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Central problem in Number Theory
@ Polynomial equations with rational coefficients
@ Interested in: rational solutions

@ C: xX°+y?-1=0
» C(Q) = { solutions of C with rational coordinates} c A?
> (1,0) € C(Q), (=3/5,4/5) € C(Q)
» In fact, this equation has infinitely many solutions
Open question

Is there an algorithm that given a diophantine equation C computes C(Q)? J

@ Two variables: f(x,y) = 0 with f € Q[x, y] is called a plane curve
» This case is already open
» But a lot is known: for example, topology plays a role!
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@ Formula: g = (d — 1)(d — 2)/2 where d is the degree of f.

@ C: x>+ y? —1=0~ C(C)is homeomorphic to a sphere

Falting’s Theorem, 1984 (a.k.a. Mordell Conjecture)
If g > 1 then C(Q) is finite. J

@ g = 0is known: for d = 2 either C(Q) = () or C(Q) can be
parametrized by Q U {oo}.
@ g = 1: there is no known method to determine whether C(Q =0
» If C(Q) # 0 ~~ C is called an elliptic curve
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A non-singular genus 1 curve which has a rational point.
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Elliptic curves
Elliptic curve
A non-singular genus 1 curve which has a rational point. J

@ By a rational change of variables they can be transformed into
E:y?=x®+Ax+B, withA BecZ, A>—27B>+0.

@ [0: 1: 0] point of y2z = x® 4 Axz? + Bz3, the only point at infinity
@ Example:
E:y?=x%—16x+16
> (0,4),(4,4) € E(Q)
Key property
One can define a group operation

+: E(Q)x E(Q — E(Q)
(P,Q) +— P+Q

@ From P =(0,4)and Q= (4,4) ~ P+ Q € E(Q)
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The group of points
@ This makes E(Q) into an abelian group.

Mordell Theorem (1922)
E(Q) is a finitely generated abelian group.

@ Structure Theorem: E(Q) ~Z' & T

» T is finite, its points have finite order
» ris called the rank of E.

@ T is pretty well understood:
Theorem (Mazur, 1977)

Z/NZ, 1 <N<10or N =12
7]27 x Z/2NZ, 1 < N < 4.

~

@ The rank is only understood conjecturally
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Birch and Swinnerton-Dyer Conjecture
@ E:y?=x3+Ax+BwithA,BcZ
@ For every prime number p:
y2=x>+Ax+B (mod p)

@ Define ap := p — #solutions
1 _
® L(E,8) = Il gpmsrprm = Lin>1 800
» Product only converges for Re(s) > 3/2, but can be extended to C
Birch and Swinnerton-Dyer Conjecture
The rank r of E equals ords_¢L(E, s)

Theorem (Gross—Zagier 1986, Kolyvagin 1990)
If ords—¢L(E, s) is 0 or 1, the BSD Conjecture is true.
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Birch and Swinnerton-Dyer Conjecture
@ E:y?=x3+Ax+BwithA, BeZ
@ For every prime number p:

y2’=x3+Ax+ B (mod p)

@ Define a, := p — #solutions

1 _
© L(E,8) =Ilpv 7=gpsiprz = Lnz1 800 °
» Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture
The rank r of E equals ords_¢L(E, s)

Theorem (Gross—Zagier 1986, Kolyvagin 1990)
If ords—¢L(E, s) is 0 or 1, the BSD Conjecture is true.

@ In particular, if ords—1L(E, s) = 1, E has a point of infinite order.
» Main tool in the proof: Heegner Points
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@ E: y? = x3 + Ax + B ~ E(C) is homeomorphic to a torus
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Complex analysis meets number theory

@ E: y? = x3 + Ax + B ~ E(C) is homeomorphic to a torus

Weierstrass Uniformization Theorem
There is a lattice Ag C C such that E(C) ~ C/Ag as complex varieties.

S

@ y2 = x3 — x is isomorphic to C/Z][i]
@ L(E,s) =) apn* with a, := p — #solutions (mod p)
® fz(z) :== Y >4 an€®™ converges for Im(z) > 0

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor)
fe(z) is a modular form. J

@ fg(z) satisfies certain functional equations.
@ This was known to imply Fermat’s Last Theorem.
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Heegner points

@ Associated to imaginary quadratic numbers w = a+ bv—-D
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Heegner points

@ Associated to imaginary quadratic numbers w = a+ bv—-D
o PW—f/oofE dZG(C//\EzE((C)

If ords—1L(E, s) = 1 choosing w appropriately Py, € E(Q) and is of

Complex multiplication + Gross-Zagier
infinite order. J
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Stark-Heegner points

Natural question
Are there points P,, associated to real quadratic numbers a + bv/D? J
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Stark-Heegner points

Natural question
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@ Rationality of the points is still conjectural, but the method can be
used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)
@ E: y?+xy=x3—-8x
) (3449809443179 _ 3449809443179 3600393040902501011 341) c E(Q(\/ﬁ))

499880896975 ° 999761793950 + 3935597293546963250
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