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Computing p-adic periods of abelian varieties
from automorphic forms

Xavier Guitart and Marc Masdeu

Abstract. We give an overview of [GM16], in which we exploit Darmon’s

p-adic L-invariants to compute p-adic uniformizations of certain motives at-
tached to modular forms. We illustrate our methods with new examples.

1. Introduction

Let E be an elliptic curve of conductor pN , with p a prime not dividing N ,
and let f be the newform for Γ0(pN) corresponding to E under the Modularity
Theorem. Let also K be a real quadratic field in which p is inert and all the primes
dividing N split. In this setting, Darmon introduced in his seminal paper [Dar01]
a construction of local points on E(Kp), which he called Stark–Heegner points, and
which are conjecturally global and defined over ring class fields of K.

Taking advantage of the isomorphism E(Kp) ' K×p /q
Z
E , where qE is the Tate

period of E, Darmon defined Stark–Heegner points as suitable values of certain
K×p -valued integrals of f . By construction, however, such values are only well

defined (i.e., independent of any choices) modulo a certain p-adic lattice qZf , where
qf is a p-adic number whose definition depends on f and is a priori unrelated to qE .
The quantity Lp(f) = logp(qf )/ ordp(qf ) can be interpreted as a p-adic L-invariant.
Indeed, one of the main results of [Dar01] is the following relation between special
values of classical and p-adic L-functions:

L′p(f, 1) = Lp(f)L(f, 1).

Therefore, as a consequence of the exceptional zero conjecture of Mazur–Tate–
Teitelbaum proven by Greenberg-Stevens [GS93], Darmon’s p-adic L-invariant co-
incides with logp(qE)/ ordp(qE) and, in particular, K×p /q

Z
E and K×p /q

Z
f are isoge-

nous elliptic curves. Thus the construction of Stark–Heegner points does produce
(perhaps after composing with an isogeny) well defined points in E(Kp).

Over the years there have been a number of generalizations and variants of
Stark–Heegner points attached to more general motives (e.g., elliptic curves over
number fields [Gre09, Tri06, Gär12, GM16, GMS15], modular abelian vari-
eties [Das05, LRV12], motives attached to higher weight modular forms [RS12]),
that have come to be known as Darmon points or, even more generally, Darmon
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cycles. A common feature of these constructions is that the points (or cycles)
are defined as p-adic integrals which are only well defined modulo a Darmon-like
L-invariant given by certain period integrals of automorphic forms. That these
integrals yield well defined cycles on the motive depends on the (in some cases
still conjectural) relationship between the p-adic L-invariant and the periods of the
p-adic uniformization of the motive.

In this note we give an overview of [GM16], in which we explore the possi-
bility of using Darmon’s p-adic L-invariants, in the form of suitable automorphic
periods, and their conjectured properties to compute p-adic uniformizations of cer-
tain motives attached to modular forms for which no unconditional construction is
yet known. More precisely, we consider the case of modular forms of weight two
over number fields of mixed signature. The associated motives are expected to be
abelian varieties of GL2-type, although the Eichler–Shimura-type construction that
associates to any such modular form an abelian variety is only known for totally real
number fields. In some cases for which no Eichler–Shimura construction is known,
such as number fields with one complex place, we have computed approximations
to the p-adic automorphic periods conforming Darmon’s L-invariants. Granting
the conjecture that these periods are isogenous to the p-adic periods of the abelian
variety, we have been able to recover the global algebraic equations.

In Section 2 we recall the conjecture that associates to any modular form of
weight two for GL2 an abelian variety, and we collect a few facts on their p-adic
uniformization. In Section 3 we describe the p-adic integrals attached to the modu-
lar forms and the construction of the periods that, conjecturally, coincide with the
p-adic periods of the associated abelian variety. Finally, in Section 4, we illustrate
the method by reporting on two new examples of the computation of L-invariants
and abelian varieties.

The authors would like to thank Victor Rotger for a careful reading of the in-
troduction. Masdeu wishes to thank the organizers and participants of the Building
Bridges: Workshop on Automorphic Forms and Related Topics for providing such
a relaxed and comfortable atmosphere in which to discuss ideas. Guitart was sup-
ported by MTM2015-66716-P and MTM2015-63829, and Masdeu was supported
by MSC–IF–H2020–ExplicitDarmonProg.

2. Automorphic Forms and abelian varieties

Let F be a number field of signature (r, s), and consider an ideal N ⊂ OF ,
which we will call a level. In order to avoid technical difficulties, we will as-
sume that F has narrow class number one, and that N is squarefree. After fix-
ing r + s embeddings of F into C corresponding to the places of F , the group
Γ0(N) = {

(
a b
c d

)
∈ SL2(OF ) : N | c} acts discretely on Hr × Hs3, where H (respec-

tively H3) denotes the hyperbolic upper half plane (respectively upper half space).
The cohomology of the quotient orbifold Y0(N) = Γ0(N)\(Hn × Hs3) can be com-
puted via group cohomology. This cohomology comes equipped with an action of
the commutative Hecke algebra T, generated by the Hecke operators Tl for primes
l - N. Let f ∈ Hn+s(Γ0(N),C) be an eigenvector for all the Hecke operators, say
Tlf = alf for all l - N. Then Kf = Q({al}l) is a number field, say of degree d.
Suppose that f is cuspidal, new, and without complex multiplication.
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Conjecture 2.1 (Taylor, ICM 1994). There is a simple abelian variety Af/F
of dimension d, of conductor Nd, and with End(Af )⊗Q ⊇ Kf , such that

L(Af , s) =
∏

σ : Kf ↪→C
L(σf, s).

One should remark that in the original conjecture there is another possibility
for the variety associated to f ; namely, it could happen that it is of dimension 2d
and has quaternionic multiplication. This possibility is excluded in our setting,
thanks to the assuption of N being square-free (in fact, it would be enough to ask
for N not being square-full, see [GM16] for more details).

Taylor’s conjecture is true when F = Q, thanks to the Eichler–Shimura con-
struction. It is known to be true in other cases, namely when F is totally real and
there exists a Jacquet–Langlands lift of f to a Shimura curve (e.g., this is always
the case if [F : Q] is odd).

The aim of this short note is to give an overview of the explicit construction
that we propose in [GM16] which gives a conjectural description of the variety Af
as a p-adic torus. At this point the reader might get unsettled by the possibility
that Af would not admit a p-adic uniformization. After all, here is one example of
this situation: the elliptic curve E1 given by the equation y2 = x3+1 has conductor
N1 = 36. The elliptic curve E2 given by the equation y2 + xy = x3 − x2 − 2x − 1
has conductor 49. Therefore the abelian surface A = E1 × E2 has conductor
1764 = (2 · 3 · 7)2. However, since neither E1 nor E2 is p-adically uniformizable
(because neither has multiplicative reduction at any p), the abelian surface A cannot
be p-adically uniformizable. In our setting, however, the endomorphism structure
of A will make the uniformization possible.

Theorem 2.2 ([GM16], Prop. 2.4). Let A/F be an abelian variety of dimen-
sion d and let p be a prime of F . Denote by Qp the completion of F at p. Suppose
that

• pd ‖ conductor(A), and
• End(A)⊗Q contains a totally real field K of degree d.

Then there exists a discrete lattice Λ ⊂ (Q×p )d such that

A(Q̄p) ∼= (Q̄×p )d/Λ.

3. Periods of automorphic forms

As in the previous section let f ∈ Hn+s(Γ0(N),C) be a cuspidal newform
without complex multiplication, and suppose that p is a prime that divides N
exactly. The periods are constructed by means of a p-adic integration pairing
between certain homology and cohomology groups of a {p}-arithmetic subgroup
Γ ⊂ PGL2(Qp) related to Γ0(N).

3.1. The {p}-arithmetic subgroup. We now proceed to define a {p}-arithmetic
group Γ. We start by choosing a factorization of the form N = pDm and a
choice of n ≤ r real places, say v1, v2, . . . , vr, in such a way that the set of places
{q | D}∪{vn+1, . . . , vr} has even cardinal. Let B/F be the quaternion algebra whose

ramification locus is precisely this set. Fix Eichler orders RD
0 (pm) ⊂ RD

0 (m) ⊂ B,
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and an embedding ιp : RD
0 (m)→M2(Zp) (here Zp stands for the ring of integers of

Qp). Define ΓD
0 (pm) = RD

0 (pm)×/O×F and ΓD
0 (m) = RD

0 (m)×/O×F . Finally, define

Γ = ιp(RD
0 (m)[1/p]×/OF [1/p]×) ⊂ PGL2(Qp).

In the following subsections we will see how an integration pairing in the
(co)homology of Γ gives rise to naturally defined periods of automorphic forms.

3.2. Integration on Hp. Let Qp2 be the quadratic unramified extension of
Qp, and considerHp = P1(Qp2)rP1(Qp). It is a p-adic analogue to H in many ways:
it has a rigid-analytic structure, and an action of PGL2(Qp) by fractional linear
transformations. There is a theory of rigid-analytic 1-forms ω ∈ Ω1

Hp
, which re-

places the complex-analytic theory. We denote by Ω1
Hp,Z the forms having Z-valued

residues. Coleman integration allows us to make sense of
∫ τ2
τ1
ω ∈ Cp. Moreover,

Darmon [Dar01] constructed a PGL2(Qp)-equivariant pairing

×
∫

: Ω1
Hp,Z ×Div0Hp → Q×p2 ⊂ C×p ,

which refines Coleman integration into a multiplicative variant. Cap product in-
duces a pairing

Hi(Γ,Ω1
Hp,Z)×Hi(Γ,Div0Hp)

〈·,·〉 // C×p(
φ,
∑
γ γ ⊗Dγ

)
� //∑

γ ×
∫
Dγ

φ(γ).

3.3. The conjecture. Denote with a subindex f the f -isotypical part of a
Hecke-module: the submodule on which the Hecke operator T` acts as multiplication
by a`(f). An application of the Jacquet–Langlands transfer, together with Shapiro’s
lemma, yields the following result.

Theorem 3.1. There is a natural isomorphism of Hecke modules

Hn+s(ΓD
0 (pm),Z)f ∼= Hn+s(Γ,Ω1

Hp,Z)f .

Next, consider the Γ-equivariant short exact sequence that defines the degree
0 divisors on Hp

0→ Div0Hp → DivHp
deg→ Z→ 0.

Taking Γ-coinvariants yields a long exact sequence in homology, from which we
isolate the following piece:

· · · → Hn+s+1(Γ,Z)
δ→ Hn+s(Γ,Div0Hp)→ Hn+s(Γ,DivHp)→ Hn+s(Γ,Z)→ · · ·

Set ωf to be a fixed basis of the non-torsion part of Hn+s(Γ,Ω1
Hp,Z)f .

Conjecture 3.2. Set

Λf =
{
〈ωf , δ(c)〉 : c ∈ Hn+s+1(Γ,Z)

}
⊂ (Q̄×p )d.

Then Λf is a lattice in (Q×p )d and Af (Q̄p) is isogenous to (Q̄×p )d/Λf .



p-ADIC PERIODS FROM AUTOMORPHIC FORMS 5

This conjecture was proven by Darmon [Dar01] in the case F = Q, B = M2(Q)
and d = 1; by Dasgupta [Das05] when F = Q, B = M2(Q), and d > 1; by
Dasgupta–Greenberg [DG12] and Longo–Rotger–Vigni ([LRV12]) in the case F =
Q and B a division algebra; by Spiess [Spi14] when F is totally real, B = M2(F ),
Qp = Qp and d = 1. To the best of our knowledge, it is open in all other cases.

We have developed and implemented algorithms to compute approximations to
the periods defining Λf . In the next section we illustrate how these can be used to
find equations for the putative Af , at least in favourable situations.

4. Examples

4.1. Elliptic Curves. We explain first how to compute the equations of el-
liptic curves, from their p-adic periods. First, the knowledge of Λf = 〈qf 〉 gives
us the p-adic period qf , which we conjecture should be the same (up to taking a
rational power whose denominator can be bounded by the p-adic valuation of qf )

as the period qE attached to E = Ef . By possibly replacing qf with q−1f we can

assume that vp(qf ) > 0. By using the q-expansion of the j-function we can recover

j(qf ) = q−1f + 744 + 196884qf + · · · ∈ Q×p .

Instead of trying to recognize j(qf ) algebraically, it is often better to proceed in a
more indirect way, since j(qf ) has much larger height than the minimal equation
for the sought E. Instead, from the knowledge of N (and therefore of the primes
of bad reduction of E) we can guess the discriminant ∆E of a minimal model.
This just amounts to trying finitely many possibilities. One can then use the
equation jE = c34/∆E to recover a p-adic approximation to c4 (after taking a p-adic
cube root). One can then recognize c4 algebraically. Similarly, from the equation
1728∆E = c34 − c26 one may recover c6. The candidate equation is then

E : Y 2 = X3 − c4
48
X − c6

864
.

If E has the right conductor N (which is easily computed using Tate’s algorithm)
one can then proceed to compare some terms of the L-series, until one is convinced
that E is really attached to f . If one requires a proof, then one could use the
Faltings’–Serre method, although we have not done this in practice.

Here is a new example of such a calculation. Let F = Q(α), where α has
minimal polynomial fα(x) = x6 − x5 − 4x4 + x3 + 4x2 + x − 1. The discriminant
of F is disc(F ) = −367792, and it has signature (4, 1). Consider the level N =
(α3 − α2 − 2α), which has norm 7. We take p = N, and consider the quaternion
algebra B/F whose locus of ramification is the set of real places of F . There is a

rational eigenclass f ∈ S2(ΓOF0 (N)). From f we compute ωf ∈ H1(Γ,Ω1
Hp,Z) and

an approximation to Λf = 〈qf 〉. This yields the quantity

qE
?
= qf = 7−2·6853047596542644326090389703040040572577636670446693585944+O(767).

Using the method described above we find

c4 = 16α5 + 16α4 − 48α3 − 32α2 + 32α+ 32

c6 = 160α5 + 264α4 − 32α3 − 336α2 − 256α− 56
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yielding the elliptic curve

E0 : y2 = x3 +
1

3

(
−α5 − α4 + 3α3 + 2α2 − 2α− 2

)
x

+
1

108

(
−20α5 − 33α4 + 4α3 + 42α2 + 32α+ 7

)
with conductor N and seemingly correct L-series.

Note that in this case the working precision allowed us to also recognize j(q−1f )
directly, as the algebraic number

jE =
1

49

(
163840α5 − 180224α4 − 557056α3 + 139264α2 + 360448α+ 368640

)
.

One could have then immediately written down the curve

E1 : y2 = x3 − 3jE(jE − 1728)x− 2jE(jE − 1728)2,

which has the right j-invariant, but its conductor is1

N·(α2−α−1)84·(3)2·(α4−3α2−3α)243·(α5−5α3−α2+3α+1)253·(α5−4α3−2α2+α+2)263.

After performing a quadratic twist by the element

− 3931

78178816
α5− 12315

156357632
α4+

77849

234536448
α3+

182557

469072896
α2− 3

9772352
α− 64003

469072896

we would still recover the curve E0.
Finally, the global minimal model (recall that F has class number one) of E0

is

E/F : y2 +
(
α2 − 1

)
y = x3 −

(
α5 − α4 − 3α3 + α2 − α− 1

)
x2

−
(
α5 + α4 − 3α3 − 6α2 − 2α+ 2

)
x− α5 − α4 + 3α3 + 4α2 − 1.

4.2. Abelian surfaces. Suppose that Af is principally polarizable, so that
Af = Jac(Xf ) for a genus 2 (hyperelliptic) curve Xf . In this section we explain a
method for computing an equation of Xf .

We expect Af (Q̄p) to be isogenous to (Q̄×p )2/Λf . Let ( AB ) , ( BD ) ∈ (Q×p )2 be gen-
erators of Λf . From these generators, we may recover the so-called “half-periods”

p1 = (BD)−1/2, p2 = (AB)−1/2, p3 = B1/2. Write

Xf : y2 = x(x− 1)(x− x1)(x− x2)(x− x3),

and define

λ1 = 1− x−11 , λ2 = (1− x2)−1, λ3 = x3.

Teitelbaum provides in [Tei88] three power series in the variables p1, p2, p3 such
that

λk =
∑

(i,j)∈Z2

a
(k)
i,j p

i
1p
j
2p

(i−j)
3 .

From this, one can compute the absolute invariants i1, i2, i3 of Xf , defined as

i1 = I52/I10, i2 = I32I4/I10, and i3 = I22I6/I10,

where I2, I4, I6, I10 are the Igusa invariants. Next, from N = pD one can again
guess the discriminant I10, which will be of the form u · 2a ·N2, for some u ∈ O×F
and some a ∈ Z≥0. An approximation to i1 = I52/I10 then allows us (after taking

1The notation (a)n with a ∈ OF denotes that the ideal (a) ⊂ OF has norm n.
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a fifth root) to recover I2. The approximation to i2 = I32I4/I10 gives us I4, and
finally i3 = I22I6/I10 gives I6.

The final step is to apply Mestre’s algorithm to find a genus-2 hyperelliptic
curve Xf with invariants (I2 : I4 : I6 : I10).

The problem we are faced with is that Af is determined up to isogeny, so we
should allow for “isogenous” Λf . This will allow us to find Igusa invariants of
smaller height, which we have a chance to identify. Recall that in the elliptic curve
case C×p /qZ1 ∼ C×p /qZ2 if and only if there exist y, z ∈ Z \ {0} with qy1 = qz2 . The
right analogue in higher dimension is provided by the following result.

Theorem 4.1 (Kadziela, [Kad07]). Let V1, V2 ∈Md(Q×p ) whose columns gen-

erate lattices Λ1 and Λ2. Then (Q̄×p )d/Λ1 is isogenous to (Q̄×p )d/Λ2 if and only
if

V Y1 = ZV2, for some Y,Z ∈Md(Z).

Remark 4.2. The notation used in the theorem requires some explanation.
Given a matrix V ∈ Md(Q×p ) and a matrix X ∈ Md(Z), we define the matrix V X

to be the unique matrix W ∈Md(Q×p ) satisfying

`(W ) = X`(V )

for all characters ` : Q×p → Qp. Here ` applied to a matrix is used to mean the

matrix obtained by applying ` to its coefficients. Similarly, by XV we mean the
unique matrix W ∈Md(Q×p ) satisfying

`(W ) = `(V )X,

for all characters ` as above.

In [GM16] we report on two numerical calculations that illustrate how the
above method can be used to compute equations of genus two curves C whose
Jacobian is attached to a modular form over a number field. We end this note
with an example of a surface defined over Q. Recall that in this case Conjecture
3.2 is proven. Therefore, the above method can in fact be regarded as a means of
computing the p-adic L-invariant of Mazur–Tate–Teitelbaum [MTT86]. Explicit
examples of such L-invariants where computed in [Tei88] when C is a modular
curve; we remark that the method presented in this note can be used more generally
when Jac(C) is a simple factor of a modular Jacobian.

Consider the hyperelliptic curve

C : y2 = x6 + 6x5 + 11x4 + 14x3 + 5x2 − 12x,

whose Jacobian has conductor 165 = 3 ·5 ·11 and is a simple factor of Jac(X0(165)).
This curve can be found in [GJG03, Page 412].

Let B/Q be the (indefinite) quaternion algebra of disctriminant 15, which can
be described as Q〈i, j〉, with i2 = −3 and j2 = 5.

At level 11 we find a two-dimensional Hecke-eigenspace for which the Hecke
operator T2 has characteristic polynomial x2 + 2x − 1, of discriminant 8. The
automorphic form f gives thus rise to the field Kf

∼= Q(
√

2). The integration

pairing gives Λf =
(
A0 B0

C0 D0

)
= Z[T2] · (A0 B0 ), with

A0 = 11−16 · 50858735014883518368606093676156223670148823 +O(1142)

B0 = 37393339478940759509269993612373109547450 +O(1141).
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By guessing appropriate Kadziela matrices we obtain a new set of periods:

A = A0B
2
0 B = B−20 .

They give rise to the absolute invariants

(i1, i2, i3) =

(
I52
I10

,
I32I4
I10

,
I22I6
I10

)
=

(
28125651982744

13476375
,−634841652013

26952750
,
163196533921

35937000

)
which match with those of C.

Finally, the p-adic L-invariant of Af = Jac(C) is the element in Z[T2]⊗Z Q11

written a+ bT2, where:

a = 3798008844904804573589510615996706666264894 +O(1141)

b = 4491262769664482304376991401975428348750721 +O(1141).
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