Heegner points on Elliptic curves

Xevi Guitart (UB)

BMS-BGSMath Junior Meeting 2022

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$

Open question

Is there an alaorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

Open question
Is there an alaorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$

Open question
Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?
\square

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- In fact, this equation has infinitely many solutions

Open question
Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- $(1,0) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question
Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- $(1,0) \in C(\mathbb{Q}),(-3 / 5,4 / 5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- $(1,0) \in C(\mathbb{Q}),(-3 / 5,4 / 5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- $(1,0) \in C(\mathbb{Q}),(-3 / 5,4 / 5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- $(1,0) \in C(\mathbb{Q}),(-3 / 5,4 / 5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve
- This case is already open
- But a lot is known: for example, topology plays a role!

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- $(1,0) \in C(\mathbb{Q}),(-3 / 5,4 / 5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve
- This case is already open

Diophantine equations

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- C: $x^{2}+y^{2}-1=0$
- $C(\mathbb{Q})=\{$ solutions of C with rational coordinates $\} \subset \mathbb{A}^{2}$
- $(1,0) \in C(\mathbb{Q}),(-3 / 5,4 / 5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$ is called a plane curve
- This case is already open
- But a lot is known: for example, topology plays a role!

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.
- $C: x^{2}+y^{2}-1=0 \rightsquigarrow \bar{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

\square
$a>1$ then $C(\mathbb{O})$ is finite.

- $g=0$ is known: for $d=2$ either $\bar{C}(\mathbb{Q})=\emptyset$ or $\bar{C}(\mathbb{Q})$ can be parametrized by $\mathbb{Q} \cup\{\infty\}$.
- $g=1$: there is no known method to determine whether $\bar{C}(\mathbb{Q})=\emptyset$

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+$ di with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular) - non-compact, but can be compactified adding finitely many points:

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.
- $C: x^{2}+y^{2}-1=0 \rightsquigarrow \bar{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If $a>1$ then $C(\mathbb{O})$ is finite.

- $g=0$ is known: for $d=2$ either $\bar{C}(\mathbb{Q})=\emptyset$ or $\bar{C}(\mathbb{Q})$ can be parametrized by $\mathbb{Q} \cup\{\infty\}$.
- $g=1$: there is no known method to determine whether $C(\mathbb{Q})=\emptyset$

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

- $g=0$ is known: for $d=2$ either $\bar{C}(\mathbb{Q})=\emptyset$ or $\bar{C}(\mathbb{Q})$ can be parametrized by $\mathbb{Q} \cup\{\infty\}$
- $g=1$: there is no known method to determine whether $C(\mathbb{Q})=\emptyset$

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

\square

- $g=1$: there is no known method to determine whether $C(Q)=\emptyset$

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus

\square
\square
\square

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+$ di with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.
- $C: x^{2}+y^{2}-1=0 \rightsquigarrow \bar{C}(\mathbb{C})$ is homeomorphic to a sphere

If $g>1$ then $C(\mathbb{Q})$ is finite.

- $g=0$ is known: for $d=2$ either $\bar{C}(\mathbb{Q})=\emptyset$ or $\bar{C}(\mathbb{Q})$ can be

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.
- $C: x^{2}+y^{2}-1=0 \rightsquigarrow \bar{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If $g>1$ then $C(\mathbb{Q})$ is finite.

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.
- $C: x^{2}+y^{2}-1=0 \rightsquigarrow \bar{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If $g>1$ then $C(\mathbb{Q})$ is finite.

- $g=0$ is known: for $d=2$ either $\bar{C}(\mathbb{Q})=\emptyset$ or $\bar{C}(\mathbb{Q})$ can be parametrized by $\mathbb{Q} \cup\{\infty\}$.

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.
- $C: x^{2}+y^{2}-1=0 \rightsquigarrow \bar{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If $g>1$ then $C(\mathbb{Q})$ is finite.

- $g=0$ is known: for $d=2$ either $\bar{C}(\mathbb{Q})=\emptyset$ or $\bar{C}(\mathbb{Q})$ can be parametrized by $\mathbb{Q} \cup\{\infty\}$.
- $g=1$: there is no known method to determine whether $\bar{C}(\mathbb{Q})=\emptyset$

Topology meets number theory

- $C: f(x, y)=0 \rightsquigarrow C(\mathbb{C})=\{$ solutions with $x, y \in \mathbb{C}\}$
- Write $x=a+b i, y=c+d i$ with $a, b, c, d \in \mathbb{R}$
- 2 equations in 4 unknnowns \rightsquigarrow it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$
\bar{C}: z^{d} f\left(\frac{x}{z}, \frac{y}{z}\right)=0 \text { and } \bar{C}(\mathbb{Q}) \subset \mathbb{P}^{2}
$$

- $\bar{C}(\mathbb{C})$ is homeomorphic to a g-holed torus, where g is the genus
- Formula: $g=(d-1)(d-2) / 2$ where d is the degree of f.
- $C: x^{2}+y^{2}-1=0 \rightsquigarrow \bar{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If $g>1$ then $C(\mathbb{Q})$ is finite.

- $g=0$ is known: for $d=2$ either $\bar{C}(\mathbb{Q})=\emptyset$ or $\bar{C}(\mathbb{Q})$ can be parametrized by $\mathbb{Q} \cup\{\infty\}$.
- $g=1$: there is no known method to determine whether $\bar{C}(\mathbb{Q})=\emptyset$
- If $\bar{C}(\mathbb{Q}) \neq \emptyset \rightsquigarrow C$ is called an elliptic curve

Elliptic curves

Elliptic curve
A non-singular genus 1 curve which has a rational point.

- By a rational change of variables they can be transformed into
\square

Key property

One can define a group operation

Elliptic curves

Elliptic curve

A non-singular genus 1 curve which has a rational point.

- By a rational change of variables they can be transformed into

$$
E: y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Z}, A^{3}-27 B^{2} \neq 0 .
$$

One can define a group operation

Elliptic curves

Elliptic curve

A non-singular genus 1 curve which has a rational point.

- By a rational change of variables they can be transformed into

$$
E: y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Z}, A^{3}-27 B^{2} \neq 0
$$

- [0: 1: 0] point of $y^{2} z=x^{3}+A x z^{2}+B z^{3}$, the only point at infinity

One can define a group operation

Elliptic curves

Elliptic curve

A non-singular genus 1 curve which has a rational point.

- By a rational change of variables they can be transformed into

$$
E: y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Z}, A^{3}-27 B^{2} \neq 0
$$

- [0: 1: 0] point of $y^{2} z=x^{3}+A x z^{2}+B z^{3}$, the only point at infinity
- Example:

$$
E: y^{2}=x^{3}-16 x+16
$$

One can define a group operation

Elliptic curves

Elliptic curve

A non-singular genus 1 curve which has a rational point.

- By a rational change of variables they can be transformed into

$$
E: y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Z}, A^{3}-27 B^{2} \neq 0
$$

- [0: 1: 0] point of $y^{2} z=x^{3}+A x z^{2}+B z^{3}$, the only point at infinity
- Example:

$$
E: y^{2}=x^{3}-16 x+16
$$

- $(0,4),(4,4) \in E(\mathbb{Q})$

One can define a group operation

Elliptic curves

Elliptic curve

A non-singular genus 1 curve which has a rational point.

- By a rational change of variables they can be transformed into

$$
E: y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Z}, A^{3}-27 B^{2} \neq 0 .
$$

- [0:1:0] point of $y^{2} z=x^{3}+A x z^{2}+B z^{3}$, the only point at infinity
- Example:

$$
E: y^{2}=x^{3}-16 x+16
$$

- $(0,4),(4,4) \in E(\mathbb{Q})$

Key property

One can define a group operation

$$
\begin{aligned}
+: \quad E(\mathbb{Q}) \times E(\mathbb{Q}) & \longrightarrow E(\mathbb{Q}) \\
(P, Q) & \longmapsto P+Q
\end{aligned}
$$

Elliptic curves

Elliptic curve

A non-singular genus 1 curve which has a rational point.

- By a rational change of variables they can be transformed into

$$
E: y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Z}, A^{3}-27 B^{2} \neq 0 .
$$

- [0:1:0] point of $y^{2} z=x^{3}+A x z^{2}+B z^{3}$, the only point at infinity
- Example:

$$
\stackrel{E: y^{2}=x^{3}-16 x+16}{-(0,4),(4,4) \in E(\mathbb{Q})}
$$

Key property

One can define a group operation

$$
\begin{aligned}
+: \quad E(\mathbb{Q}) \times E(\mathbb{Q}) & \longrightarrow E(\mathbb{Q}) \\
(P, Q) & \longmapsto P+Q
\end{aligned}
$$

- From $P=(0,4)$ and $Q=(4,4) \rightsquigarrow P+Q \in E(\mathbb{Q})$

The group of points

- This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922) $E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \oplus T$
- T is finite, its points have finite order
- r is called the rank of E.
- T is pretty well understood:
- The rank is only understood conjecturally

The group of points

- This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

$E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \oplus T$
- T is finite, its points have finite order
- r is called the rank of E.
- T is pretty well understood:
- The rank is only understood conjecturally

The group of points

- This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

$E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \oplus T$
- T is finite, its points have finite order
- r is called the rank of E.
- The rank is only understood conjecturally

The group of points

- This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

$E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \oplus T$
- T is finite, its points have finite order
- r is called the rank of E.
- T is pretty well understood:

The group of points

- This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

$E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \oplus T$
- T is finite, its points have finite order
- r is called the rank of E.
- T is pretty well understood:

Theorem (Mazur, 1977)
$T \simeq\left\{\begin{array}{l}\mathbb{Z} / N \mathbb{Z}, \quad 1 \leq N \leq 10 \text { or } N=12 \\ \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 N \mathbb{Z}, \quad 1 \leq N \leq 4\end{array}\right.$

- The rank is only understood conjecturally

The group of points

- This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

$E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \oplus T$
- T is finite, its points have finite order
- r is called the rank of E.
- T is pretty well understood:

Theorem (Mazur, 1977)
$T \simeq\left\{\begin{array}{l}\mathbb{Z} / N \mathbb{Z}, \quad 1 \leq N \leq 10 \text { or } N=12 \\ \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 N \mathbb{Z}, \quad 1 \leq N \leq 4\end{array}\right.$

- The rank is only understood conjecturally

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

- Define $a_{p}:=p-\#$ solutions
- $L(E, s)=\prod_{n \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n \geq 1} a_{n} n^{-s}$

Birch and Swinnerton-Dyer Conjecture

The rank r of E equals ord $_{s=1} L(F, s)$

> Theorem (Gross-Zagier 1986, Kolyvagin 1990) If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1 , the BSD Conjecture is true.

- In particular, if ords=1 $L(E, s)=1, E$ has a point of infinite order. - Main tool in the proof: Heegner Points

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

$$
y^{2} \equiv x^{3}+A x+B \quad(\bmod p)
$$

- Define $a_{p}:=p$ - \#solutions
- $L(E, s)=\prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n \geq 1} a_{n} n^{-s}$
\square
Birch and Swinnerton-Dyer Conjecture
The rank r of E equals ord ${ }_{s=1} L(E, s)$

Theorem (Gross-Zagier 1986, Kolyvagin 1990) If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1 , the BSD Conjecture is true.

- In particular, if ords $L(E, s)=1$, \leq has a point of infinite order. - Main tool in the proof: Heegner Points

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

$$
y^{2} \equiv x^{3}+A x+B \quad(\bmod p)
$$

- Define $a_{p}:=p-\#$ solutions

Birch and Swinnerton-Dyer Conjecture
 The rank r of F equals ords $1(F s)$
 \square
 Theorem (Gross-Zagier 1986, Kolyvagin 1990) If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1 , the BSD Conjecture is true.

- In particular, if ords=1 $L(E, s)=1, E$ has a point of infinite order. - Main tool in the proof: Heegner Points

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

$$
y^{2} \equiv x^{3}+A x+B \quad(\bmod p)
$$

- Define $a_{p}:=p-\#$ solutions
- $L(E, s)=\prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n \geq 1} a_{n} n^{-s}$

Birch and Swinnerton-Dyer Conjecture
 The rank r of F equals ord ${ }_{s+1} 1(F s)$
 Theorem (Gross-Zagier 1986, Kolyvagin 1990) If $\operatorname{ord}_{s-1} L(E . s)$ is 0 or 1 , the BSD Conjecture is true.

- In particular, if $\operatorname{ord}_{s=1} L(E, s)=1, E$ has a point of infinite order. - Main tool in the proof: Heegner Points

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

$$
y^{2} \equiv x^{3}+A x+B \quad(\bmod p)
$$

- Define $a_{p}:=p-\#$ solutions
- $L(E, s)=\prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n \geq 1} a_{n} n^{-s}$
- Product only converges for $\operatorname{Re}(s)>3 / 2$, but can be extended to \mathbb{C}
\square
Birch and Swinnerton-Dyer Conjecture
The rank r of E equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross-Zagier 1986, Kolyvagin 1990) If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1 , the BSD Conjecture is true.

- In particular, if $\operatorname{ord}_{s=1} L(E, s)=1, E$ has a point of infinite order. - Main tool in the proof: Heegner Points

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

$$
y^{2} \equiv x^{3}+A x+B \quad(\bmod p)
$$

- Define $a_{p}:=p-\#$ solutions
- $L(E, s)=\prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n \geq 1} a_{n} n^{-s}$
- Product only converges for $\operatorname{Re}(s)>3 / 2$, but can be extended to \mathbb{C}

Birch and Swinnerton-Dyer Conjecture

The rank r of E equals $\operatorname{ord}_{s=1} L(E, s)$
\square
Theorem (Gross-Zagier 1986, Kolyvagin 1990) If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1 , the BSD Conjecture is true.

- In particular, if $\operatorname{ord}_{s=1} L(E, s)=1, E$ has a point of infinite order. - Main tool in the proof: Heegner Points

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

$$
y^{2} \equiv x^{3}+A x+B \quad(\bmod p)
$$

- Define $a_{p}:=p-\#$ solutions
- $L(E, s)=\prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n \geq 1} a_{n} n^{-s}$
- Product only converges for $\operatorname{Re}(s)>3 / 2$, but can be extended to \mathbb{C}

Birch and Swinnerton-Dyer Conjecture

The rank r of E equals $\operatorname{ord}_{s=1} L(E, s)$
Theorem (Gross-Zagier 1986, Kolyvagin 1990)
If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1 , the BSD Conjecture is true.

- Main tool in the proof: Heegner Points

Birch and Swinnerton-Dyer Conjecture

- $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$
- For every prime number p :

$$
y^{2} \equiv x^{3}+A x+B \quad(\bmod p)
$$

- Define $a_{p}:=p-\#$ solutions
- $L(E, s)=\prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n \geq 1} a_{n} n^{-s}$
- Product only converges for $\operatorname{Re}(s)>3 / 2$, but can be extended to \mathbb{C}

Birch and Swinnerton-Dyer Conjecture

The rank r of E equals $\operatorname{ord}_{s=1} L(E, s)$
Theorem (Gross-Zagier 1986, Kolyvagin 1990)
If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1 , the BSD Conjecture is true.

- In particular, if $\operatorname{ord}_{s=1} L(E, s)=1, E$ has a point of infinite order.
- Main tool in the proof: Heegner Points

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

```
Weierstrass Uniformization Theorem
There is a lattice }\mp@subsup{\Lambda}{E}{}\subset\mathbb{C}\mathrm{ such that }E(\mathbb{C})\simeq\mathbb{C}/\mp@subsup{\Lambda}{E}{}\mathrm{ as complex varieties.
```

- $y^{2}=x^{3}-x$ is isomorphic to $\mathbb{C} / \mathbb{Z}[i]$
- $L(E, s)=\sum a_{n} n^{-s}$ with $a_{p}:=p-\#$ solutions $(\bmod p)$
- $f_{E}(z):=\sum_{n>1} a_{n} e^{2 \pi i n z}$ converges for $\operatorname{Im}(z)>0$
\square $f_{F}(z)$ is a modular form.
- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_{E} \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$ as complex varieties.

$f_{E}(z)$ is a modular form.

- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_{E} \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$ as complex varieties.

- $y^{2}=x^{3}-x$ is isomorphic to $\mathbb{C} / \mathbb{Z}[i]$
- $L(E, s)=\sum a_{n} n^{-s}$ with $a_{p}:=p$ - $f_{E}(z):=\sum_{n>1} a_{n} e^{2 \pi i n z}$ converges for $\operatorname{Im}(z)>0$

$f_{E}(z)$ is a modular form.

- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_{E} \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$ as complex varieties.

- $y^{2}=x^{3}-x$ is isomorphic to $\mathbb{C} / \mathbb{Z}[i]$
- $L(E, s)=\sum a_{n} n^{-s}$ with $a_{p}:=p-\#$ solutions $(\bmod p)$

$f_{E}(z)$ is a modular form.

- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_{E} \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$ as complex varieties.

- $y^{2}=x^{3}-x$ is isomorphic to $\mathbb{C} / \mathbb{Z}[i]$
- $L(E, s)=\sum a_{n} n^{-s}$ with $a_{p}:=p-\#$ solutions $(\bmod p)$
- $f_{E}(z):=\sum_{n \geq 1} a_{n} e^{2 \pi i n z}$ converges for $\operatorname{Im}(z)>0$

$f_{E}(z)$ is a modular form.

- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_{E} \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$ as complex varieties.

- $y^{2}=x^{3}-x$ is isomorphic to $\mathbb{C} / \mathbb{Z}[i]$
- $L(E, s)=\sum a_{n} n^{-s}$ with $a_{p}:=p-\#$ solutions $(\bmod p)$
- $f_{E}(z):=\sum_{n \geq 1} a_{n} e^{2 \pi i n z}$ converges for $\operatorname{Im}(z)>0$

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_{E}(z)$ is a modular form.

- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_{E} \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$ as complex varieties.

- $y^{2}=x^{3}-x$ is isomorphic to $\mathbb{C} / \mathbb{Z}[i]$
- $L(E, s)=\sum a_{n} n^{-s}$ with $a_{p}:=p-\#$ solutions $(\bmod p)$
- $f_{E}(z):=\sum_{n \geq 1} a_{n} e^{2 \pi i n z}$ converges for $\operatorname{Im}(z)>0$

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_{E}(z)$ is a modular form.

- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Complex analysis meets number theory

- $E: y^{2}=x^{3}+A x+B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_{E} \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$ as complex varieties.

- $y^{2}=x^{3}-x$ is isomorphic to $\mathbb{C} / \mathbb{Z}[i]$
- $L(E, s)=\sum a_{n} n^{-s}$ with $a_{p}:=p-\#$ solutions $(\bmod p)$
- $f_{E}(z):=\sum_{n \geq 1} a_{n} e^{2 \pi i n z}$ converges for $\operatorname{Im}(z)>0$

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor)

 $f_{E}(z)$ is a modular form.- $f_{E}(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Heegner points

- Associated to imaginary quadratic numbers $w=a+b \sqrt{-D}$
- $P_{w}=\int_{i \infty}^{w} f_{E}(z) d z \in \mathbb{C} / \wedge_{E} \simeq E(\mathbb{C})$
\square
Complex multiplication + Gross-Zagier If $\operatorname{ord}_{s=1} L(E, s)=1$ choosing w appropriately $P_{w} \in E(\mathbb{Q})$ and is of infinite order.

Heegner points

- Associated to imaginary quadratic numbers $w=a+b \sqrt{-D}$
- $P_{w}=\int_{i \infty}^{w} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$

Complex multiplication + Gross-Zagier
If $\operatorname{ord}_{s=1} L(E, s)=1$ choosing w appropriately $P_{w} \in E(\mathbb{Q})$ and is of infinite order.

Heegner points

- Associated to imaginary quadratic numbers $w=a+b \sqrt{-D}$
- $P_{w}=\int_{i \infty}^{w} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$

Complex multiplication + Gross-Zagier

If $\operatorname{ord}_{s=1} L(E, s)=1$ choosing w appropriately $P_{w} \in E(\mathbb{Q})$ and is of infinite order.

Stark-Heegner points

Natural question
Are there points P_{w} associated to real quadratic numbers $a+b \sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using p-adic integrals instead of complex integrals.
- These are called Stark-Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Stark-Heegner points

Natural question

Are there points P_{w} associated to real quadratic numbers $a+b \sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using p-adic integrals instead of complex integrals.
- These are called Stark-Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still coniectural but the method can be used to compute points in practice: very efficient algorithm

Stark-Heegner points

Natural question

Are there points P_{w} associated to real quadratic numbers $a+b \sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using p-adic integrals instead of complex integrals.
- These are called Stark-Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Stark-Heegner points

Natural question

Are there points P_{w} associated to real quadratic numbers $a+b \sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using p-adic integrals instead of complex integrals.
- These are called Stark-Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Stark-Heegner points

Natural question

Are there points P_{w} associated to real quadratic numbers $a+b \sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using p-adic integrals instead of complex integrals.
- These are called Stark-Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)

- $E: y^{2}+x y=x^{3}-8 x$

Stark-Heegner points

Natural question

Are there points P_{w} associated to real quadratic numbers $a+b \sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using p-adic integrals instead of complex integrals.
- These are called Stark-Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)

- $E: y^{2}+x y=x^{3}-8 x$
- $\left(\frac{3449809443179}{499880896975},-\frac{3449809443179}{999761793950}+\frac{3600393040902501011}{3935597293546963250} \sqrt{341}\right) \in E(\mathbb{Q}(\sqrt{341}))$

Heegner points on Elliptic curves

Xevi Guitart (UB)

BMS-BGSMath Junior Meeting 2022

