Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart ${ }^{1} \quad$ Víctor Rotger ${ }^{2} \quad$ Yu Zhao ${ }^{3}$
${ }^{1}$ Universitat Politècnica de Catalunya
${ }^{2}$ Universitat Politècnica de Catalunya
${ }^{3}$ McGill University

Comof 2011, Heidelberg

Outline

(1) Heegner points and the BSD conjecture
(2) Darmon's ATR points
(3) BSD for \mathbb{Q}-curves: Darmon-Rotger-Zhao's work
(4) ATC points

Outline

(1) Heegner points and the BSD conjecture

(2) Darmon's ATR points

(3) BSD for \mathbb{Q}-curves: Darmon-Rotger-Zhao's work

BSD over totally real fields

BSD over totally real fields

- F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.

BSD over totally real fields

- F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that E / F is modular:
- $L(E / F, s)=L(f, s)$ for some Hilbert modular form f.
- Let $r_{a n}(E / F)=\operatorname{ord}_{s=1} L(E / F, s)$.

BSD over totally real fields

- F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that E / F is modular:
- $L(E / F, s)=L(f, s)$ for some Hilbert modular form f.
- Let $r_{a n}(E / F)=\operatorname{ord}_{s=1} L(E / F, s)$.
- Jacquet-Langlands hypothesis:
(JL) either $[F: \mathbb{Q}]$ is odd or $v_{\mathfrak{p}}(\mathcal{N})=1$ for some $\mathfrak{p} \subseteq F$.

BSD over totally real fields

- F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that E / F is modular:
- $L(E / F, s)=L(f, s)$ for some Hilbert modular form f.
- Let $r_{a n}(E / F)=\operatorname{ord}_{s=1} L(E / F, s)$.
- Jacquet-Langlands hypothesis:
(JL) either $[F: \mathbb{Q}]$ is odd or $v_{\mathfrak{p}}(\mathcal{N})=1$ for some $\mathfrak{p} \subseteq F$.
Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and $r_{a n}(E / F) \leq 1$ then

$$
r_{a n}(E / F)=r(E / F)
$$

BSD over totally real fields

- F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that E / F is modular:
- $L(E / F, s)=L(f, s)$ for some Hilbert modular form f.
- Let $r_{a n}(E / F)=\operatorname{ord}_{s=1} L(E / F, s)$.
- Jacquet-Langlands hypothesis:
(JL) either $[F: \mathbb{Q}]$ is odd or $v_{\mathfrak{p}}(\mathcal{N})=1$ for some $\mathfrak{p} \subseteq F$.
Theorem (Gross-Zagier, Kolyvagin, Zhang)
If E satisfies (JL) and $r_{a n}(E / F) \leq 1$ then

$$
r_{a n}(E / F)=r(E / F)
$$

- Condition (JL) is needed to ensure geometric modularity:
$\pi_{E}: \operatorname{Jac}(X) \longrightarrow E, \quad X / F$ Shimura curve.

BSD over totally real fields

- F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- Suppose that E / F is modular:
- $L(E / F, s)=L(f, s)$ for some Hilbert modular form f.
- Let $r_{a n}(E / F)=\operatorname{ord}_{s=1} L(E / F, s)$.
- Jacquet-Langlands hypothesis:
(JL) either $[F: \mathbb{Q}]$ is odd or $v_{\mathfrak{p}}(\mathcal{N})=1$ for some $\mathfrak{p} \subseteq F$.

Theorem (Gross-Zagier, Kolyvagin, Zhang)

If E satisfies (JL) and $r_{a n}(E / F) \leq 1$ then

$$
r_{a n}(E / F)=r(E / F)
$$

- Condition (JL) is needed to ensure geometric modularity:
$\pi_{E}: \operatorname{Jac}(X) \longrightarrow E, \quad X / F$ Shimura curve.
- Heegner points: for a quadratic CM extension K / F they belong to $\operatorname{Jac}(X)\left(K^{a b}\right)$ and can be projected to $E\left(K^{a b}\right)$

BSD over totally real fields

- When $F=\mathbb{Q}$ they can be explicitly computed:

BSD over totally real fields

- When $F=\mathbb{Q}$ they can be explicitly computed:
- Let f be the newform such that $L(E / \mathbb{Q} ; s)=L(f ; s)$.
- Let $\omega_{f}=2 \pi i f(z) d z$, a differential on $X=X_{0}(N)$.
- $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f} \mid \gamma \in H_{1}(X, \mathbb{Z})\right\} \subseteq \mathbb{C}$
- $\mathbb{C} / \Lambda_{f} \sim E$
- $K=\mathbb{Q}(\tau)$ then the CM point is

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \sim E
$$

where $\Delta_{\tau}=\{\tau \rightarrow \infty\} \in C_{1}(X, \mathbb{Z})$.

BSD over totally real fields

- When $F=\mathbb{Q}$ they can be explicitly computed:
- Let f be the newform such that $L(E / \mathbb{Q} ; s)=L(f ; s)$.
- Let $\omega_{f}=2 \pi i f(z) d z$, a differential on $X=X_{0}(N)$.
- $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f} \mid \gamma \in H_{1}(X, \mathbb{Z})\right\} \subseteq \mathbb{C}$
- $\mathbb{C} / \Lambda_{f} \sim E$
- $K=\mathbb{Q}(\tau)$ then the CM point is

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \sim E
$$

where $\Delta_{\tau}=\{\tau \rightarrow \infty\} \in C_{1}(X, \mathbb{Z})$.

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?

BSD over totally real fields

- When $F=\mathbb{Q}$ they can be explicitly computed:
- Let f be the newform such that $L(E / \mathbb{Q} ; s)=L(f ; s)$.
- Let $\omega_{f}=2 \pi i f(z) d z$, a differential on $X=X_{0}(N)$.
- $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f} \mid \gamma \in H_{1}(X, \mathbb{Z})\right\} \subseteq \mathbb{C}$
- $\mathbb{C} / \Lambda_{f} \sim E$
- $K=\mathbb{Q}(\tau)$ then the CM point is

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \sim E
$$

where $\Delta_{\tau}=\{\tau \rightarrow \infty\} \in C_{1}(X, \mathbb{Z})$.

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
- The simplest case: F real quadratic field, E / F with $\mathcal{N}=1$.

BSD over totally real fields

- When $F=\mathbb{Q}$ they can be explicitly computed:
- Let f be the newform such that $L(E / \mathbb{Q} ; s)=L(f ; s)$.
- Let $\omega_{f}=2 \pi i f(z) d z$, a differential on $X=X_{0}(N)$.
- $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f} \mid \gamma \in H_{1}(X, \mathbb{Z})\right\} \subseteq \mathbb{C}$
- $\mathbb{C} / \Lambda_{f} \sim E$
- $K=\mathbb{Q}(\tau)$ then the CM point is

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \sim E
$$

where $\Delta_{\tau}=\{\tau \rightarrow \infty\} \in C_{1}(X, \mathbb{Z})$.

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
- The simplest case: F real quadratic field, E / F with $\mathcal{N}=1$.
- If M / F is a quadratic extension such that $\operatorname{sign} L(E / M, s)=-1$, is there a way of analytically constructing points on $E\left(M^{a b}\right)$?

BSD over totally real fields

- When $F=\mathbb{Q}$ they can be explicitly computed:
- Let f be the newform such that $L(E / \mathbb{Q} ; s)=L(f ; s)$.
- Let $\omega_{f}=2 \pi i f(z) d z$, a differential on $X=X_{0}(N)$.
- $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f} \mid \gamma \in H_{1}(X, \mathbb{Z})\right\} \subseteq \mathbb{C}$
- $\mathbb{C} / \Lambda_{f} \sim E$
- $K=\mathbb{Q}(\tau)$ then the CM point is

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \sim E
$$

where $\Delta_{\tau}=\{\tau \rightarrow \infty\} \in C_{1}(X, \mathbb{Z})$.

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
- The simplest case: F real quadratic field, E / F with $\mathcal{N}=1$.
- If M / F is a quadratic extension such that $\operatorname{sign} L(E / M, s)=-1$, is there a way of analytically constructing points on $E\left(M^{a b}\right)$?
- sign $L(E / M, s)=-1$ if and only if M is Almost Totally Real (ATR) (i.e. M has exactly one complex place)

Outline

(1) Heegner points and the BSD conjecture

(2) Darmon's ATR points

(3) BSD for \mathbb{Q}-curves: Darmon-Rotger-Zhao's work

Definition of the ATR points

- F a real quadratic field, E / F an elliptic curve of conductor 1 .
- M / F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.

Definition of the ATR points

- F a real quadratic field, E / F an elliptic curve of conductor 1 .
- M / F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_{2}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)\right)$ be the Hilbert modular form attached to E.

Definition of the ATR points

- F a real quadratic field, E / F an elliptic curve of conductor 1 .
- M / F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_{2}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)\right)$ be the Hilbert modular form attached to E.
- Let $X=\mathcal{H} \times \mathcal{H} / \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$ be the Hilbert modular surface.

Definition of the ATR points

- F a real quadratic field, E / F an elliptic curve of conductor 1.
- M / F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_{2}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)\right)$ be the Hilbert modular form attached to E.
- Let $X=\mathcal{H} \times \mathcal{H} / \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$ be the Hilbert modular surface.
- Let ω_{f} be the differential 2-form on X

$$
\omega_{f}=(2 \pi i)^{2} f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}
$$

Definition of the ATR points

- F a real quadratic field, E / F an elliptic curve of conductor 1.
- M / F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_{2}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)\right)$ be the Hilbert modular form attached to E.
- Let $X=\mathcal{H} \times \mathcal{H} / \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$ be the Hilbert modular surface.
- Let ω_{f} be the differential 2-form on X

$$
\omega_{f}=(2 \pi i)^{2} f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}-(2 \pi i)^{2} f\left(u_{0} z_{0}, u_{1} \bar{z}_{1}\right) d\left(u_{0} z_{0}\right) d\left(u_{1} \bar{z}_{1}\right)
$$

Definition of the ATR points

- F a real quadratic field, E / F an elliptic curve of conductor 1.
- M / F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_{2}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)\right)$ be the Hilbert modular form attached to E.
- Let $X=\mathcal{H} \times \mathcal{H} / \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)$ be the Hilbert modular surface.
- Let ω_{f} be the differential 2-form on X

$$
\begin{aligned}
& \omega_{f}=(2 \pi i)^{2} f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}-(2 \pi i)^{2} f\left(u_{0} z_{0}, u_{1} \bar{z}_{1}\right) d\left(u_{0} z_{0}\right) d\left(u_{1} \bar{z}_{1}\right) \\
& \text { and let } \Lambda_{f}=\left\{\int_{\gamma} \omega_{f}, \quad \gamma \in H_{2}(X(\mathbb{C}), \mathbb{Z})\right\} \subseteq \mathbb{C} \text {. }
\end{aligned}
$$

Definition of the ATR points

- F a real quadratic field, E / F an elliptic curve of conductor 1.
- M / F quadratic ATR extension, think $M \subseteq \mathbb{C}$ via the complex place.
- Let $f \in S_{2}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)\right)$ be the Hilbert modular form attached to E.
- Let $X=\mathcal{H} \times \mathcal{H} / \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$ be the Hilbert modular surface.
- Let ω_{f} be the differential 2-form on X

$$
\begin{aligned}
& \omega_{f}=(2 \pi i)^{2} f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}-(2 \pi i)^{2} f\left(u_{0} z_{0}, u_{1} \bar{z}_{1}\right) d\left(u_{0} z_{0}\right) d\left(u_{1} \bar{z}_{1}\right) \\
& \text { and let } \Lambda_{f}=\left\{\int_{\gamma} \omega_{f}, \quad \gamma \in H_{2}(X(\mathbb{C}), \mathbb{Z})\right\} \subseteq \mathbb{C} \text {. }
\end{aligned}
$$

Conjecture (Oda)

\mathbb{C} / Λ_{f} is isogenous to E.

Definition of the ATR points

Definition of the ATR points

- Let $M=F(\tau)$.

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_{2}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f}
$$

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_{2}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f}
$$

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_{2}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_{2}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

- Analogous to Heegner points, and it is explicitly computable.

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_{2}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

- Analogous to Heegner points, and it is explicitly computable.

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota\left(J_{\tau}\right)$ belongs to $E\left(M^{\mathrm{ab}}\right)$.

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_{2}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

- Analogous to Heegner points, and it is explicitly computable.

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota\left(J_{\tau}\right)$ belongs to $E\left(M^{\mathrm{ab}}\right)$.

- It does not assume (JL): it also applies to elliptic curves which are not expected to be geometrically modular in general.

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines 2-dimensional chain $\Delta_{\tau} \in C_{2}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

- Analogous to Heegner points, and it is explicitly computable.

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota\left(J_{\tau}\right)$ belongs to $E\left(M^{\mathrm{ab}}\right)$.

- It does not assume (JL): it also applies to elliptic curves which are not expected to be geometrically modular in general.
- There is a special type of elliptic curves called \mathbb{Q}-curves. Even if they do not satisfy (JL), they are known to be geometrically modular. Maybe a construction using Heegner points is available.

Outline

(1) Heegner points and the BSD conjecture

(2) Darmon's ATR points

(3) BSD for \mathbb{Q}-curves: Darmon-Rotger-Zhao's work

(4) ATC points

Heegner points on \mathbb{Q}-curves

- N a squarefree odd integer, and let $F=\mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor N.
- Let $f_{\mathbb{Q}} \in S_{2}(N, \varepsilon)$ be a modular form over \mathbb{Q} such that $\operatorname{dim} A_{f_{\mathbb{Q}}}=2$.

Heegner points on \mathbb{Q}-curves

- N a squarefree odd integer, and let $F=\mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor N.
- Let $f_{\mathbb{Q}} \in S_{2}(N, \varepsilon)$ be a modular form over \mathbb{Q} such that $\operatorname{dim} A_{f_{\mathbb{Q}}}=2$.
- Then $A_{f_{\mathbb{Q}}} \sim_{F} E^{2}$, where E / F is a \mathbb{Q}-curve of conductor 1 .

Heegner points on \mathbb{Q}-curves

- N a squarefree odd integer, and let $F=\mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor N.
- Let $f_{\mathbb{Q}} \in S_{2}(N, \varepsilon)$ be a modular form over \mathbb{Q} such that $\operatorname{dim} A_{f_{\mathbb{Q}}}=2$.
- Then $A_{f_{\mathbb{Q}}} \sim_{F} E^{2}$, where E / F is a \mathbb{Q}-curve of conductor 1 .
- In this case E is geometrically modular:

$$
\pi_{E}: J_{1}(N)=\operatorname{Jac}\left(X_{1}(N)\right) \longrightarrow A_{f_{Q}} \longrightarrow E
$$

Heegner points on \mathbb{Q}-curves

- N a squarefree odd integer, and let $F=\mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor N.
- Let $f_{\mathbb{Q}} \in S_{2}(N, \varepsilon)$ be a modular form over \mathbb{Q} such that $\operatorname{dim} A_{f_{\mathbb{Q}}}=2$.
- Then $A_{f_{\mathbb{Q}}} \sim_{F} E^{2}$, where E / F is a \mathbb{Q}-curve of conductor 1 .
- In this case E is geometrically modular:

$$
\pi_{E}: J_{\varepsilon}(N)=\operatorname{Jac}\left(X_{\varepsilon}(N)\right) \longrightarrow A_{f_{\mathbb{Q}}} \longrightarrow E
$$

Heegner points on \mathbb{Q}-curves

- N a squarefree odd integer, and let $F=\mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor N.
- Let $f_{\mathbb{Q}} \in S_{2}(N, \varepsilon)$ be a modular form over \mathbb{Q} such that $\operatorname{dim} A_{f_{\mathbb{Q}}}=2$.
- Then $A_{f_{\mathbb{Q}}} \sim_{F} E^{2}$, where E / F is a \mathbb{Q}-curve of conductor 1 .
- In this case E is geometrically modular:

$$
\pi_{E}: J_{\varepsilon}(N)=\operatorname{Jac}\left(X_{\varepsilon}(N)\right) \longrightarrow A_{f_{0}} \longrightarrow E
$$

- Let $M=F(\sqrt{\alpha})$ be an ATR extension, and $-d=\operatorname{Nm}_{F / \mathbb{Q}}(\alpha)<0$.

Heegner points on \mathbb{Q}-curves

- N a squarefree odd integer, and let $F=\mathbb{Q}(\sqrt{N})$
- ε be a quadratic character of conductor N.
- Let $f_{\mathbb{Q}} \in S_{2}(N, \varepsilon)$ be a modular form over \mathbb{Q} such that $\operatorname{dim} A_{f_{\mathbb{Q}}}=2$.
- Then $A_{f_{\mathbb{Q}}} \sim_{F} E^{2}$, where E / F is a \mathbb{Q}-curve of conductor 1 .
- In this case E is geometrically modular:

$$
\pi_{E}: J_{\varepsilon}(N)=\operatorname{Jac}\left(X_{\varepsilon}(N)\right) \longrightarrow A_{f_{0}} \longrightarrow E
$$

- Let $M=F(\sqrt{\alpha})$ be an ATR extension, and $-d=\mathrm{Nm}_{F / \mathbb{Q}}(\alpha)<0$.

- The idea is to use Heegner points on $X_{\varepsilon}(N)$ attached to K to construct point on $E\left(M^{a b}\right)$.
- The idea is to use Heegner points on $X_{\varepsilon}(N)$ attached to K to construct point on $E\left(M^{a b}\right)$.
- $X_{\varepsilon}(N) \xrightarrow{2: 1} X_{0}(N)$
- The idea is to use Heegner points on $X_{\varepsilon}(N)$ attached to K to construct point on $E\left(M^{a b}\right)$.
- $X_{\varepsilon}(N) \xrightarrow{2: 1} X_{0}(N)$
$P_{\tau} \in X_{0}(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}_{\tau}^{\prime} \in X_{\varepsilon}(N)\left(\tilde{L}^{\prime}\right)$
- The idea is to use Heegner points on $X_{\varepsilon}(N)$ attached to K to construct point on $E\left(M^{a b}\right)$.
- $X_{\varepsilon}(N) \xrightarrow{2: 1} X_{0}(N)$
$P_{\tau} \in X_{0}(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}_{\tau}^{\prime} \in X_{\varepsilon}(N)\left(\tilde{L}^{\prime}\right)$ Project $\tilde{P}_{\tau}, \tilde{P}_{\tau}^{\prime}$ via $X_{\varepsilon}(N) \longrightarrow J_{\varepsilon}(N) \longrightarrow A_{f_{\mathbb{Q}}} \longrightarrow E$ and add them
- The idea is to use Heegner points on $X_{\varepsilon}(N)$ attached to K to construct point on $E\left(M^{a b}\right)$.
- $X_{\varepsilon}(N) \xrightarrow{2: 1} X_{0}(N)$
$P_{\tau} \in X_{0}(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}_{\tau}^{\prime} \in X_{\varepsilon}(N)\left(\tilde{L}^{\prime}\right)$ Project $\tilde{P}_{\tau}, \tilde{P}_{\tau}^{\prime}$ via $X_{\varepsilon}(N) \longrightarrow J_{\varepsilon}(N) \longrightarrow A_{f_{\mathbb{Q}}} \longrightarrow E$ and add them
- The "Heegner Point" on E is defined as

$$
z_{\tau}=\int_{\tau}^{\infty}\left(\omega_{f_{\mathbb{Q}}}+\omega_{f_{\mathbb{Q}} \mid W_{N}}\right) d z+\int_{\tau^{\prime}}^{\infty}\left(\omega_{f_{\mathbb{Q}}}+\omega_{\mathrm{f}_{\mathbb{Q}} \mid W_{N}}\right) d z \in \mathbb{C} / \Lambda_{f_{\mathbb{Q}}}
$$

where now

$$
\Lambda_{f_{\mathbb{Q}}}=\left\langle\int_{\gamma}\left(\omega_{f_{\mathbb{Q}}}+\omega_{f_{\mathbb{Q}} \mid \omega_{N}}\right) d z \mid \gamma \in H_{1}\left(X_{1}(N), \mathbb{Z}\right)\right\rangle
$$

- The idea is to use Heegner points on $X_{\varepsilon}(N)$ attached to K to construct point on $E\left(M^{a b}\right)$.
- $X_{\varepsilon}(N) \xrightarrow{2: 1} X_{0}(N)$
$P_{\tau} \in X_{0}(N)(H)$ gives rise to points $\tilde{P}_{\tau} \in X_{\varepsilon}(N)(\tilde{L}), \tilde{P}_{\tau}^{\prime} \in X_{\varepsilon}(N)\left(\tilde{L}^{\prime}\right)$ Project $\tilde{P}_{\tau}, \tilde{P}_{\tau}^{\prime}$ via $X_{\varepsilon}(N) \longrightarrow J_{\varepsilon}(N) \longrightarrow A_{f_{\mathbb{Q}}} \longrightarrow E$ and add them
- The "Heegner Point" on E is defined as

$$
z_{\tau}=\int_{\tau}^{\infty}\left(\omega_{f_{\mathbb{Q}}}+\omega_{f_{\mathbb{Q}} \mid W_{N}}\right) d z+\int_{\tau^{\prime}}^{\infty}\left(\omega_{f_{\mathbb{Q}}}+\omega_{f_{\mathbb{Q}} \mid W_{N}}\right) d z \in \mathbb{C} / \Lambda_{f_{\mathbb{Q}}}
$$

where now

$$
\Lambda_{f_{\mathbb{Q}}}=\left\langle\int_{\gamma}\left(\omega_{f_{\mathbb{Q}}}+\omega_{f_{\mathbb{Q}} \mid W_{N}}\right) d z \mid \gamma \in H_{1}\left(X_{1}(N), \mathbb{Z}\right)\right\rangle
$$

Theorem (Darmon-Rotger-Zhao)

There exist $\tau \in M$ and $\eta: \mathbb{C} / \Lambda_{f_{\mathbb{Q}}} \rightarrow E$ such that $\eta\left(z_{\tau}\right) \in E\left(M^{\mathrm{ab}}\right)$.

Outline

(1) Heegner points and the BSD conjecture

(2) Darmon's ATR points

(3) BSD for \mathbb{Q}-curves: Darmon-Rotger-Zhao's work

4 ATC points

More general fields

- Returning to the general case:
- F totally real number field of arbitrary degree (and narrow class number 1),
- E / F not satisfying (JL),
- M / F a quadratic extension.

More general fields

- Returning to the general case:
- F totally real number field of arbitrary degree (and narrow class number 1),
- E / F not satisfying (JL),
- M / F a quadratic extension.
- If M is ATR, Darmon's theory can be adapted.

More general fields

- Returning to the general case:
- F totally real number field of arbitrary degree (and narrow class number 1),
- E / F not satisfying (JL),
- M / F a quadratic extension.
- If M is ATR, Darmon's theory can be adapted.
- Now, sign $L(E / M, s)=-1$ in many situations where M in not ATR.

More general fields

- Returning to the general case:
- F totally real number field of arbitrary degree (and narrow class number 1),
- E / F not satisfying (JL),
- M / F a quadratic extension.
- If M is ATR, Darmon's theory can be adapted.
- Now, sign $L(E / M, s)=-1$ in many situations where M in not ATR.

Goal

To analytically construct points on $E\left(M^{a b}\right)$, for a class of fields M which are not ATR. We want it to be explicitly computable.

More general fields

- Returning to the general case:
- F totally real number field of arbitrary degree (and narrow class number 1),
- E / F not satisfying (JL),
- M / F a quadratic extension.
- If M is ATR, Darmon's theory can be adapted.
- Now, sign $L(E / M, s)=-1$ in many situations where M in not ATR.

Goal

To analytically construct points on $E\left(M^{a b}\right)$, for a class of fields M which are not ATR. We want it to be explicitly computable.

- We can do it under the following hypothesis:

More general fields

- Returning to the general case:
- F totally real number field of arbitrary degree (and narrow class number 1),
- E / F not satisfying (JL),
- M / F a quadratic extension.
- If M is ATR, Darmon's theory can be adapted.
- Now, sign $L(E / M, s)=-1$ in many situations where M in not ATR.

Goal

To analytically construct points on $E\left(M^{a b}\right)$, for a class of fields M which are not ATR. We want it to be explicitly computable.

- We can do it under the following hypothesis:
- There exists $F_{0} \subseteq F$ with $\left[F: F_{0}\right]=2$ such that E is an F_{0}-curve (i.e. E is F-isogenous to its $\operatorname{Gal}\left(F / F_{0}\right)$-conjugate)

More general fields

- Returning to the general case:
- F totally real number field of arbitrary degree (and narrow class number 1),
- E / F not satisfying (JL),
- M / F a quadratic extension.
- If M is ATR, Darmon's theory can be adapted.
- Now, sign $L(E / M, s)=-1$ in many situations where M in not ATR.

Goal

To analytically construct points on $E\left(M^{a b}\right)$, for a class of fields M which are not ATR. We want it to be explicitly computable.

- We can do it under the following hypothesis:
- There exists $F_{0} \subseteq F$ with $\left[F: F_{0}\right]=2$ such that E is an F_{0}-curve (i.e. E is F-isogenous to its $\operatorname{Gal}\left(F / F_{0}\right)$-conjugate)
- $M=F(\sqrt{\alpha})$ a quadratic Almost Totally Complex extension (ATC) (in this case $\operatorname{sign}(L(E / M, s)=-1)$)

- Now K is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points

- Now K is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points
- There exists a HMF over F_{0} such that $A_{f} \sim_{F} E^{2}(\mathrm{E}-\mathrm{S}, \mathrm{S}-\mathrm{T})$

- Now K is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points
- There exists a HMF over F_{0} such that $A_{f} \sim_{F} E^{2}$ (E-S, S-T)
- Idea: generalize Darmon's construction to obtain ATR points on A_{f}, and project them to E to get points on $E\left(M^{a b}\right)$: if $K=F_{0}(\tau)$

$$
z_{\tau}=\int_{\Delta_{\tau}} \omega_{f}+\omega_{f \mid W_{N}}+\int_{\Delta_{\tau^{\prime}}} \omega_{f}+\omega_{f \mid W_{N}} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

- Now K is ATR: we can play the same game as before, with Darmon's ATR points replacing Heegner points
- There exists a HMF over F_{0} such that $A_{f} \sim_{F} E^{2}$ (E-S, S-T)
- Idea: generalize Darmon's construction to obtain ATR points on A_{f}, and project them to E to get points on $E\left(M^{a b}\right)$: if $K=F_{0}(\tau)$

$$
z_{\tau}=\int_{\Delta_{\tau}} \omega_{f}+\omega_{f \mid W_{N}}+\int_{\Delta_{\tau^{\prime}}} \omega_{f}+\omega_{f \mid W_{N}} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

Theorem: if Darmon's conjecture on ATR points holds, then there exists $\tau \in M$ such that $\iota\left(z_{\tau}\right)$ belongs to $E\left(M^{a b}\right)$

Concrete example

- $F=\mathbb{Q}(\sqrt{2}, \sqrt{5}), F_{0}=\mathbb{Q}(\sqrt{2})$
- $E: y^{2}=x^{3}-54(63+46 \sqrt{2}+27 \sqrt{5}+18 \sqrt{10}) x-116(409+$ $287 \sqrt{2}+189 \sqrt{5}+135 \sqrt{10})$

Concrete example

- $F=\mathbb{Q}(\sqrt{2}, \sqrt{5}), F_{0}=\mathbb{Q}(\sqrt{2})$
- $E: y^{2}=x^{3}-54(63+46 \sqrt{2}+27 \sqrt{5}+18 \sqrt{10}) x-116(409+$ $287 \sqrt{2}+189 \sqrt{5}+135 \sqrt{10})$
- E is an F_{0}-curve, but it is also a \mathbb{Q}-curve (computed by J. Quer).
- The HMF f is base change to F_{0} of a modular form $f_{\mathbb{Q}} \in S_{2}\left(40, \varepsilon_{10}\right)$

Concrete example

- $F=\mathbb{Q}(\sqrt{2}, \sqrt{5}), F_{0}=\mathbb{Q}(\sqrt{2})$
- $E: y^{2}=x^{3}-54(63+46 \sqrt{2}+27 \sqrt{5}+18 \sqrt{10}) x-116(409+$ $287 \sqrt{2}+189 \sqrt{5}+135 \sqrt{10})$
- E is an F_{0}-curve, but it is also a \mathbb{Q}-curve (computed by J. Quer).
- The HMF f is base change to F_{0} of a modular form $f_{\mathbb{Q}} \in S_{2}\left(40, \varepsilon_{10}\right)$
- $M=F(\sqrt{\sqrt{10}+\sqrt{5}+\sqrt{2}})$ is ATC
- We can compute the ATC point $z_{\tau} \in \mathbb{C} / \Lambda_{f}$

Concrete example

- $F=\mathbb{Q}(\sqrt{2}, \sqrt{5}), F_{0}=\mathbb{Q}(\sqrt{2})$
- $E: y^{2}=x^{3}-54(63+46 \sqrt{2}+27 \sqrt{5}+18 \sqrt{10}) x-116(409+$ $287 \sqrt{2}+189 \sqrt{5}+135 \sqrt{10})$
- E is an F_{0}-curve, but it is also a \mathbb{Q}-curve (computed by J. Quer).
- The HMF f is base change to F_{0} of a modular form $f_{\mathbb{Q}} \in S_{2}\left(40, \varepsilon_{10}\right)$
- $M=F(\sqrt{\sqrt{10}+\sqrt{5}+\sqrt{2}})$ is ATC
- We can compute the ATC point $z_{\tau} \in \mathbb{C} / \Lambda_{f}$
- We (Magma) computed $z_{n t} \in \mathbb{C} / \Lambda_{E}$, a non-torsion point in $E(M)$.

Concrete example

- $F=\mathbb{Q}(\sqrt{2}, \sqrt{5}), F_{0}=\mathbb{Q}(\sqrt{2})$
- $E: y^{2}=x^{3}-54(63+46 \sqrt{2}+27 \sqrt{5}+18 \sqrt{10}) x-116(409+$ $287 \sqrt{2}+189 \sqrt{5}+135 \sqrt{10})$
- E is an F_{0}-curve, but it is also a \mathbb{Q}-curve (computed by J. Quer).
- The HMF f is base change to F_{0} of a modular form $f_{\mathbb{Q}} \in S_{2}\left(40, \varepsilon_{10}\right)$
- $M=F(\sqrt{\sqrt{10}+\sqrt{5}+\sqrt{2}})$ is ATC
- We can compute the ATC point $z_{\tau} \in \mathbb{C} / \Lambda_{f}$
- We (Magma) computed $z_{n t} \in \mathbb{C} / \Lambda_{E}$, a non-torsion point in $E(M)$.
- We numerically find the relation

$$
7 \cdot 14 \cdot \iota\left(z_{\tau}\right)+239 \cdot z_{n t}=0 \quad \bmod \Lambda_{E}
$$

(checked up to certain numerical precision), which gives evidence that z_{τ} belongs to $E(M)$ and it has infinite order.

Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart ${ }^{1} \quad$ Víctor Rotger ${ }^{2} \quad$ Yu Zhao ${ }^{3}$
${ }^{1}$ Universitat Politècnica de Catalunya
${ }^{2}$ Universitat Politècnica de Catalunya
${ }^{3}$ McGill University

Comof 2011, Heidelberg

