theory can be adapted.

- Returning to the general case:
 - F totally real number field of arbitrary degree (and narrow class number 1),
 - E/F not satisfying (JL),
 - M/F a quadratic extension.
- If *M* is ATR, Darmon's theory can be adapted.
- Now, sign L(E/M, s) = -1 in many situations where *M* in not ATR.

- Returning to the general case:
 - F totally real number field of arbitrary degree (and narrow class number 1),
 - E/F not satisfying (JL),
 - M/F a quadratic extension.
- If *M* is ATR, Darmon's theory can be adapted.
- Now, sign L(E/M, s) = -1 in many situations where *M* in not ATR.

Goal

To analytically construct points on $E(M^{ab})$, for a class of fields M which are not ATR. We want it to be explicitly computable.

- Returning to the general case:
 - F totally real number field of arbitrary degree (and narrow class number 1),
 - E/F not satisfying (JL),
 - M/F a quadratic extension.
- If *M* is ATR, Darmon's theory can be adapted.
- Now, sign L(E/M, s) = -1 in many situations where *M* in not ATR.

Goal

To analytically construct points on $E(M^{ab})$, for a class of fields M which are not ATR. We want it to be explicitly computable.

• We can do it under the following hypothesis:

- Returning to the general case:
 - F totally real number field of arbitrary degree (and narrow class number 1),
 - E/F not satisfying (JL),
 - M/F a quadratic extension.
- If *M* is ATR, Darmon's theory can be adapted.
- Now, sign L(E/M, s) = -1 in many situations where *M* in not ATR.

Goal

To analytically construct points on $E(M^{ab})$, for a class of fields M which are not ATR. We want it to be explicitly computable.

- We can do it under the following hypothesis:
 - There exists F₀ ⊆ F with [F: F₀] = 2 such that E is an F₀-curve (i.e. E is F-isogenous to its Gal(F/F₀)-conjugate)

- Returning to the general case:
 - F totally real number field of arbitrary degree (and narrow class number 1),
 - E/F not satisfying (JL),
 - M/F a quadratic extension.
- If *M* is ATR, Darmon's theory can be adapted.
- Now, sign L(E/M, s) = -1 in many situations where *M* in not ATR.

Goal

To analytically construct points on $E(M^{ab})$, for a class of fields M which are not ATR. We want it to be explicitly computable.

- We can do it under the following hypothesis:
 - There exists F₀ ⊆ F with [F: F₀] = 2 such that E is an F₀-curve (i.e. E is F-isogenous to its Gal(F/F₀)-conjugate)
 - $M = F(\sqrt{\alpha})$ a quadratic Almost Totally Complex extension (ATC) (in this case sign(L(E/M, s) = -1))

• Now *K* is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points

- Now *K* is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points
- There exists a HMF over F_0 such that $A_f \sim_F E^2$ (E-S, S-T)

- Now *K* is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points
- There exists a HMF over F_0 such that $A_f \sim_F E^2$ (E-S, S-T)
- Idea: generalize Darmon's construction to obtain ATR points on A_f , and project them to E to get points on $E(M^{ab})$: if $K = F_0(\tau)$

$$z_{\tau} = \int_{\Delta_{\tau}} \omega_f + \omega_{f|W_N} + \int_{\Delta_{\tau'}} \omega_f + \omega_{f|W_N} \in \mathbb{C}/\Lambda_f \stackrel{\iota}{\sim} E$$

- Now *K* is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points
- There exists a HMF over F_0 such that $A_f \sim_F E^2$ (E-S, S-T)
- Idea: generalize Darmon's construction to obtain ATR points on A_f , and project them to E to get points on $E(M^{ab})$: if $K = F_0(\tau)$

$$Z_{\tau} = \int_{\Delta_{\tau}} \omega_f + \omega_{f|W_N} + \int_{\Delta_{\tau'}} \omega_f + \omega_{f|W_N} \in \mathbb{C}/\Lambda_f \stackrel{\iota}{\sim} E$$

Theorem: if Darmon's conjecture on ATR points holds, then there exists $\tau \in M$ such that $\iota(z_{\tau})$ belongs to $E(M^{ab})$

•
$$F = \mathbb{Q}(\sqrt{2}, \sqrt{5}), F_0 = \mathbb{Q}(\sqrt{2})$$

• $E: y^2 = x^3 - 54(63 + 46\sqrt{2} + 27\sqrt{5} + 18\sqrt{10})x - 116(409 + 287\sqrt{2} + 189\sqrt{5} + 135\sqrt{10})$

•
$$F = \mathbb{Q}(\sqrt{2},\sqrt{5}), F_0 = \mathbb{Q}(\sqrt{2})$$

- $E: y^2 = x^3 54(63 + 46\sqrt{2} + 27\sqrt{5} + 18\sqrt{10})x 116(409 + 287\sqrt{2} + 189\sqrt{5} + 135\sqrt{10})$
- *E* is an F_0 -curve, but it is also a \mathbb{Q} -curve (computed by J. Quer).
- The HMF *f* is base change to F_0 of a modular form $f_{\mathbb{Q}} \in S_2(40, \varepsilon_{10})$

•
$$F = \mathbb{Q}(\sqrt{2},\sqrt{5}), F_0 = \mathbb{Q}(\sqrt{2})$$

- $E: y^2 = x^3 54(63 + 46\sqrt{2} + 27\sqrt{5} + 18\sqrt{10})x 116(409 + 287\sqrt{2} + 189\sqrt{5} + 135\sqrt{10})$
- *E* is an F_0 -curve, but it is also a \mathbb{Q} -curve (computed by J. Quer).
- The HMF *f* is base change to F_0 of a modular form $f_{\mathbb{Q}} \in S_2(40, \varepsilon_{10})$

•
$$M = F(\sqrt{\sqrt{10} + \sqrt{5} + \sqrt{2}})$$
 is ATC

• We can compute the ATC point $z_{ au} \in \mathbb{C}/\Lambda_f$

•
$$F = \mathbb{Q}(\sqrt{2},\sqrt{5}), F_0 = \mathbb{Q}(\sqrt{2})$$

- $E: y^2 = x^3 54(63 + 46\sqrt{2} + 27\sqrt{5} + 18\sqrt{10})x 116(409 + 287\sqrt{2} + 189\sqrt{5} + 135\sqrt{10})$
- *E* is an F_0 -curve, but it is also a \mathbb{Q} -curve (computed by J. Quer).
- The HMF *f* is base change to F_0 of a modular form $f_{\mathbb{Q}} \in S_2(40, \varepsilon_{10})$

•
$$M = F(\sqrt{\sqrt{10} + \sqrt{5} + \sqrt{2}})$$
 is ATC

- We can compute the ATC point $z_{\tau} \in \mathbb{C}/\Lambda_f$
- We (Magma) computed $z_{nt} \in \mathbb{C}/\Lambda_E$, a non-torsion point in E(M).

•
$$F = \mathbb{Q}(\sqrt{2},\sqrt{5}), F_0 = \mathbb{Q}(\sqrt{2})$$

•
$$E: y^2 = x^3 - 54(63 + 46\sqrt{2} + 27\sqrt{5} + 18\sqrt{10})x - 116(409 + 287\sqrt{2} + 189\sqrt{5} + 135\sqrt{10})$$

- *E* is an F_0 -curve, but it is also a \mathbb{Q} -curve (computed by J. Quer).
- The HMF *f* is base change to F_0 of a modular form $f_{\mathbb{Q}} \in S_2(40, \varepsilon_{10})$

•
$$M = F(\sqrt{\sqrt{10} + \sqrt{5} + \sqrt{2}})$$
 is ATC

- We can compute the ATC point $z_{\tau} \in \mathbb{C}/\Lambda_f$
- We (Magma) computed $z_{nt} \in \mathbb{C}/\Lambda_E$, a non-torsion point in E(M).
- We numerically find the relation

$$7 \cdot 14 \cdot \iota(z_{\tau}) + 239 \cdot z_{nt} = 0 \mod \Lambda_E$$

(checked up to certain numerical precision), which gives evidence that z_{τ} belongs to E(M) and it has infinite order.

Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart¹ Víctor Rotger² Yu Zhao³

¹Universitat Politècnica de Catalunya

²Universitat Politècnica de Catalunya

³McGill University

Comof 2011, Heidelberg