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The Birch and Swinnerton-Dyer conjecture
F totally real field, E/F elliptic curve of conductor N ⊆ F .

Modularity conjecture
There exists a Hilbert modular form f over F with L(E/F , s) = L(f , s)

Modularity of E is known in many cases: we will just assume it.
I Functional equation: Λ(E/F , s) = ±Λ(E/F ,2− s)
I L(E/F , s) extends to an entire function
I Let ran(E/F ) = ords=1L(E/F , s).

Conjecture (BSD)
Let r(E/F ) denote the rank of E(F ). Then r(E/F ) = ran(E/F ).

Theorem (Gross–Zagier, Kolyvagin, Zhang)
If ran(E/F ) ≤ 1 and E satisfies the Jacquet–Langlands condition:

(JL) either [F : Q] is odd or N is not a square
then BSD holds true: ran(E/F ) = r(E/F ).
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Key ingredient: Heegner points
Points coming from Shimura curve parametrizations.
Condition (JL) is needed to ensure geometric modularity

πE : Jac(X ) −→ E , X/F Shimura curve.

Shimura curves are endowed with a plentiful of algebraic points:
the so-called CM points

I They are associated to elements in quadratic CM extensions K/F
I τ ∈ K \ F  CM point Jτ ∈ Jac(X )(K ab)

Heegner points: CM points satisfying certain additional conditions
(e.g., that sign L(E/K , s) = −1)
By means of πE one obtains Heegner points on E

Pτ ∈ E(K ab)

The arithmetic of Pτ is related to L(E/K , s) thanks to formulas of
Gross–Zagier and Zhang
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Particular case: F = Q and X = X0(N)
E defined over Q of conductor N, and K quadratic imaginary field
Modular parametrization: πE : X0(N) = Γ0(N) \ H∗ −→ E
CM points on E are πE (K ∩H)

Let f ∈ S2(Γ0(N)) be the newform such that L(E/Q; s) = L(f ; s)

ωf = 2πif (z)dz a differential on X0(N)

For τ ∈ K ∩H let Jτ =

∫ τ

∞
ωf ∈ C/Λf ∼ C/ΛE

Λf = {
∫
γ
ωf | γ ∈ H1(X0(N),Z)}

Pτ = ΦW(Jτ ) ∈ E(C), where ΦW : C/Λ→E(C)
This is computable: f (z) =

∑
ane2πinz with ap = p + 1−#E(Fp)

I it gives a good algorithm for doing explicit calculations
Structure of the construction:

I E  differential form ωf
I τ  chain ∆τ = {τ →∞}

}
−→ Jτ =

∫
∆τ

ωf

This is a local construction
I In principle Pτ ∈ E(C) (but in fact Pτ ∈ E(K ab))
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A natural question
K/F arbitrary quadratic extension (not necessarily CM) with
sign L(E/K , s) = −1

Question
Is there an analytical construction of points in E(K ab)?

To the best of my knowledge, nothing about this question has
been proved beyond the result of Gross–Zagier and Zhang.
However, a collection of conjectural constructions of points have
been proposed by several authors (Darmon, Dasgupta,
Greenberg, Pollack, Rotger, Longo, Vigni, Gartner, Trifkovic...)

I Construction of local points in E(Kv ), where v is a place of K
(Kv = C or a p-adic field, depending on v )

I They are conjectured to be global points, namely to lie in E(K ab)
I The constructions are different, depending on K/F and v .

All these constructions are known under the generic name of
Darmon points (a.k.a. Stark–Heegner points).
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Numerical calculation of Darmon points
The constructions resemble some formal similarities, and are
inspired by, the Heegner point construction:

I E  ωf
I τ ∈ K  ∆τ

}
−→ Pτ =

∫
∆τ

ωf

But no “moduli interpretation” for this points is known: they do not
correspond to projecting points from any Shimura variety.

I They are available even when E is not geometrically modular
Evidence for the rationality: mainly from numerical computations

I The computed points are really close to global points!
I Actually, in some cases they turn out to be amazingly efficient

algorithms for computing rational points
But the computational and algorithmic picture is still not complete

I For some instances of Darmon points, there are no algorithms at all
I For the instances in which there are, sometimes the algorithm is

still very restrictive and applies under some additional hypothesis
In this talk: explain two instances of Darmon points

I There was an algorithm, but quite restrictive
I Provide some extensions that lead to a more general algorithm

(joint work with Marc Masdeu)
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Outline

1 Heegner points and Darmon points

2 An archimedean construction of Darmon points

3 A p-adic construction of Darmon points

4 Further work
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ATR points (in a simplified setting)
F real quadratic with h+(F ) = 1
E/F elliptic curve of conductor (1)
K/F an almost totally real (ATR) quadratic extension
(K has 1 complex place and 2 real places)
This is a situation already presents interesting difficulties

I E does not satisfy (JL), so it is not geometrically modular in general
(excepcion: if fE is a base change, then it is geom. modular)

I The method of Heegner points is not available for these curves
I The simplest example is this curve over Q(

√
509):

E509 : y2−xy−ωy = x3 +(2+2ω)x2 +(162+3ω)x +(71+34ω), ω =
1 +
√

509
2

The differential form attached to E :
I Modularity: f Hilbert modular form/F with L(E/F , s) = L(f , s)
I f : H×H→C invariance property w.r.t. the action of SL2(OF )
I f (z0, z1)dz0dz1 descends to a holomorphic differential on

Y = SL2(OF )\ (H×H), the (open) principal Hilbert modular surface
I We let ωf = f (z0, z1)dz0dz1 − f (ε0z0, ε1z1)dz0dz1

(ε = fundamental unit of F )
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ATR points II
The ATR cycle attached to τ ∈ K \ F :

H0 H1

τ0

τ1 τ ′1

γ1 δτ = {τ0} × γ1 ⊆ H×H

[δτ ] ∈ H1(Y ,Z) is null-homologous: δτ = ∂∆τ with ∆τ ∈ C2(Y ,Z).

ATR point: Jτ =

∫
∆τ

ωf ∈ C/Λf

Oda’s conjecture: C/Λf
ι∼ C/ΛE

Conjecture (Darmon)
The point ΦW(ι(Jτ )) ∈ E(C) belongs to E(K ab)

Question: how to compute
∫

∆τ
ωf in practice?

I ωf is a 2-form: we can compute are double integrals
∫ y

x

∫ t
z ωf

I It seems that the ATR cycle only gives 3-limits:
∫ τ0
∫ τ ′1
τ1
ωf
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Darmon–Logan algorithm
Idea: to give a precise meaning to semi-indefinite integrals
There is a unique map

H× P1(F )× P1(F ) −→ C/Λf
(z, x , y) 7−→

∫ z ∫ y
x ωf

satisfying certain natural conditions conditions

(i)
∫ γz ∫ γy

γx ωf =
∫ z ∫ y

x ωf for all γ ∈ SL2(OF ),

(ii)
∫ z ∫ y

x ωf +
∫ z ∫ t

y ωf =
∫ z ∫ t

x ωf ,

(iii)
∫ z2
∫ y

x ωf −
∫ z1
∫ y

x ωf =
∫ z2

z1

∫ y
x ωf .

Then
∫

∆τ

ωf =

∫ τ0
∫ γτ∞

∞
ωf , where 〈γτ 〉 = StabSL2(OF )(τ0)

Darmon–Logan algorithm: use (i), (ii), (iii) to transform
semi-indefinite integrals into sums of double integrals

∫ y
x

∫ t
z ωf ,

which can be computed summing the Fourier series
I Restriction: algorithm needs to assume F is norm-euclidean
I only 16 real quadratic fields are euclidean (Q(

√
73) the last one)
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Extending Darmon–Logan: continued fractions
A key step for transforming semi-indefinite integrals into double
integrals is a sort of “Manin Trick”.
Involves computing the continued fraction expansion of c ∈ F :

c = q1 +
1

q2 + 1
q3+···+ 1

qn

, q1, . . . ,qn ∈ OF

If F is norm-euclidean: euclidean algorithm computes the qi

Cooke: all fields Q(
√

d) with class number 1 are conjectured to be
2-stage euclidean: for all a,b ∈ OF there exist q1,q2, r1, r2

a = bq1 + r1;

b = q2r1 + r2; NmF/Q(r2) < NmF/Q(b)

Teorema (G.-Masdeu)

There exists an algorithm for verifying if Q(
√

d) is 2-stage euclidean,
and if it is so, for computing continued fractions of elements in F .
All Q(

√
d) with class number 1 and d ≤ 8000 are 2-stage euclidean.
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Experimental evidence of the ATR conjecture

We used this method to compute an ATR point on the
non-geometrically modular curve

E509 : y2−xy−ωy = x3 +(2+2ω)x2 +(162+3ω)x +(71+34ω), ω =
1 +
√

509
2

We computed a point over the ATR field given by
I K = F (

√
α), α = 9144ω + 98577.

I the ATR point coincides with a global point of infinite order
(up to the computed numerical accuracy)

I Pτ ' 4 · (ω + 17,
√
α+
√

509+18
2 ) ∈ E(K )

This gives experimental evidence supporting Darmon’s conjecture
I but this is not an efficient method for computing rational points
I it took about 2 days a the 32-processor machine to compute it to

12-digits of accuracy!

p-adic methods turn out to be much more efficient!
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Other archimedean Darmon points

We have seen: ATR points for F real quadratic and NE = (1)

Darmon’s construction is more general:
I F of arbitrary degree and K/F ATR
I All primes dividing NE are split in K
I The same algorithm applies (but no numerical computations done

for [F : Q] > 2)
Gartner: arbitrary F and arbitrary K/F with sign L(E/K , s) = −1

I Idea of the construction: replace the Hilbert modular form by
modular forms on a Shimura curve attached to a suitable division
algebra

I There is no algorithm, and the conjecture can not be numerically
tested at the moment

G.–Rotger–Zhao: K/F ATR but replacing E by higher dimensional
modular abelian varieties

I There are some numerical calculations, but in some very particular
cases
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p-adic Darmon points
E/Q elliptic curve of conductor N = pM, with p - M.
K/Q real quadratic field in which

I p is inert and all primes dividing M are split
Recall the modular parametrization Γ0(N) \ H −→ E(C)
Naive obstruction to Heegner points: K ∩H = ∅
Idea: replace H by the p-adic upper half plane Hp := Cp \Qp

I Here Cp = Q̂p (p-adic analogous to C \ R = H ∪H−)
I K ∩Hp 6= ∅ because Kp \Qp 6= ∅ (we can think Hp = Kp \Qp)

In this case the Stark–Heegner point construction is

K ∩Hp −→ E(Kp)
τ 7−→ Pτ

Pτ is defined via certain p-adic periods of the modular form f = fE
Conjecture (Darmon, 2001)
Pτ a global point, and it is defined over K ab

Effective computation: Darmon–Green–Pollack algorithm
I under the restriction that M = 1 (i.e., on curves of prime conductor)
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Integration in Hp ×H
Double integrals ×

∫ τ2

τ1

∫ y

x
ωf ∈ K×p , τ1, τ2 ∈ Hp, x , y ∈ P1(Q)

Definition
I Γ0(M) =

{
γ ∈ SL2(Z[ 1

p ]) : γ ≡ ( ? ?0 ? ) (mod M)
}
⊂ SL2(Z[ 1

p ])

I x , y ∈ P1(Q) measure in P1(Qp): µf{x→y}

µf{x→y}(γZp) =
1

Ω+

∫ γ−1y

γ−1x
Re(2πif (z)dz) ∈ Z for γ ∈ Γ0(M)

I ×
∫ τ2

τ1

∫ y

x
ωf := ×

∫
P1(Qp)

(
t − τ2

t − τ1

)
dµf{x→y}(t) ∈ K×p

I They are multiplicative integrals (Riemann products)
I They can be very efficiently computed using the theory of

overconvergent modular symbols of Pollack–Stevens

Semi-indefinite integrals ×
∫ τ ∫ y

x
ωf ∈ K×p , τ ∈ Hp, x , y ∈ P1(Q)

×
∫ τ2

∫ y

x
ωf ÷×

∫ τ1
∫ y

x
ωf = ×

∫ τ2

τ1

∫ y

x
ωf
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p-adic Darmon points
Definition (Darmon)
Given τ ∈ K ∩Hp then

Pτ = ΦTate

(∫ τ ∫ γτ∞

∞
ωf

)
, 〈γτ 〉 = StabΓ0(M)(τ)

Tate’s uniformization map: ΦTate : K×p /qZ
E −→ E(Kp)

Darmon-Green-Pollack algorithm
I Transform semi-indefinite integral into a product of double integrals
I Compute the double integrals using OMS

This is the only stage where the assumption M = 1 is needed.
We give a different method, that works with M > 1.

I This extends the algorithm to curves of arbitrary conductor.
Key step: we can assume that γτ ∈ Γ1(M)

Γ1(M) =

{
γ ∈ SL2(Z[

1
p

]) : γ ≡
(

1 ?
0 1

)
(mod M)

}
⊂ SL2(Z[

1
p

])
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Extending the Darmon–Green–Pollack algorithm
In this context there is also a “Manin Trick” involved
Need to express γτ∞ ∈ P1(Q) as a “continued fraction” of the form

γτ∞ = q1 +
1

Mq2 + 1
q3+ 1

Mq4+···

, q1, . . . ,qn ∈ Z[
1
p

]

This is equivalent to a decomposition into elementary matrices

γτ =
(

1 q1
0 1

)(
1 0

Mq2 1

)
· · ·
(

1 qr−1
0 1

)(
1 0

Mqr 1

)
If M = 1, this is again the euclidean algorithm!

Theorem (G.–Masdeu)
Assume GRH. There is an algorithm that, given γ ∈ Γ1(M) computes a
decomposition of the form

γτ =
(

1 q1
0 1

)(
1 0

Mq2 1

)(
1 q3
0 1

)(
1 0

Mq4 1

)(
1 q5
0 1

)
, qi ∈ Z[

1
p

]
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Implementation

We implemented the algorithm in SAGE
I We used some code by Pollack for computing with overconvergent

modular symbols.
I We have programed the routines for computing the elementary

matrix decomposition and for expressing semi-indefinite integrals
as products of definite integrals.

Given an elliptic curve E and K = Q(
√

D) a real quadratic field:
I choose τ ∈ Kp such that Pτ is conjecturally defined over HK
I ΦTate(×

∫ τ ∫ γτ∞
∞ ωf ) = (x , y), in principle x , y ∈ Kp

I We can recognize x , y as elements of HK
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Curve 21A1 (p=7, M=3, prec=780, K = Q(
√

D))
D h Pτ

8 1
(
−9
√

2 + 11,45
√

2− 64
)

29 1
(
− 9

25

√
29 + 32

25 ,
63

125

√
29− 449

125

)
44 1

(
− 9

49

√
11− 52

49 ,
54

343

√
11 + 557

343

)
53 1

(
− 37

169

√
53 + 184

169 ,
555

2197

√
53− 5633

2197

)
92 1

(
533
46 ,

17325
2116

√
23− 533

92

)
137 1

(
− 1959

11449

√
137 + 242

11449 ,
295809

2450086

√
137− 162481

2450086

)
149 1

(
− 261

2809

√
149 + 2468

2809 ,
8091

148877

√
149− 101789

148877

)
197 1

(
− 79135143

209961032

√
197 + 977125081

209961032 ,
1439547386313
1075630366936

√
197− 9297639417941

537815183468

)
D h hD(x)

65 2 x2 +
(

61851
6241

√
65− 491926

6241

)
x − 403782

6241

√
65 + 3256777

6241

X. Guitart (MPIM) Darmon points Essen, 2012 22 / 29



Curve 33A1 (p = 11, M = 3, prec=380, K = Q(
√

D))
D h P+

13 1
(
− 1

2

√
13 + 3

2 ,
1
2

√
13− 7

2

)
28 1

(
22
7 ,

55
49

√
7− 11

7

)
61 1

(
− 1

2

√
61 + 5

2 ,
√

61− 11
)

73 1
(
− 53339

49928

√
73 + 324687

49928 ,
31203315
7888624

√
73− 290996167

7888624

)
76 1

(
−2,
√

19 + 1
)

109 1
(
− 143

2

√
109 + 1485

2 , 5577
2

√
109− 58223

2

)
172 1

(
− 51842

21025 ,
2065147
3048625

√
43 + 25921

21025

)
193 1

(
94663533349261

678412148664608

√
193 + 1048806825770477

678412148664608 ,

147778957920931299317
12494688311813553741184

√
193 + 30862934493092416035541

12494688311813553741184

)
D h hD(x)

40 2 x2 +
(

2849
1681

√
10− 6347

1681

)
x − 5082

1681

√
10 + 16819

1681

85 2 x2 +
(

119
361

√
85− 1022

361

)
x − 168

361

√
85 + 1549

361

145 4 x4 +
(

169016003453
83168215321

√
145− 1621540207320

83168215321

)
x3

+
(
− 1534717557538

83168215321

√
145 + 18972823294799

83168215321

)
x2 +

(
5533405190489
83168215321

√
145− 66553066916820

83168215321

)
x

+− 6414913389456
83168215321

√
145 + 77248348177561

83168215321

X. Guitart (MPIM) Darmon points Essen, 2012 23 / 29



Curve 51A1 (p=3, M=17, prec=380, K = Q(
√

D))
D h P+

8 1
(

1
2 ,

1
4

√
2− 1

2

)
53 1

(
3
2

√
53 + 23

2 ,
15
2

√
53 + 107

2

)
77 1

(
5559
55778

√
77 + 78911

55778 ,
2040153
9314926

√
77 + 17804737

9314926

)
89 1

(
793511
2401 , 150079871

235298

√
89− 1

2

)
101 1

(
− 656788148124048

108395925566683225

√
101 + 108663526315570777

108395925566683225 ,

432742605985104670344096
35687772118459783422252125

√
101− 71551860216079551941383354

35687772118459783422252125

)
137 1

(
83
81 ,

193
1458

√
137− 1

2

)
149 1

(
− 41662615293

110013332450

√
149 + 802189306199

110013332450 ,

39791672228037249
25801976926160750

√
149− 635290450369692907

25801976926160750

)
152 1

(
− 1915814571

20670100441

√
38 + 24731592007

20670100441 ,

577303899566856
2971761010503011

√
38− 7167395643538198

2971761010503011

)
161 1

(
62146167667
49710362300 ,

8395974419456303
53153799096521000

√
161− 1

2

)
104 2 x2 +

(
− 992302702743

1960400420449

√
26− 57132410901980

1960400420449

)
x − 4968445297101

1960400420449

√
26 + 61480175149213

1960400420449

140 2 x2 − 7073157
13924 x + 398237221

55696

185 2 x2 +
(
− 908505900

7532677681

√
185− 54207252962

7532677681

)
x − 787814100

7532677681

√
185 + 45005684581

7532677681
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Curve 105A1 (p = 3, M = 5 · 7, prec=380, K = Q(
√

D))

D h P+

29 1 2 ·
(

5
2

√
29 + 29

2 ,
25
2

√
29 + 133

2

)
44 1

(
47
36 ,

13
54

√
11− 83

72

)
149 1

(
41297
48050

√
149 + 554429

48050 ,
28371039
7447750

√
149 + 340434623

7447750

)
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More numerical computations

p-adic Darmon points:
I E/Q of conductor N = pM
I K real quadratic field: p is inert and all primes dividing M are split

Matt Greenberg has generalized this construction:
I K real quadratic and sign L(E/K , s) = −1
I The construction uses modular forms on quaternion algebras

We are trying to make his construction algorithmic, and to
compute the points in specific examples (joint work with Marc
Masdeu)

I This boils down to finding algorithms for working in certain
cohomology groups, for instance H1(Γ,Meas(P1(Qp),Q))
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Theoretical evidence

Some very special type of p-adic Darmon points are known to be
rational

I This was proved by Bertolini–Darmon in a situation were they
coexist with classical Heegner points

I They are shown to be essentially the same as the Heegner points
There is a situation where ATR points coexist with Heegner points

I E of conductor 1 over a real quadratic field
I fE is a base change from a form over Q

It seems natural to ask whether the two types of points coincide
(joint project with Victor Rotger)

I This involves comparing integrals of a classical modular form f and
its base change lift to F
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