Effective computation of Darmon points

Xevi Guitart

Max-Planck-Institute for Mathematics

Essener Seminar für Algebraische Geometrie und Arithmetik, 29 November 2012

The Birch and Swinnerton-Dyer conjecture

F totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.

Modularity conjecture

There exists a Hilbert modular form *f* over *F* with L(E/F, s) = L(f, s)

- Modularity of E is known in many cases: we will just assume it.
 - Functional equation: $\Lambda(E/F, s) = \pm \Lambda(E/F, 2 s)$
 - L(E/F, s) extends to an entire function
 - Let $r_{an}(E/F) = \operatorname{ord}_{s=1}L(E/F, s)$.

Conjecture (BSD)

Let r(E/F) denote the rank of E(F). Then $r(E/F) = r_{an}(E/F)$.

Theorem (Gross-Zagier, Kolyvagin, Zhang)

If $r_{an}(E/F) \leq 1$ and E satisfies the Jacquet–Langlands condition:

• (JL) either $[F: \mathbb{Q}]$ is odd or \mathcal{N} is not a square

then BSD holds true: $r_{an}(E/F) = r(E/F)$.

Key ingredient: Heegner points

- Points coming from Shimura curve parametrizations.
- Condition (JL) is needed to ensure geometric modularity

 $\pi_E: Jac(X) \longrightarrow E, X/F$ Shimura curve.

- Shimura curves are endowed with a plentiful of algebraic points: the so-called CM points
 - They are associated to elements in quadratic CM extensions K/F
 - $\tau \in K \setminus F \rightsquigarrow CM \text{ point } J_{\tau} \in Jac(X)(K^{ab})$
- Heegner points: CM points satisfying certain additional conditions (e.g., that sign L(E/K, s) = -1)
- By means of π_E one obtains Heegner points on E

$$P_{ au} \in E(K^{\mathrm{ab}})$$

 The arithmetic of P_τ is related to L(E/K, s) thanks to formulas of Gross–Zagier and Zhang Particular case: $F = \mathbb{O}$ and $X = X_0(N)$

- E defined over \mathbb{Q} of conductor N, and K quadratic imaginary field
- Modular parametrization: $\pi_F \colon X_0(N) = \Gamma_0(N) \setminus \mathcal{H}^* \longrightarrow E$
- CM points on E are $\pi_F(K \cap \mathcal{H})$
- Let $f \in S_2(\Gamma_0(N))$ be the newform such that $L(E/\mathbb{Q}; s) = L(f; s)$
- $\omega_f = 2\pi i f(z) dz$ a differential on $X_0(N)$

• For
$$\tau \in K \cap \mathcal{H}$$
 let $J_{\tau} = \int_{\infty}^{\tau} \omega_f \in \mathbb{C}/\Lambda_f \sim \mathbb{C}/\Lambda_E$
$$\Lambda_f = \{\int_{\gamma} \omega_f \mid \gamma \in H_1(X_0(N), \mathbb{Z})\}$$

- $P_{\tau} = \Phi_{\mathrm{W}}(J_{\tau}) \in E(\mathbb{C}), \text{ where } \Phi_{\mathrm{W}} : \mathbb{C}/\Lambda \rightarrow E(\mathbb{C})$
- This is computable: $f(z) = \sum a_n e^{2\pi i n z}$ with $a_p = p + 1 \# E(F_p)$
 - it gives a good algorithm for doing explicit calculations
- Structure of the construction:
 - $\begin{array}{c} \bullet \quad E \rightsquigarrow \text{ differential form } \omega_f \\ \bullet \quad \tau \rightsquigarrow \text{ chain } \Delta_{\tau} = \{\tau \rightarrow \infty\} \end{array} \right\} \longrightarrow J_{\tau} = \int_{\Delta_{\tau}} \omega_f$
- This is a local construction
 - ▶ In principle $P_{\tau} \in E(\mathbb{C})$ (but in fact $P_{\tau} \in E(K^{ab})$)

A natural question

• K/F arbitrary quadratic extension (not necessarily CM) with sign L(E/K, s) = -1

Question

Is there an analytical construction of points in $E(K^{ab})$?

- To the best of my knowledge, nothing about this question has been proved beyond the result of Gross–Zagier and Zhang.
- However, a collection of conjectural constructions of points have been proposed by several authors (Darmon, Dasgupta, Greenberg, Pollack, Rotger, Longo, Vigni, Gartner, Trifkovic...)
 - Construction of local points in E(K_v), where v is a place of K (K_v = ℂ or a p-adic field, depending on v)
 - They are conjectured to be global points, namely to lie in $E(K^{ab})$
 - The constructions are different, depending on K/F and v.
- All these constructions are known under the generic name of Darmon points (a.k.a. Stark–Heegner points).

Numerical calculation of Darmon points

• The constructions resemble some formal similarities, and are inspired by, the Heegner point construction:

$$\left. \begin{array}{c} \boldsymbol{\mathsf{E}} \rightsquigarrow \omega_{f} \\ \boldsymbol{\tau} \in \boldsymbol{\mathsf{K}} \rightsquigarrow \Delta_{\tau} \end{array} \right\} \longrightarrow \boldsymbol{\mathsf{P}}_{\tau} = \int_{\Delta_{\tau}} \omega_{f}$$

- But no "moduli interpretation" for this points is known: they do not correspond to projecting points from any Shimura variety.
 - They are available even when E is not geometrically modular
- Evidence for the rationality: mainly from numerical computations
 - The computed points are really close to global points!
 - Actually, in some cases they turn out to be amazingly efficient algorithms for computing rational points
- But the computational and algorithmic picture is still not complete
 - For some instances of Darmon points, there are no algorithms at all
 - For the instances in which there are, sometimes the algorithm is still very restrictive and applies under some additional hypothesis
- In this talk: explain two instances of Darmon points
 - There was an algorithm, but quite restrictive
 - Provide some extensions that lead to a more general algorithm (joint work with Marc Masdeu)

Outline

- 2 An archimedean construction of Darmon points
- 3 A *p*-adic construction of Darmon points

ATR points (in a simplified setting)

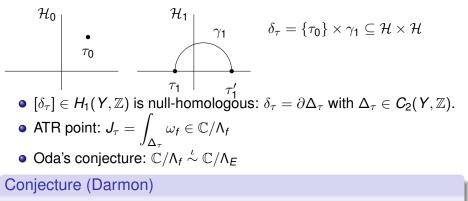
- *F* real quadratic with $h^+(F) = 1$
- *E*/*F* elliptic curve of conductor (1)
- K/F an almost totally real (ATR) quadratic extension (K has 1 complex place and 2 real places)
- This is a situation already presents interesting difficulties
 - ► E does not satisfy (JL), so it is not geometrically modular in general (excepcion: if f_E is a base change, then it is geom. modular)
 - The method of Heegner points is not available for these curves
 - The simplest example is this curve over $\mathbb{Q}(\sqrt{509})$:

$$\Xi_{509}: y^2 - xy - \omega y = x^3 + (2 + 2\omega)x^2 + (162 + 3\omega)x + (71 + 34\omega), \ \omega = \frac{1 + \sqrt{509}}{2}$$

- The differential form attached to E:
 - Modularity: f Hilbert modular form/F with L(E/F, s) = L(f, s)
 - $f: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ invariance property w.r.t. the action of $SL_2(\mathcal{O}_F)$
 - ► $f(z_0, z_1)dz_0dz_1$ descends to a holomorphic differential on $Y = SL_2(\mathcal{O}_F) \setminus (\mathcal{H} \times \mathcal{H})$, the (open) principal Hilbert modular surface
 - We let $\overline{\omega}_f = f(z_0, z_1) dz_0 dz_1 f(\epsilon_0 z_0, \epsilon_1 \overline{z}_1) dz_0 d\overline{z}_1$
 - $(\epsilon =$ fundamental unit of F)

ATR points II

• The ATR cycle attached to $\tau \in K \setminus F$:



The point $\Phi_{\mathrm{W}}(\iota(J_{\tau})) \in E(\mathbb{C})$ belongs to $E(\mathcal{K}^{\mathrm{ab}})$

- Question: how to compute $\int_{\Delta_{\tau}} \omega_f$ in practice?
 - ω_f is a 2-form: we can compute are double integrals $\int_x^y \int_z^t \omega_f$
 - It seems that the ATR cycle only gives 3-limits: $\int_{\tau_1}^{\tau_0} \int_{\tau_1}^{\tau_1'} \omega_f$

X. Guitart (MPIM)

Darmon–Logan algorithm

- Idea: to give a precise meaning to semi-indefinite integrals
- There is a unique map

$$\mathcal{H} imes \mathbb{P}^1(F) imes \mathbb{P}^1(F) \longrightarrow \mathbb{C}/\Lambda_f \ (z, x, y) \longmapsto \int^z \int^y_x \omega_f$$

satisfying certain natural conditions conditions

(i)
$$\int_{\gamma_{X}}^{\gamma_{Z}} \int_{\gamma_{X}}^{\gamma_{Y}} \omega_{f} = \int_{x}^{z} \int_{x}^{y} \omega_{f}$$
 for all $\gamma \in SL_{2}(\mathcal{O}_{F})$,
(ii) $\int_{x}^{z} \int_{x}^{y} \omega_{f} + \int_{x}^{z} \int_{y}^{t} \omega_{f} = \int_{x}^{z} \int_{x}^{t} \omega_{f}$,
(iii) $\int_{x}^{z_{2}} \int_{x}^{y} \omega_{f} - \int_{x}^{z_{1}} \int_{x}^{y} \omega_{f} = \int_{z_{1}}^{z_{2}} \int_{x}^{y} \omega_{f}$.
• Then $\int_{\Delta_{\tau}} \omega_{f} = \int_{\infty}^{\tau_{0}} \int_{\infty}^{\gamma_{\tau}\infty} \omega_{f}$, where $\langle \gamma_{\tau} \rangle = Stab_{SL_{2}(\mathcal{O}_{F})}(\tau_{0})$

- Darmon–Logan algorithm: use (i), (ii), (iii) to transform semi-indefinite integrals into sums of double integrals $\int_x^y \int_z^t \omega_f$, which can be computed summing the Fourier series
 - ► Restriction: algorithm needs to assume *F* is norm-euclidean
 - only 16 real quadratic fields are euclidean ($\mathbb{Q}(\sqrt{73})$) the last one)

Extending Darmon–Logan: continued fractions

- A key step for transforming semi-indefinite integrals into double integrals is a sort of "Manin Trick".
- Involves computing the continued fraction expansion of $c \in F$:

$$c=q_1+rac{1}{q_2+rac{1}{q_3+\cdots+rac{1}{q_n}}}, \ q_1,\ldots,q_n\in\mathcal{O}_F$$

- If *F* is norm-euclidean: euclidean algorithm computes the *q_i*
- Cooke: all fields $\mathbb{Q}(\sqrt{d})$ with class number 1 are conjectured to be 2-stage euclidean: for all $a, b \in \mathcal{O}_F$ there exist q_1, q_2, r_1, r_2

$$a = bq_1 + r_1;$$

 $b = q_2r_1 + r_2; \operatorname{Nm}_{F/\mathbb{Q}}(r_2) < \operatorname{Nm}_{F/\mathbb{Q}}(b)$

Teorema (G.-Masdeu)

There exists an algorithm for verifying if $\mathbb{Q}(\sqrt{d})$ is 2-stage euclidean, and if it is so, for computing continued fractions of elements in *F*. All $\mathbb{Q}(\sqrt{d})$ with class number 1 and $d \leq 8000$ are 2-stage euclidean.

Experimental evidence of the ATR conjecture

• We used this method to compute an ATR point on the non-geometrically modular curve

$$E_{509}: y^2 - xy - \omega y = x^3 + (2 + 2\omega)x^2 + (162 + 3\omega)x + (71 + 34\omega), \ \omega = \frac{1 + \sqrt{509}}{2}$$

- We computed a point over the ATR field given by
 - $K = F(\sqrt{\alpha}), \alpha = 9144\omega + 98577.$
 - the ATR point coincides with a global point of infinite order (up to the computed numerical accuracy)

•
$$P_{ au} \simeq 4 \cdot (\omega + 17, rac{\sqrt{\alpha} + \sqrt{509} + 18}{2}) \in E(K)$$

This gives experimental evidence supporting Darmon's conjecture

- but this is not an efficient method for computing rational points
- it took about 2 days a the 32-processor machine to compute it to 12-digits of accuracy!
- p-adic methods turn out to be much more efficient!

Other archimedean Darmon points

- We have seen: ATR points for *F* real quadratic and $\mathcal{N}_E = (1)$
- Darmon's construction is more general:
 - ► *F* of arbitrary degree and *K*/*F* ATR
 - All primes dividing \mathcal{N}_E are split in K
 - ► The same algorithm applies (but no numerical computations done for [F : Q] > 2)
- Gartner: arbitrary F and arbitrary K/F with sign L(E/K, s) = -1
 - Idea of the construction: replace the Hilbert modular form by modular forms on a Shimura curve attached to a suitable division algebra
 - There is no algorithm, and the conjecture can not be numerically tested at the moment
- G.–Rotger–Zhao: *K*/*F* ATR but replacing *E* by higher dimensional modular abelian varieties
 - There are some numerical calculations, but in some very particular cases

p-adic Darmon points

- E/\mathbb{Q} elliptic curve of conductor N = pM, with $p \nmid M$.
- K/\mathbb{Q} real quadratic field in which
 - p is inert and all primes dividing M are split
- Recall the modular parametrization $\Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C})$
- Naive obstruction to Heegner points: $K \cap \mathcal{H} = \emptyset$
- Idea: replace \mathcal{H} by the *p*-adic upper half plane $\mathcal{H}_p := \mathbb{C}_p \setminus \mathbb{Q}_p$
 - Here $\mathbb{C}_{p} = \overline{\mathbb{Q}_{p}}$ (*p*-adic analogous to $\mathbb{C} \setminus \mathbb{R} = \mathcal{H} \cup \mathcal{H}^{-}$)
 - $K \cap \mathcal{H}_{\rho} \neq \emptyset$ because $K_{\rho} \setminus \mathbb{Q}_{\rho} \neq \emptyset$ (we can think $\mathcal{H}_{\rho} = K_{\rho} \setminus \mathbb{Q}_{\rho}$)
- In this case the Stark–Heegner point construction is

$$\begin{array}{cccc} {\cal K} \cap {\cal H}_{p} & \longrightarrow & {\cal E}({\cal K}_{p}) \\ \tau & \longmapsto & {\cal P}_{\tau} \end{array}$$

• P_{τ} is defined via certain *p*-adic periods of the modular form $f = f_E$

Conjecture (Darmon, 2001)

 P_{τ} a global point, and it is defined over K^{ab}

• Effective computation: Darmon–Green–Pollack algorithm

• under the restriction that M = 1 (i.e., on curves of prime conductor)

Integration in $\mathcal{H}_{p} \times \mathcal{H}$ Double integrals $\oint_{\tau_{1}}^{\tau_{2}} \int_{x}^{y} \omega_{f} \in K_{p}^{\times}, \quad \tau_{1}, \tau_{2} \in \mathcal{H}_{p}, x, y \in \mathbb{P}^{1}(\mathbb{Q})$

Definition

- ► $x, y \in \mathbb{P}^1(\mathbb{Q}) \rightsquigarrow$ measure in $\mathbb{P}^1(\mathbb{Q}_p)$: $\mu_f\{x \rightarrow y\}$

$$\mu_{f}\{x \rightarrow y\}(\gamma \mathbb{Z}_{p}) = \frac{1}{\Omega^{+}} \int_{\gamma^{-1}x}^{\gamma^{-1}y} \operatorname{\mathsf{Re}}(2\pi i f(z) dz) \in \mathbb{Z} \text{ for } \gamma \in \Gamma_{0}(M)$$

$$\oint_{\tau_1}^{\tau_2} \int_x^y \omega_f := \oint_{\mathbb{P}^1(\mathbb{Q}_p)} \left(\frac{t - \tau_2}{t - \tau_1} \right) d\mu_f \{ x \to y \}(t) \in K_p^{\times}$$

- They are multiplicative integrals (Riemann products)
- They can be very efficiently computed using the theory of overconvergent modular symbols of Pollack–Stevens

Semi-indefinite integrals $\oint^{\tau} \int^{y} \omega_{f} \in K_{p}^{\times}, \ \tau \in \mathcal{H}_{p}, \ x, y \in \mathbb{P}^{1}(\mathbb{Q})$

•
$$\oint^{\tau_2} \int_X^Y \omega_f \div \oint^{\tau_1} \int_X^Y \omega_f = \oint^{\tau_2}_{\tau_1} \int_X^Y \omega_f$$

p-adic Darmon points

Definition (Darmon)

Given $\tau \in K \cap \mathcal{H}_p$ then

$$\boldsymbol{P}_{\tau} = \Phi_{\text{Tate}} \left(\int_{-\infty}^{\tau} \int_{-\infty}^{\gamma_{\tau} \infty} \omega_f \right), \quad \langle \gamma_{\tau} \rangle = \text{Stab}_{\Gamma_0(\boldsymbol{M})}(\tau)$$

- Tate's uniformization map: $\Phi_{\text{Tate}} \colon K_{\rho}^{\times}/q_{E}^{\mathbb{Z}} \longrightarrow E(K_{\rho})$
- Darmon-Green-Pollack algorithm
 - Transform semi-indefinite integral into a product of double integrals
 - Compute the double integrals using OMS
- This is the only stage where the assumption M = 1 is needed.
- We give a different method, that works with M > 1.
 - This extends the algorithm to curves of arbitrary conductor.
- Key step: we can assume that $\gamma_{\tau} \in \Gamma_1(M)$

$$\Gamma_1(M) = \left\{ \gamma \in \mathrm{SL}_2(\mathbb{Z}[\frac{1}{\rho}]) \colon \gamma \equiv \begin{pmatrix} 1 & \star \\ 0 & 1 \end{pmatrix} \pmod{M} \right\} \subset \mathrm{SL}_2(\mathbb{Z}[\frac{1}{\rho}])$$

Extending the Darmon–Green–Pollack algorithm

- In this context there is also a "Manin Trick" involved
- Need to express $\gamma_{\tau} \infty \in \mathbb{P}^1(\mathbb{Q})$ as a "continued fraction" of the form

$$\gamma_{\tau}\infty = q_1 + \frac{1}{Mq_2 + \frac{1}{q_3 + \frac{1}{Mq_4 + \cdots}}}, \quad q_1, \ldots, q_n \in \mathbb{Z}[\frac{1}{p}]$$

This is equivalent to a decomposition into elementary matrices

$$\gamma_{\tau} = \begin{pmatrix} 1 & q_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ Mq_2 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & q_{r-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ Mq_r & 1 \end{pmatrix}$$

• If M = 1, this is again the euclidean algorithm!

Theorem (G.–Masdeu)

Assume GRH. There is an algorithm that, given $\gamma \in \Gamma_1(M)$ computes a decomposition of the form

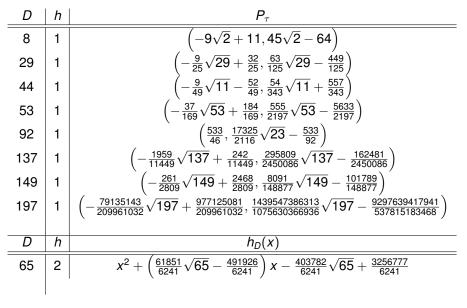
$$\gamma_{\tau} = \begin{pmatrix} 1 & q_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ Mq_2 & 1 \end{pmatrix} \begin{pmatrix} 1 & q_3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ Mq_4 & 1 \end{pmatrix} \begin{pmatrix} 1 & q_5 \\ 0 & 1 \end{pmatrix}, \ \boldsymbol{q}_i \in \mathbb{Z}[\frac{1}{\boldsymbol{\rho}}]$$

Implementation

- We implemented the algorithm in SAGE
 - We used some code by Pollack for computing with overconvergent modular symbols.
 - We have programed the routines for computing the elementary matrix decomposition and for expressing semi-indefinite integrals as products of definite integrals.
- Given an elliptic curve *E* and $K = \mathbb{Q}(\sqrt{D})$ a real quadratic field:
 - choose τ ∈ K_p such that P_τ is conjecturally defined over H_K
 Φ_{Tate}(∮^τ ∫^{γ_τ∞}_∞ ω_f) = (x, y), in principle x, y ∈ K_p

 - We can recognize x, y as elements of H_{K}

Curve 21A1 (p=7, M=3, prec= 7^{80} , $K = \mathbb{Q}(\sqrt{D})$)



Curve 33A1 ($ ho=$ 11, $M=$ 3, prec=3 ⁸⁰ , $K=\mathbb{Q}(\sqrt{D})$)		
13	1	$\left(-\frac{1}{2}\sqrt{13}+\frac{3}{2},\frac{1}{2}\sqrt{13}-\frac{7}{2}\right)$
28	1	$\left(\frac{22}{7}, \frac{55}{49}\sqrt{7} - \frac{11}{7}\right)$
61	1	$\left(-\frac{1}{2}\sqrt{61}+\frac{5}{2},\sqrt{61}-11\right)$
73	1	$\left(-\frac{53339}{49928}\sqrt{73}+\frac{324687}{49928},\frac{31203315}{7888624}\sqrt{73}-\frac{290996167}{7888624}\right)$
76	1	$\left(-2,\sqrt{19}+1\right)$
109	1	$\left(-\frac{143}{2}\sqrt{109}+\frac{1485}{2},\frac{5577}{2}\sqrt{109}-\frac{58223}{2} ight)$
172	1	$\left(-\frac{51842}{21025},\frac{2065147}{3048625}\sqrt{43}+\frac{25921}{21025}\right)$
193	1	$\left(rac{946635333349261}{678412148664608}\sqrt{193}+rac{1048806825770477}{678412148664608}, ight.$
		$\tfrac{147778957920931299317}{12494688311813553741184}\sqrt{193} + \tfrac{30862934493092416035541}{12494688311813553741184} \Big)$
D	h	$h_D(x)$
40	2	$x^{2} + \left(\frac{2849}{1681}\sqrt{10} - \frac{6347}{1681}\right)x - \frac{5082}{1681}\sqrt{10} + \frac{16819}{1681}$
85	2	$x^{2} + \left(\frac{119}{361}\sqrt{85} - \frac{1022}{361}\right)x - \frac{168}{361}\sqrt{85} + \frac{1549}{361}$
145	4	$x^{4} + \left(\frac{169016003453}{83168215321}\sqrt{145} - \frac{1621540207320}{83168215321}\right)x^{3}$
		$ \begin{array}{c} x^4 + \left(\frac{16916003453}{83168215321}\sqrt{145} - \frac{1621540207320}{83168215321}\right)x^3 \\ + \left(-\frac{1534717557538}{83168215321}\sqrt{145} + \frac{18972823294799}{83168215321}\right)x^2 + \left(\frac{5533405190489}{83168215321}\sqrt{145} - \frac{66553066916820}{83168215321}\right) \\ + - \frac{6414913389456}{83168215321}\sqrt{145} + \frac{77248348177561}{83168215321} \end{array} $

Curve 51A1 (p=3, M=17, prec= 3^{80} , $K = \mathbb{Q}(\sqrt{D})$) h $\left(\frac{1}{2}, \frac{1}{4}\sqrt{2} - \frac{1}{2}\right)$ 8 1 $\left(\frac{3}{2}\sqrt{53} + \frac{23}{2}, \frac{15}{2}\sqrt{53} + \frac{107}{2}\right)$ 53 1 $\left(\frac{5559}{55778}\sqrt{77}+\frac{78911}{55778},\frac{2040153}{9314926}\sqrt{77}+\frac{17804737}{9314926}\right)$ 77 1 $\left(\frac{793511}{2401}, \frac{150079871}{235298}\sqrt{89} - \frac{1}{2}\right)$ 89 1 $\frac{656788148124048}{108395925566683225}\sqrt{101} + \frac{108663526315570777}{1083959255666832255},$ 101 1 $\frac{432742605985104670344096}{35687772118459783422252125}\sqrt{101} - \frac{71551860216079551941383354}{35687772118459783422252125}$ $\left(\frac{83}{81}, \frac{193}{1458}\sqrt{137} - \frac{1}{2}\right)$ 137 1 $\frac{41662615293}{110013332450}\sqrt{149} + \frac{802189306199}{110013332450},$ 149 1 $\frac{39791672228037249}{25801976926160750}\sqrt{149} - \frac{635290450369692907}{25801976926160750}$ $\frac{1915814571}{20670100441}\sqrt{38} + \frac{24731592007}{20670100441},$ 152 1 $\frac{577303899566856}{2971761010503011}\sqrt{38} - \frac{7167395643538198}{2971761010503011}$ $\frac{62146167667}{49710362300}, \frac{8395974419456303}{53153799096521000}\sqrt{161} - \frac{1}{2}$ 161 1 $\frac{4968445297101}{1960400420449}\sqrt{26} + \frac{61480175149213}{1960400420440}$ 992302702743 1960400420449 $\frac{57132410901980}{1960400420449}$) x $x^{2} +$ $\sqrt{26} -$ 104 2 $x^2 - \frac{7073157}{13924}x + \frac{398237221}{55696}$ 140 2 $\frac{908505900}{7532677681}\sqrt{185} - \frac{54207252962}{7532677681}$ $\frac{787814100}{7532677681}\sqrt{185} + \frac{45005684581}{7532677681}$ 185 2

X. Guitart (MPIM)

Darmon points

Essen, 2012 24 / 29

Curve 105A1 ($p = 3, M = 5 \cdot 7, \text{prec}=3^{80}, K = \mathbb{Q}(\sqrt{D})$)

More numerical computations

- *p*-adic Darmon points:
 - E/\mathbb{Q} of conductor N = pM
 - ► *K* real quadratic field: *p* is inert and all primes dividing *M* are split
- Matt Greenberg has generalized this construction:
 - K real quadratic and sign L(E/K, s) = -1
 - The construction uses modular forms on quaternion algebras
- We are trying to make his construction algorithmic, and to compute the points in specific examples (joint work with Marc Masdeu)
 - This boils down to finding algorithms for working in certain cohomology groups, for instance H¹(Γ, Meas(P¹(Q_p), Q))

Theoretical evidence

- Some very special type of *p*-adic Darmon points are known to be rational
 - This was proved by Bertolini–Darmon in a situation were they coexist with classical Heegner points
 - They are shown to be essentially the same as the Heegner points
- There is a situation where ATR points coexist with Heegner points
 - *E* of conductor 1 over a real quadratic field
 - *f_E* is a base change from a form over ℚ
- It seems natural to ask whether the two types of points coincide (joint project with Victor Rotger)
 - This involves comparing integrals of a classical modular form f and its base change lift to F

Effective computation of Darmon points

Xevi Guitart

Max-Planck-Institute for Mathematics

Essener Seminar für Algebraische Geometrie und Arithmetik, 29 November 2012