Modular abelian varieties over number fields

Xavier Guitart, Jordi Quer

Universitat Politècnica de Catalunya

26th Journées Arithmétiques, Saint-Étienne

2 Characterization of strongly modular building blocks

3 Example: QM-Jacobian surfaces

Modular abelian varieties over \mathbb{Q}

Shimura's construction

Associates to each newform $f \in S_2(\Gamma_1(N))$ an abelian variety A_f/\mathbb{Q} :

- A_f/ℚ is ℚ-isogenous to a simple factor of J₁(N)/ℚ
- $L(A_f/\mathbb{Q}; s) \sim \prod_{\sigma: E_f \hookrightarrow \mathbb{C}} L(^{\sigma}f; s)$

 A/\mathbb{Q} is modular if it is \mathbb{Q} -isogenous to some A_f

A (10) A (10) A (10)

Modular abelian varieties over \mathbb{Q}

Shimura's construction

Associates to each newform $f \in S_2(\Gamma_1(N))$ an abelian variety A_f/\mathbb{Q} :

- A_f/ℚ is ℚ-isogenous to a simple factor of J₁(N)/ℚ
- $L(A_f/\mathbb{Q}; s) \sim \prod_{\sigma: E_f \hookrightarrow \mathbb{C}} L(^{\sigma}f; s)$

 A/\mathbb{Q} is modular if it is \mathbb{Q} -isogenous to some A_f

Theorem (Ribet + Serre's Conjecture)

A simple variety A/\mathbb{Q} is modular if and only if it is of GL_2 -type (i.e $End_{\mathbb{Q}}(A) \otimes \mathbb{Q}$ is a number field *E* with $[E : \mathbb{Q}] = \dim A$).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Modular abelian varieties over \mathbb{Q}

Shimura's construction

Associates to each newform $f \in S_2(\Gamma_1(N))$ an abelian variety A_f/\mathbb{Q} :

- A_f/ℚ is ℚ-isogenous to a simple factor of J₁(N)/ℚ
- $L(A_f/\mathbb{Q}; s) \sim \prod_{\sigma: E_f \hookrightarrow \mathbb{C}} L(^{\sigma}f; s)$

 A/\mathbb{Q} is modular if it is \mathbb{Q} -isogenous to some A_f

Theorem (Ribet + Serre's Conjecture)

A simple variety A/\mathbb{Q} is modular if and only if it is of GL_2 -type (i.e $End_{\mathbb{Q}}(A) \otimes \mathbb{Q}$ is a number field *E* with $[E : \mathbb{Q}] = \dim A$).

Here, modular means either of these two equivalent conditions:

- A/\mathbb{Q} is \mathbb{Q} -isogenous to some factor of $J_1(N)$, for some N.
- L(A/Q; s) ~ product of L-series of newforms f ∈ S₂(Γ₁(N)).

Modular abelian varieties over $\ensuremath{\mathbb{Q}}$

Shimura's construction

Associates to each newform $f \in S_2(\Gamma_1(N))$ an abelian variety A_f/\mathbb{Q} :

- A_f/ℚ is ℚ-isogenous to a simple factor of J₁(N)/ℚ
- $L(A_f/\mathbb{Q}; s) \sim \prod_{\sigma: E_f \hookrightarrow \mathbb{C}} L(^{\sigma}f; s)$

 A/\mathbb{Q} is modular if it is \mathbb{Q} -isogenous to some A_f

Theorem (Ribet + Serre's Conjecture)

A simple variety A/\mathbb{Q} is modular if and only if it is of GL_2 -type (i.e $End_{\mathbb{Q}}(A) \otimes \mathbb{Q}$ is a number field *E* with $[E : \mathbb{Q}] = \dim A$).

Here, modular means either of these two equivalent conditions:

- A/\mathbb{Q} is \mathbb{Q} -isogenous to some factor of $J_1(N)$, for some N.
- L(A/Q; s) ~ product of L-series of newforms f ∈ S₂(Γ₁(N)).

If we replace \mathbb{Q} for K these conditions are no longer equivalent.

Modular abelian varieties over a number field KB/K a non-CM abelian variety ($\overline{\mathbb{Q}}$ -simple, $\operatorname{End}(B) = \operatorname{End}_{K}(B)$) K/\mathbb{Q} Galois

Definition

- B/K is modular if it is K-isogenous to a simple factor of $J_1(N)_K$.
- B/K es strongly modular if L(B/K; s) ~ ∏_f L(f; s), for some newforms f ∈ S₂(Γ₁(N_f)).

Modular abelian varieties over a number field KB/K a non-CM abelian variety ($\overline{\mathbb{Q}}$ -simple, $\operatorname{End}(B) = \operatorname{End}_{K}(B)$) K/\mathbb{Q} Galois

Definition

- B/K is modular if it is K-isogenous to a simple factor of $J_1(N)_K$.
- B/K es strongly modular if L(B/K; s) ~ ∏_f L(f; s), for some newforms f ∈ S₂(Γ₁(N_f)).

Theorem (Ribet-Pyle)

B/K is modular if and only if

- B is a Q-variety: for each s ∈ Gal(K/Q) there exists an isogeny µ_s : ^sB→B compatible with the endomorphisms of B.
- End⁰_Ū(*B*) is:
 - A totally real number field F with $[F : \mathbb{Q}] = \dim B$
 - A quaternion algebra over F with $2[F : \mathbb{Q}] = \dim B$

These modular varieties are also called building blocks.

Strongly modular abelian varieties

Aim

To characterize the abelian varieties B/K that are strongly modular.

Strongly modular abelian varieties

Aim

To characterize the abelian varieties B/K that are strongly modular.

Observation: strongly modular \Rightarrow modular

$$L(B/K; s) = L((\operatorname{Res}_{K/\mathbb{Q}}B)/\mathbb{Q}; s)$$

B/K strongly modular $\Leftrightarrow (\operatorname{Res}_{K/\mathbb{Q}}B)/\mathbb{Q}$ strongly modular

$$\Leftrightarrow \operatorname{Res}_{\mathcal{K}/\mathbb{Q}} B \sim_{\mathbb{Q}} \prod A_f$$

$$(\operatorname{Res}_{K/\mathbb{Q}}B)_K \sim_K \prod_{s\in\operatorname{Gal}(K/\mathbb{Q})} {}^sB$$

Characterization of strongly modular building blocks

• • • • • • • • • • • •

Q-varieties and Galois Cohomology

B/K building block, K/\mathbb{Q} Galois.

- *B* is $\overline{\mathbb{Q}}$ -simple and $\operatorname{End}^0(B) = \operatorname{End}^0_{\mathcal{K}}(B)$.
- $\operatorname{End}^{0}(B) = F$, $\operatorname{End}^{0}(B) = D$ (quaternion algebra over F)
- For each $s \in \text{Gal}(K/\mathbb{Q})$ we have $\mu_s : {}^{s}B \rightarrow B$.

A (10) A (10)

Q-varieties and Galois Cohomology

B/K building block, K/\mathbb{Q} Galois.

- *B* is $\overline{\mathbb{Q}}$ -simple and $\operatorname{End}^0(B) = \operatorname{End}^0_{\mathcal{K}}(B)$.
- $\operatorname{End}^{0}(B) = F$, $\operatorname{End}^{0}(B) = D$ (quaternion algebra over F)
- For each $s \in \text{Gal}(K/\mathbb{Q})$ we have $\mu_s : {}^{s}B \rightarrow B$.

Definition: $[c_{B/K}] \in H^2(\text{Gal}(K/\mathbb{Q}), F^*)$

- $s, t \in \operatorname{Gal}(K/\mathbb{Q}) \rightsquigarrow c_{B/K}(s, t) = \mu_s \circ {}^s\mu_t \circ \mu_{st}^{-1} \in Z(\operatorname{End}^0(B)) = F$
- $[c_{B/K}] \in H^2(\operatorname{Gal}(K/\mathbb{Q}), F^*)[2]$
- $[c_{B/K}]$ only depends on the *K*-isogeny class of *B*.

Q-varieties and Galois Cohomology

B/K building block, K/\mathbb{Q} Galois.

- B is $\overline{\mathbb{Q}}$ -simple and $\operatorname{End}^0(B) = \operatorname{End}^0_{\mathcal{K}}(B)$.
- $\operatorname{End}^{0}(B) = F$, $\operatorname{End}^{0}(B) = D$ (quaternion algebra over F)
- For each $s \in \text{Gal}(K/\mathbb{Q})$ we have $\mu_s : {}^{s}B \rightarrow B$.

Definition: $[c_{B/K}] \in H^2(\text{Gal}(K/\mathbb{Q}), F^*)$

- $s, t \in \operatorname{Gal}(K/\mathbb{Q}) \rightsquigarrow c_{B/K}(s, t) = \mu_s \circ {}^s\mu_t \circ \mu_{st}^{-1} \in Z(\operatorname{End}^0(B)) = F$
- $[c_{B/K}] \in H^2(\operatorname{Gal}(K/\mathbb{Q}), F^*)[2]$
- $[c_{B/K}]$ only depends on the *K*-isogeny class of *B*.

Definition: $[c_B] \in H^2(G_{\mathbb{Q}}, F^*)$

- $[c_B] = \operatorname{Inf}[c_{B/K}], \operatorname{Inf} : H^2(\operatorname{Gal}(K/\mathbb{Q}), F^*) \rightarrow H^2(G_{\mathbb{Q}}, F^*)$
- $[c_B]$ only depends on the $\overline{\mathbb{Q}}$ -isogeny class of B.

Proposition

 $\operatorname{End}_{\mathbb{Q}}^{0}(\operatorname{Res}_{\mathcal{K}/\mathbb{Q}}\mathcal{B}) \simeq \operatorname{End}^{0}(\mathcal{B}) \otimes_{\mathcal{F}} \mathcal{F}^{c_{\mathcal{B}/\mathcal{K}}}[\operatorname{Gal}(\mathcal{K}/\mathbb{Q})]$

 $\begin{array}{l} \text{Proposition} \\ \text{End}^0_{\mathbb{Q}}(\text{Res}_{\mathcal{K}/\mathbb{Q}}\mathcal{B}) \simeq \text{End}^0(\mathcal{B}) \otimes_{\mathcal{F}} \mathcal{F}^{c_{\mathcal{B}/\mathcal{K}}}[\text{Gal}(\mathcal{K}/\mathbb{Q})] \end{array}$

Theorem (Characterization of strongly modular varieties)

A non-CM building block B/K is strongly modular if and only if

- *K*/ \mathbb{Q} is abelian
- $[c_{B/K}]$ is symmetric.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proposition $\operatorname{End}^0_{\mathbb{Q}}(\operatorname{Res}_{K/\mathbb{Q}}B) \simeq \operatorname{End}^0(B) \otimes_F F^{c_{B/K}}[\operatorname{Gal}(K/\mathbb{Q})]$

Theorem (Characterization of strongly modular varieties)

A non-CM building block B/K is strongly modular if and only if

- K/Q is abelian
- $[c_{B/K}]$ is symmetric.

Proposition

There exists a variety B_0/K strongly modular in the $\overline{\mathbb{Q}}$ -isogeny class of *B* if and only if *K* contains a splitting field for $[c_B]$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Proposition $\operatorname{End}^{0}_{\mathbb{Q}}(\operatorname{Res}_{K/\mathbb{Q}}B) \simeq \operatorname{End}^{0}(B) \otimes_{F} F^{c_{B/K}}[\operatorname{Gal}(K/\mathbb{Q})]$

Theorem (Characterization of strongly modular varieties)

A non-CM building block B/K is strongly modular if and only if

- K/Q is abelian
- $[c_{B/K}]$ is symmetric.

Proposition

There exists a variety B_0/K strongly modular in the $\overline{\mathbb{Q}}$ -isogeny class of *B* if and only if *K* contains a splitting field for $[c_B]$.

Tate: $\exists \alpha : G_{\mathbb{Q}} \rightarrow \overline{F}^*$ s.t. $c_B(\sigma, \tau) = \alpha(\sigma)\alpha(\tau)\alpha(\sigma\tau)^{-1}$. The field $\overline{\mathbb{Q}}^{\ker(\alpha \mod F^*)}$ is a splitting field for $[c_B]$

・ロト ・ 四ト ・ ヨト ・ ヨト

Index

2 Characterization of strongly modular building blocks

• • • • • • • • • • • •

A family of curves of Genus 2

Baba-Granath family:

$$\begin{split} C_{j} \colon & Y^{2} = \left(-4 + 3\sqrt{-6j}\right) X^{6} - 12(27j + 16)X^{5} - 6(27j + 16)\left(28 + 9\sqrt{-6j}\right)X^{4} \\ & + 16(27j + 16)^{2}X^{3} + 12(27j + 16)2\left(28 - 9\sqrt{-6j}\right)X^{2} \\ & - 48(27j + 16)^{3}X + 8(27j + 16)3\left(4 + 3\sqrt{-6j}\right) \end{split}$$

• $B_j = \text{Jac}(C_j)$. Then B_j/K is modular and $\text{End}^0(B_j) \simeq (2,3)_{\mathbb{Q}}$ • $K = \mathbb{Q}(\sqrt{-6j}, \sqrt{j}, \sqrt{-(27j+16)}, \sqrt{-2(27j+16)})$

• We have computed $[c_{B_i}] \in H^2(G_{\mathbb{Q}}, \mathbb{Q}^*)[2]$

• $H^2(G_{\mathbb{Q}}, \mathbb{Q}^*)[2] \simeq \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{Q}^*/\{\pm 1\}\mathbb{Q}^{*2}) \times H^2(G_{\mathbb{Q}}, \{\pm 1\})$ • $\operatorname{Cal}(\mathbb{Q}(\sqrt{-i(27i+16)}, \sqrt{-i(27i+16)})/\mathbb{Q}) = \langle \sigma, \tau \rangle$

• Gal(
$$\mathbb{Q}(\sqrt{-(27)+16}), \sqrt{-J(27)+16})/\mathbb{Q}$$
) = $\langle \sigma \rangle$
• $\overline{[c_{B_i}]}: \sigma \mapsto 3 \ \tau \mapsto 2$

 $[c_{B_j}]_{\pm} = (-(27j+16),3)_{\mathbb{Q}} \cdot (-j(27j+16),2)_{\mathbb{Q}} \cdot (2,3)_{\mathbb{Q}}$

A (1) > A (2) > A

A concrete example: j=-4/27

• $K = \mathbb{Q}(\sqrt{-6}, \sqrt{-3})$ but B_j is not strongly modular over K.

- $L = K(\sqrt{-1})$ contains a splitting field for $[c_{B_i}]$.
- $[c_{B_j/L}]$ not symmetric $\rightarrow B_j/L$ not strongly modular: we should twist • $\gamma = \sqrt{6} + \sqrt{18}$

$$\begin{aligned} \mathcal{C}_{\gamma} \colon & \gamma Y^2 = \left(-4 + 3\sqrt{-6j}\right) X^6 - 12(27j + 16)X^5 - 6(27j + 16)\left(28 + 9\sqrt{-6j}\right) X^4 \\ & + 16(27j + 16)^2 X^3 + 12(27j + 16)2\left(28 - 9\sqrt{-6j}\right) X^2 \\ & - 48(27j + 16)^3 X + 8(27j + 16)3\left(4 + 3\sqrt{-6j}\right) \end{aligned}$$

- $[c_{B_{\gamma}/L}]$ symmetric $\rightarrow B_{\gamma}/L$ strongly modular
- γ is the solution of the embedding problem corresponding to the non-symmetric part of [c_{B_i/L}]_±.

A concrete example: j=-4/27

We find $f \in S_2(\Gamma_1(2^4 \cdot 3^4), \chi)$ $f = q - \sqrt{3} q^5 + 3i q^7 - 3\sqrt{3} q^{11} + q^{13} - 2i\sqrt{3} q^{17} - 6i q^{19} + 3\sqrt{3} q^{23} + 2 q^{25} - 5\sqrt{3}i q^{29} - 3i q^{31} + \cdots$

and $g \in S_2(\Gamma_1(2^6 \cdot 3^4), \varepsilon)$

$$g = q - \sqrt{3} q^5 + 3i q^7 - 3\sqrt{3} q^{11} - q^{13} + 2i\sqrt{3} q^{17} + 6i q^{19} - 3\sqrt{3} q^{23} + 2 q^{25} - 5\sqrt{3}i q^{29} - 3i q^{31} + \cdots$$

such that

$$L(B_{\gamma}/L,s) = L(A_f,s)^2 \cdot L(A_g,s)^2$$

$$\operatorname{Res}_{L/\mathbb{Q}}B_{\gamma}\sim_{\mathbb{Q}}A_{f}^{2}\times A_{g}^{2}$$

Modular abelian varieties over number fields

Xavier Guitart, Jordi Quer

Universitat Politècnica de Catalunya

26th Journées Arithmétiques, Saint-Étienne