Heegner points on Elliptic curves

Xevi Guitart (UB)

BMS-BGSMath Junior Meeting 2022

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- $C(\mathbb{Q}) = \{ \text{ solutions of } C \text{ with rational coordinates} \} \subset \mathbb{A}^2$
 - $\bullet (1,0) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation ${\mathcal C}$ computes ${\mathcal C}({\mathbb Q})?$

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions
- $C: x^2 + y^2 1 = 0$
 - $C(\mathbb{Q}) = \{ \text{ solutions of } C \text{ with rational coordinates} \} \subset \mathbb{A}^2$
 - $(1,0) \in C(\mathbb{Q})$
 - In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation ${\mathcal C}$ computes ${\mathcal C}({\mathbb Q})?$

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- $C(\mathbb{Q}) = \{ \text{ solutions of } C \text{ with rational coordinates} \} \subset \mathbb{A}^2$
- ▶ $(1,0) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation ${\mathcal C}$ computes ${\mathcal C}({\mathbb Q})?$

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- $C(\mathbb{Q}) = \{ \text{ solutions of } C \text{ with rational coordinates} \} \subset \mathbb{A}^2$
- ► $(1,0) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation ${\mathcal C}$ computes ${\mathcal C}({\mathbb Q})?$

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- $C(\mathbb{Q}) = \{ \text{ solutions of } C \text{ with rational coordinates} \} \subset \mathbb{A}^2$
- ► $(1,0) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation ${\mathcal C}$ computes ${\mathcal C}({\mathbb Q})?$

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- C(Q) = { solutions of C with rational coordinates} ⊂ A²
- ▶ $(1,0) \in C(\mathbb{Q}), (-3/5,4/5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation ${\mathcal C}$ computes ${\mathcal C}({\mathbb Q})?$

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- C(Q) = { solutions of C with rational coordinates} ⊂ A²
- ▶ $(1,0) \in C(\mathbb{Q}), (-3/5,4/5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation ${\mathcal C}$ computes ${\mathcal C}({\mathbb Q})?$

- Two variables: f(x, y) = 0 with $f \in \mathbb{Q}[x, y]$ is called a plane curve
 - This case is already open
 - But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- C(Q) = { solutions of C with rational coordinates} ⊂ A²
- ▶ $(1,0) \in C(\mathbb{Q}), (-3/5,4/5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- Two variables: f(x, y) = 0 with $f \in \mathbb{Q}[x, y]$ is called a plane curve
 - This case is already open
 - But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- C(Q) = { solutions of C with rational coordinates} ⊂ A²
- ▶ $(1,0) \in C(\mathbb{Q}), (-3/5,4/5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- C(Q) = { solutions of C with rational coordinates} ⊂ A²
- ▶ $(1,0) \in C(\mathbb{Q}), (-3/5,4/5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation *C* computes $C(\mathbb{Q})$?

- This case is already open
- But a lot is known: for example, topology plays a role!

Central problem in Number Theory

- Polynomial equations with rational coefficients
- Interested in: rational solutions

•
$$C: x^2 + y^2 - 1 = 0$$

- C(Q) = { solutions of C with rational coordinates} ⊂ A²
- ▶ $(1,0) \in C(\mathbb{Q}), (-3/5,4/5) \in C(\mathbb{Q})$
- In fact, this equation has infinitely many solutions

Open question

Is there an algorithm that given a diophantine equation C computes $C(\mathbb{Q})$?

- This case is already open
- But a lot is known: for example, topology plays a role!

Topology meets number theory • $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$

- Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - ▶ 2 equations in 4 unknnowns ~→ it is a surface (assume nonsingular)
- non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

C(ℂ) is homeomorphic to a *g*-holed torus, where *g* is the genus
Formula: *g* = (*d* − 1)(*d* − 2)/2 where *d* is the degree of *f*. *C*: x² + y² − 1 = 0 ~ *C*(ℂ) is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

C(ℂ) is homeomorphic to a *g*-holed torus, where *g* is the genus
Formula: *g* = (*d* − 1)(*d* − 2)/2 where *d* is the degree of *f*. *C*: x² + y² − 1 = 0 ~ *C*(ℂ) is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

- g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - ▶ 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\overline{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\overline{C}(\mathbb{Q}) \subset \mathbb{P}^2$

C(ℂ) is homeomorphic to a *g*-holed torus, where *g* is the genus
Formula: *g* = (*d* − 1)(*d* − 2)/2 where *d* is the degree of *f*. *C*: x² + y² − 1 = 0 → *C*(ℂ) is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - ▶ 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

C(ℂ) is homeomorphic to a *g*-holed torus, where *g* is the genus
Formula: g = (d - 1)(d - 2)/2 where *d* is the degree of *f*. *C*: x² + y² - 1 = 0 → *C*(ℂ) is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

C(ℂ) is homeomorphic to a *g*-holed torus, where *g* is the genus
Formula: *g* = (*d* − 1)(*d* − 2)/2 where *d* is the degree of *f*. *C*: x² + y² − 1 = 0 ~ *C*(ℂ) is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

C(ℂ) is homeomorphic to a *g*-holed torus, where *g* is the genus
Formula: g = (d − 1)(d − 2)/2 where *d* is the degree of *f*.

• $C: x^2 + y^2 - 1 = 0 \rightsquigarrow \overline{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

• $\bar{C}(\mathbb{C})$ is homeomorphic to a *g*-holed torus, where *g* is the genus

- Formula: g = (d 1)(d 2)/2 where d is the degree of f.
- $C: x^2 + y^2 1 = 0 \rightsquigarrow \overline{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

• $\bar{C}(\mathbb{C})$ is homeomorphic to a *g*-holed torus, where *g* is the genus

- Formula: g = (d 1)(d 2)/2 where d is the degree of f.
- $C: x^2 + y^2 1 = 0 \rightsquigarrow \overline{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture) If g > 1 then $C(\mathbb{Q})$ is finite.

- g = 1: there is no known method to determine whether C
 (Q) = Ø
 If C
 (Q) ≠ Ø ~ C is called an elliptic curve

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

• $\overline{C}(\mathbb{C})$ is homeomorphic to a *g*-holed torus, where *g* is the genus

- Formula: g = (d 1)(d 2)/2 where d is the degree of f.
- $C: x^2 + y^2 1 = 0 \rightsquigarrow \overline{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If g > 1 then $C(\mathbb{Q})$ is finite.

g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

g = 1: there is no known method to determine whether C
 (Q) = Ø
 If C
 (0) ≠ Ø → C is called an elliptic curve

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

• $\bar{C}(\mathbb{C})$ is homeomorphic to a *g*-holed torus, where *g* is the genus

- Formula: g = (d 1)(d 2)/2 where d is the degree of f.
- $C: x^2 + y^2 1 = 0 \rightsquigarrow \overline{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If g > 1 then $C(\mathbb{Q})$ is finite.

- g = 1: there is no known method to determine whether C
 (Q) = Ø
 If C
 (Q) ≠ Ø → C is called an elliptic curve

- $C: f(x, y) = 0 \rightsquigarrow C(\mathbb{C}) = \{ \text{ solutions with } x, y \in \mathbb{C} \}$
 - Write x = a + bi, y = c + di with $a, b, c, d \in \mathbb{R}$
 - 2 equations in 4 unknnowns ~> it is a surface (assume nonsingular)
 - non-compact, but can be compactified adding finitely many points:

$$\bar{C}$$
: $z^d f(\frac{x}{z}, \frac{y}{z}) = 0$ and $\bar{C}(\mathbb{Q}) \subset \mathbb{P}^2$

• $\bar{C}(\mathbb{C})$ is homeomorphic to a *g*-holed torus, where *g* is the genus

- Formula: g = (d 1)(d 2)/2 where d is the degree of f.
- $C: x^2 + y^2 1 = 0 \rightsquigarrow \overline{C}(\mathbb{C})$ is homeomorphic to a sphere

Falting's Theorem, 1984 (a.k.a. Mordell Conjecture)

If g > 1 then $C(\mathbb{Q})$ is finite.

g = 0 is known: for d = 2 either C
 (Q) = Ø or C
 (Q) can be parametrized by Q ∪ {∞}.

Elliptic curve

A non-singular genus 1 curve which has a rational point.

By a rational change of variables they can be transformed into E: y² = x³ + Ax + B, with A, B ∈ Z, A³ - 27B² ≠ 0.
[0: 1: 0] point of y²z = x³ + Axz² + Bz³, the only point at infinity
Example:

$$E: y^2 = x^3 - 16x + 16$$

• $(0,4), (4,4) \in E(\mathbb{Q})$

Key property

$$\begin{array}{cccc} + : & E(\mathbb{Q}) \times E(\mathbb{Q}) & \longrightarrow & E(\mathbb{Q}) \\ & & (P,Q) & \longmapsto & P+Q \end{array}$$

From
$$P = (0,4)$$
 and $Q = (4,4) \rightsquigarrow P + Q \in E(\mathbb{Q})$

Elliptic curve

A non-singular genus 1 curve which has a rational point.

• By a rational change of variables they can be transformed into $E: y^2 = x^3 + Ax + B$, with $A, B \in \mathbb{Z}, A^3 - 27B^2 \neq 0$.

[0: 1: 0] point of y²z = x³ + Axz² + Bz³, the only point at infinity
Example:

$$E: y^2 = x^3 - 16x + 16$$

• $(0,4), (4,4) \in E(\mathbb{Q})$

Key property

$$\begin{array}{cccc} + : & E(\mathbb{Q}) \times E(\mathbb{Q}) & \longrightarrow & E(\mathbb{Q}) \\ & & (P, Q) & \longmapsto & P+Q \end{array}$$

From
$$P = (0,4)$$
 and $Q = (4,4) \rightsquigarrow P + Q \in E(\mathbb{Q})$

Elliptic curve

A non-singular genus 1 curve which has a rational point.

• By a rational change of variables they can be transformed into

$$E: y^2 = x^3 + Ax + B$$
, with $A, B \in \mathbb{Z}, A^3 - 27B^2 \neq 0$.

[0: 1: 0] point of y²z = x³ + Axz² + Bz³, the only point at infinity
Example:

$$E: y^2 = x^3 - 16x + 16$$

• $(0,4), (4,4) \in E(\mathbb{Q})$

Key property

$$\begin{array}{cccc} + : & E(\mathbb{Q}) \times E(\mathbb{Q}) & \longrightarrow & E(\mathbb{Q}) \\ & & (P, Q) & \longmapsto & P+Q \end{array}$$

From
$$P = (0,4)$$
 and $Q = (4,4) \rightsquigarrow P + Q \in E(\mathbb{Q})$

Elliptic curve

A non-singular genus 1 curve which has a rational point.

• By a rational change of variables they can be transformed into

$$E: y^2 = x^3 + Ax + B$$
, with $A, B \in \mathbb{Z}, A^3 - 27B^2 \neq 0$.

[0: 1: 0] point of y²z = x³ + Axz² + Bz³, the only point at infinity
Example:

$$E: y^2 = x^3 - 16x + 16$$

▶ $(0,4), (4,4) \in E(\mathbb{Q})$

Key property

$$\begin{array}{cccc} + : & E(\mathbb{Q}) \times E(\mathbb{Q}) & \longrightarrow & E(\mathbb{Q}) \\ & & (P, Q) & \longmapsto & P+Q \end{array}$$

From
$$P = (0,4)$$
 and $Q = (4,4) \rightsquigarrow P + Q \in E(\mathbb{Q})$

Elliptic curve

A non-singular genus 1 curve which has a rational point.

• By a rational change of variables they can be transformed into

$$E: y^2 = x^3 + Ax + B$$
, with $A, B \in \mathbb{Z}, A^3 - 27B^2 \neq 0$.

[0: 1: 0] point of y²z = x³ + Axz² + Bz³, the only point at infinity
Example:

$$E: y^2 = x^3 - 16x + 16$$

▶ $(0,4), (4,4) \in E(\mathbb{Q})$

Key property

$$\begin{array}{cccc} + : & E(\mathbb{Q}) \times E(\mathbb{Q}) & \longrightarrow & E(\mathbb{Q}) \\ & & (P, Q) & \longmapsto & P+Q \end{array}$$

From
$$P = (0,4)$$
 and $Q = (4,4) \rightsquigarrow P + Q \in E(\mathbb{Q})$

1

Elliptic curve

A non-singular genus 1 curve which has a rational point.

• By a rational change of variables they can be transformed into

$$\mathsf{E}\colon y^2=x^3+Ax+B, \ \text{ with } A,B\in\mathbb{Z},\ A^3-27B^2\neq 0.$$

[0: 1: 0] point of y²z = x³ + Axz² + Bz³, the only point at infinity
Example:

$$E: y^2 = x^3 - 16x + 16$$

• $(0,4), (4,4) \in E(\mathbb{Q})$

Key property

$$\begin{array}{cccc} +\colon & E(\mathbb{Q})\times E(\mathbb{Q}) & \longrightarrow & E(\mathbb{Q}) \\ & (P,Q) & \longmapsto & P+Q \end{array}$$

From
$$P = (0,4)$$
 and $Q = (4,4) \rightsquigarrow P + Q \in E(\mathbb{Q})$

1

Elliptic curve

A non-singular genus 1 curve which has a rational point.

• By a rational change of variables they can be transformed into

$$\mathsf{E}\colon y^2=x^3+Ax+B, \ \text{ with } A,B\in\mathbb{Z},\ A^3-27B^2\neq 0.$$

[0: 1: 0] point of y²z = x³ + Axz² + Bz³, the only point at infinity
Example:

$$E: y^2 = x^3 - 16x + 16$$

• $(0,4), (4,4) \in E(\mathbb{Q})$

Key property

$$\begin{array}{cccc} +\colon & E(\mathbb{Q})\times E(\mathbb{Q}) & \longrightarrow & E(\mathbb{Q}) \\ & & (P,Q) & \longmapsto & P+Q \end{array}$$

• From
$$P = (0,4)$$
 and $Q = (4,4) \rightsquigarrow P + Q \in E(\mathbb{Q})$

The group of points

• This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

 $E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus T$
 - T is finite, its points have finite order
 - r is called the rank of E.
- *T* is pretty well understood:

Theorem (Mazur, 1977)

 $T \simeq \begin{cases} \mathbb{Z}/N\mathbb{Z}, & 1 \le N \le 10 \text{ or } N = 12 \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}, & 1 \le N \le 4. \end{cases}$

• The rank is only understood conjecturally

• This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

 $E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus T$
 - T is finite, its points have finite order
 - r is called the rank of E.
- *T* is pretty well understood:

Theorem (Mazur, 1977)

 $T \simeq egin{cases} \mathbb{Z}/N\mathbb{Z}, & 1 \leq N \leq 10 ext{ or } N = 12, \ \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2N\mathbb{Z}, & 1 \leq N \leq 4. \end{cases}$

• This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

 $E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus T$
 - T is finite, its points have finite order
 - r is called the rank of E.
- *T* is pretty well understood:

Theorem (Mazur, 1977)

 $\Gamma \simeq \begin{cases} \mathbb{Z}/N\mathbb{Z}, & 1 \le N \le 10 \text{ or } N = 12 \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}, & 1 \le N \le 4. \end{cases}$

• This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

 $E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus T$
 - T is finite, its points have finite order
 - r is called the rank of E.
- T is pretty well understood:

Theorem (Mazur, 1977)

 $T \simeq egin{cases} \mathbb{Z}/N\mathbb{Z}, & 1 \leq N \leq 10 ext{ or } N = 12 \ \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2N\mathbb{Z}, & 1 \leq N \leq 4. \end{cases}$

• This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

 $E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus T$
 - T is finite, its points have finite order
 - r is called the rank of E.
- T is pretty well understood:

Theorem (Mazur, 1977)

$$T \simeq egin{cases} \mathbb{Z}/N\mathbb{Z}, & 1 \leq N \leq 10 ext{ or } N = 12 \ \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2N\mathbb{Z}, & 1 \leq N \leq 4. \end{cases}$$

• This makes $E(\mathbb{Q})$ into an abelian group.

Mordell Theorem (1922)

 $E(\mathbb{Q})$ is a finitely generated abelian group.

- Structure Theorem: $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus T$
 - T is finite, its points have finite order
 - r is called the rank of E.
- T is pretty well understood:

Theorem (Mazur, 1977)

$$T \simeq egin{cases} \mathbb{Z}/N\mathbb{Z}, & 1 \leq N \leq 10 ext{ or } N = 12 \ \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2N\mathbb{Z}, & 1 \leq N \leq 4. \end{cases}$$

Xevi Guitart (UI

• $E: y^2 = x^3 + Ax + B$ with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

Define a_p := p - #solutions
 L(E, s) = ∏_{p|N} 1/(1-a_pp^{-s}+p^{1-2s}) = ∑_{n≥1} a_nn^{-s}
 Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank r of E equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1}L(E, s)$ is 0 or 1, the BSD Conjecture is true.

In particular, if ord_{s=1}L(E, s) = 1, E has a point of infinite order. Main tool in the proof: Heegner Points

Xevi Guitart (UB)

Elliptic curves

•
$$E: y^2 = x^3 + Ax + B$$
 with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

Define a_p := p − #solutions
 L(E, s) = ∏_{p†N} 1/(1-a_pp^{-s}+p^{1-2s}) = ∑_{n≥1} a_nn^{-s}
 Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank *r* of *E* equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1}L(E, s)$ is 0 or 1, the BSD Conjecture is true.

In particular, if ord_{s=1}L(E, s) = 1, E has a point of infinite order. Main tool in the proof: Heegner Points

Xevi Guitart (UB)

Elliptic curves

•
$$E: y^2 = x^3 + Ax + B$$
 with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

• Define $a_p := p - \#$ solutions

•
$$L(E, s) = \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} = \sum_{n \ge 1} a_n n^{-s}$$

Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank *r* of *E* equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1, the BSD Conjecture is true.

In particular, if ord_{s=1}L(E, s) = 1, E has a point of infinite order. ▶ Main tool in the proof: Heegner Points

Xevi Guitart (UB)

Elliptic curves

•
$$E: y^2 = x^3 + Ax + B$$
 with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

• Define
$$a_p := p - \#$$
solutions
• $L(E, s) = \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} = \sum_{n \ge 1} a_n n^{-s}$

▶ Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank *r* of *E* equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1, the BSD Conjecture is true.

In particular, if ord_{s=1}L(E, s) = 1, E has a point of infinite order. Main tool in the proof: Heegner Points

•
$$E: y^2 = x^3 + Ax + B$$
 with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

• Define $a_{p} := p - \#$ solutions • $L(E, s) = \prod_{p \nmid N} \frac{1}{1 - a_{p}p^{-s} + p^{1-2s}} = \sum_{n \ge 1} a_{n}n^{-s}$

► Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank *r* of *E* equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1, the BSD Conjecture is true.

In particular, if ord_{s=1}L(E, s) = 1, E has a point of infinite order. Main tool in the proof: Heegner Points

•
$$E: y^2 = x^3 + Ax + B$$
 with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

• Define $a_p := p - \#$ solutions

•
$$L(E,s) = \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} = \sum_{n \ge 1} a_n n^{-s}$$

► Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank *r* of *E* equals $\operatorname{ord}_{s=1}L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1, the BSD Conjecture is true.

• In particular, if $\operatorname{ord}_{s=1}L(E, s) = 1$, *E* has a point of infinite order.

Main tool in the proof: Heegner Points

•
$$E: y^2 = x^3 + Ax + B$$
 with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

• Define $a_p := p - \#$ solutions

•
$$L(E, s) = \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} = \sum_{n \ge 1} a_n n^{-s}$$

► Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank *r* of *E* equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1, the BSD Conjecture is true.

In particular, if ord_{s=1}L(E, s) = 1, E has a point of infinite order. ▶ Main tool in the proof: Heegner Points

•
$$E: y^2 = x^3 + Ax + B$$
 with $A, B \in \mathbb{Z}$

• For every prime number *p*:

$$y^2 \equiv x^3 + Ax + B \pmod{p}$$

• Define $a_p := p - \#$ solutions • $L(E, s) = \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} = \sum_{n \ge 1} a_n n^{-s}$

► Product only converges for Re(s) > 3/2, but can be extended to C

Birch and Swinnerton-Dyer Conjecture

The rank *r* of *E* equals $\operatorname{ord}_{s=1} L(E, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1990)

If $\operatorname{ord}_{s=1} L(E, s)$ is 0 or 1, the BSD Conjecture is true.

- In particular, if $\operatorname{ord}_{s=1}L(E, s) = 1$, *E* has a point of infinite order.
 - Main tool in the proof: Heegner Points

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

- $f_E(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

y² = x³ - x is isomorphic to C/Z[i]
L(E, s) = ∑ a_nn^{-s} with a_p := p - #solutions (mod p)
f_E(z) := ∑_{n≥1} a_ne^{2πinz} converges for Im(z) > 0

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

• $f_E(z)$ satisfies certain functional equations.

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

- $f_E(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

• $f_E(z)$ satisfies certain functional equations.

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

•
$$y^2 = x^3 - x$$
 is isomorphic to $\mathbb{C}/\mathbb{Z}[i]$
• $L(E, s) = \sum a_n n^{-s}$ with $a_p := p - \#$ solutions (mod p)
• $f_E(z) := \sum_{n \ge 1} a_n e^{2\pi i n z}$ converges for $\text{Im}(z) > 0$

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

• $f_E(z)$ satisfies certain functional equations.

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

• $f_E(z)$ satisfies certain functional equations.

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

•
$$y^2 = x^3 - x$$
 is isomorphic to $\mathbb{C}/\mathbb{Z}[i]$
• $L(E, s) = \sum a_n n^{-s}$ with $a_p := p - \#$ solutions (mod p)
• $f_E(z) := \sum_{n \ge 1} a_n e^{2\pi i n z}$ converges for $\text{Im}(z) > 0$

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

• $f_E(z)$ satisfies certain functional equations.

• $E: y^2 = x^3 + Ax + B \rightsquigarrow E(\mathbb{C})$ is homeomorphic to a torus

Weierstrass Uniformization Theorem

There is a lattice $\Lambda_E \subset \mathbb{C}$ such that $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$ as complex varieties.

•
$$y^2 = x^3 - x$$
 is isomorphic to $\mathbb{C}/\mathbb{Z}[i]$
• $L(E, s) = \sum a_n n^{-s}$ with $a_p := p - \#$ solutions (mod p)
• $f_E(z) := \sum_{n \ge 1} a_n e^{2\pi i n z}$ converges for $\text{Im}(z) > 0$

Modularity Theorem (Wiles, Breuil-Conrad-Diamond-Taylor) $f_E(z)$ is a modular form.

- $f_E(z)$ satisfies certain functional equations.
- This was known to imply Fermat's Last Theorem.

Heegner points

Associated to imaginary quadratic numbers w = a + b√-D P_w = ∫^w_{l∞} f_E(z)dz ∈ C/∧_E ≃ E(C)

Complex multiplication + Gross-Zagier

If $\operatorname{ord}_{s=1}L(E, s) = 1$ choosing *w* appropriately $P_w \in E(\mathbb{Q})$ and is of infinite order.

Heegner points

Associated to imaginary quadratic numbers w = a + b√-D P_w = ∫^w_{i∞} f_E(z)dz ∈ C/Λ_E ≃ E(C)

Complex multiplication + Gross-Zagier

If $\operatorname{ord}_{s=1} L(E, s) = 1$ choosing *w* appropriately $P_w \in E(\mathbb{Q})$ and is of infinite order.

Heegner points

- Associated to imaginary quadratic numbers $w = a + b\sqrt{-D}$
- $P_w = \int_{i\infty}^w f_E(z) dz \in \mathbb{C}/\Lambda_E \simeq E(\mathbb{C})$

Complex multiplication + Gross-Zagier

If $\operatorname{ord}_{s=1}L(E, s) = 1$ choosing *w* appropriately $P_w \in E(\mathbb{Q})$ and is of infinite order.

Natural question

Are there points P_w associated to real quadratic numbers $a + b\sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using *p*-adic integrals instead of complex integrals.
- These are called Stark–Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)

•
$$E: y^2 + xy = x^3 - 8x$$

 $\bullet \left(\frac{3449809443179}{499880896975}, -\frac{3449809443179}{999761793950} + \frac{3600393040902501011}{3935597293546963250} \sqrt{341} \right) \in E(\mathbb{Q}(\sqrt{341}))$

Natural question

Are there points P_w associated to real quadratic numbers $a + b\sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using *p*-adic integrals instead of complex integrals.
- These are called Stark–Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)

•
$$E: y^2 + xy = x^3 - 8x$$

 $\bullet \left(\frac{3449809443179}{499880896975}, -\frac{3449809443179}{999761793950} + \frac{3600393040902501011}{3935597293546963250} \sqrt{341} \right) \in E(\mathbb{Q}(\sqrt{341}))$

Natural question

Are there points P_w associated to real quadratic numbers $a + b\sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using *p*-adic integrals instead of complex integrals.
- These are called Stark–Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)

•
$$E: y^2 + xy = x^3 - 8x$$

 $\bullet \left(\frac{3449809443179}{499880896975}, -\frac{3449809443179}{999761793950} + \frac{3600393040902501011}{3935597293546963250} \sqrt{341} \right) \in E(\mathbb{Q}(\sqrt{341}))$

Natural question

Are there points P_w associated to real quadratic numbers $a + b\sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using *p*-adic integrals instead of complex integrals.
- These are called Stark–Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)

•
$$E: y^2 + xy = x^3 - 8x$$

 $\frac{3449809443179}{499880896975}, -\frac{3449809443179}{999761793950}+\frac{3600393040902501011}{3935597293546963250}\sqrt{341} \in E($

Natural question

Are there points P_w associated to real quadratic numbers $a + b\sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using *p*-adic integrals instead of complex integrals.
- These are called Stark–Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)

•
$$E: y^2 + xy = x^3 - 8x$$

Natural question

Are there points P_w associated to real quadratic numbers $a + b\sqrt{D}$?

- Henri Darmon in 2000 proposed a construction using *p*-adic integrals instead of complex integrals.
- These are called Stark–Heegner (or Darmon) points, and have been constructed also for curves over other number fields.
- Rationality of the points is still conjectural, but the method can be used to compute points in practice: very efficient algorithm

Example (G.-Masdeu)
•
$$E: y^2 + xy = x^3 - 8x$$

• $\left(\frac{3449809443179}{499880896975}, -\frac{3449809443179}{999761793950} + \frac{3600393040902501011}{3935597293546963250}\sqrt{341}\right) \in E(\mathbb{Q}(\sqrt{341}))$

Heegner points on Elliptic curves

Xevi Guitart (UB)

BMS-BGSMath Junior Meeting 2022