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Abstract. The Langlands Programme predicts that a weight 2 newform f over a number field
K with integer Hecke eigenvalues generally should have an associated elliptic curve Ef over K.

In [GMS14], we associated, building on works of Darmon [Dar01] and Greenberg [Gre09], a p-adic

lattice Λ to f , under certain hypothesis, and implicitly conjectured that Λ is commensurable with
the p-adic Tate lattice of Ef . In this paper, we present this conjecture in detail and discuss how

it can be used to compute, directly from f , a Weierstrass equation for the conjectural Ef . We

develop algorithms to this end and implement them in order to carry out extensive systematic
computations in which we compute Weierstrass equations of hundreds of elliptic curves, some

with huge heights, over dozens of number fields. The data we obtain gives extensive support
for the conjecture and furthermore demonstrate that the conjecture provides an efficient tool to

building databases of elliptic curves over number fields.

1. Introduction

One of the biggest achievements of number theory in the 20th-century is the establishment of the
correspondence between isogeny classes of elliptic curves over Q of a fixed conductor N and weight
2 newforms over Q of level Γ0(N) which have integer eigenvalues. This correspondence is believed
to admit a suitable extension to general number fields and establishing this extension is one of the
major goals of the Langlands Programme. In this paper, we are interested in one direction of this
conjectural extension (see [Tay95] for the statement of the full conjectural correspondence).

Conjecture 1.1. Let K be a number field with ring of integers OK and let N be an ideal of OK .
For every weight 2 newform f over K of level Γ0(N) with integer Hecke eigenvalues, there is either
an elliptic curve Ef/K of conductor N such that L(f, s) = L(Ef , s) or a fake elliptic curve Af/K
of conductor N2 such that L(f, s)2 = L(Af , s).

Recall that an abelian surface A over K is called a fake elliptic curve if EndK(A)⊗Q is isomorphic
to a rational quaternion division algebra. Equivalently, it is a QM-abelian surface over K whose
K-endomorphisms are all defined over K. The name, coined by Serre, comes from the fact that
at any prime p of good reduction, the reduction Ap of A is the square of an elliptic curve over the
residue field of p. It is well known that if A/K is a fake elliptic curve then K is necessarily totally
imaginary. Note also that in fact the conjecture predicts equality of the Euler factors corresponding
to each prime of K. Conjecture 2.1 below gives a more precise and general statement.

For K totally real, Conjecture 1.1 is known to hold when the Hecke eigenvalue system afforded
by f can be captured by a weight 2 newform f ′ on a Shimura curve via the Jacquet-Langlands
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correspondence (see [Bla04]). Beyond totally real fields, Conjecture 1.1 is completely open. However
there are significant amounts of numerical data (see [GHM78, Cre84, Whi90, Byg98, Lin05, Sch92,
GHY12, GY12, Jon14, DGKY14]) collected over the years that support its validity. In fact, when
K is a CM-field, one can prove whether a given elliptic curve is associated to a given newform. This
employs the existence of 2-dimensional p-adic Galois representations associated to modular forms
(see [Mok13]) and the Faltings–Serre method (see [Liv87, DGP09]).

It is important to note that Conjecture 1.1 is not a constructive statement; it simply claims
existence. And as such, it is not perfectly satisfying. It is desirable to have a description of the
elliptic curve Ef whose existence is claimed by Conjecture 1.1. In this regard, the situation is best
over K = Q. One can construct Ef analytically as a torus C/Λ using the periods of f . Modular
symbols give a method that allows for fast computations of these periods. The celebrated database
of elliptic curves over Q of Cremona ([LMF14]) is based on an efficient implementation of the above
strategy. Over totally real fields K, in cases where we can transfer the situation to a Shimura
curve as mentioned above, one can describe the period lattice Λ of Ef using the periods of f ′ this
time. However, one runs into computational difficulties as one does not have the modular symbols
method anymore due to the lack of cusps. Recently [VW14] and [Nel12] have made progress in
devising efficient algorithms to compute these periods.

Beyond the above situations, no description of Ef is known. To date, the only case for which
there has been a conjectural description is over totally real fields. In this case, there is a conjecture
of Oda [Oda81] which describes the period lattice of Ef using the periods of the Hilbert modular
form f . In [Dem08, BDK+12], this conjecture was successfully utilized to compute the equation of

Ef in the case of K = Q(
√

5). However, over general number fields K, the approach of trying to
construct the period lattice Λ of Ef directly from the periods of f , as in the conjecture of Oda,
runs into difficulty as the periods of f do not suffice in general. For example, it is well known (see
[Kur78, EGM82]) that the periods of a weight 2 Bianchi newform f span a one-dimensional lattice
in R. Due to the lack of a (conjectural) description, all the numerical works that investigate the
validity of Conjecture 1.1 that we alluded to above compile lists of elliptic curves over K essentially
by searching through the Weierstrass coefficients in a box.

Our previous paper [GMS14] contains two constructions that lead to two conjectures; one de-
scribing the complex period lattice of Ef over number fields with at least one real place, a second
one describing the homothety class of the p-adic Tate lattice of Ef when it admits one. In fact,
the focus of [GMS14] was in constructing certain local points on Ef which were conjectured to be
global (the so-called Darmon points), generalizing the seminal work of Darmon [Dar01] to number
fields of arbitrary signature in a cohomological manner that was pioneered by Greenberg [Gre09].
The conjectural description of the lattice (complex or p-adic) of Ef was treated rather tangentially,
its main role being that of providing well-definedness of the Darmon points. In particular, the ex-
perimental evidence supporting the lattice conjecture given in [GMS14] is essentially of an indirect
nature, mainly coming from the fact that the numerically computed Darmon points appeared to
lie on a curve having the predicted lattice.

The focus of this paper is on the conjectural description of the p-adic lattice of Ef , in those
cases where it admits a Tate uniformization. What we do is to present an explicit description of
the construction which is better suited for numerical calculations. For number fields that have at
most one complex place, we also provide efficient algorithms for computing the lattices in practice.
In addition, we show how to use the information on the homothety class of the lattice to get p-
adic approximations to the algebraic invariants of Ef , allowing for the recovery of the Weierstrass
equation of Ef .
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We have successfully implemented our approach and computed extensive tables that cover hun-
dreds of elliptic curves over dozens of numbers fields. In particular, we have produced elliptic
curves over number fields whose Weierstrass coefficients have huge heights. In certain situations
this method can be more feasible than the “searching methods” that have been employed by many
authors, as in [DGKY14, BDK+12].

On the one hand, we are convinced that our computations provide an overwhelming amount
of data supporting the validity of the conjecture. On the other hand, they show the potential of
the method for actually computing equations of elliptic curves attached to modular forms over
number fields, which could be helpful in extending Cremona’s tables to number fields other than Q.
Actually, the only reason why we focus on the p-adic conjecture is that the archimedean conjecture
suffers from being rather inefficient from a computational point of view, at least with the methods
that have been used so far for archimedean Darmon points calculations (cf. [DL03], [GM13]).
Indeed, the archimedean construction involves computing integrals of Hilbert modular forms to
high accuracy, and the approach of using Fourier expansions requires computing a great deal of
coefficients, which is too costly. On the other hand, in the p-adic setting one can take advantage
from the very efficient overconvergent methods, which are on the base of our algorithms.

Let us give a sketch of our method and the contents of the paper. Let K be a number field,
which we assume of narrow class number 1. Let f be a weight 2 newform of over K of level Γ0(N)
with integer Hecke eigenvalues. Assume that there is a prime ideal p such that p||N. In Section 2.1,
we start with transferring the problem into the realm of the cohomology of arithmetic groups. As
it has both theoretical and computational advantages, we consider not only PGL2 but also its inner
forms. We present a cohomological version of Conjecture 1.1 and then show that our assumption
above on the level ideal N of f rules out the fake elliptic curve case.

In Section 2.2, we expose the construction of the p-adic lattice. We first move things from the
arithmetic group setting to the S-arithmetic group setting and single out a Hecke eigenclass Ψf

in the cohomology, with coefficients in the space of rigid analytic differential 1-forms on the p-adic
upper half-plane Hp, of a certain S-arithmetic group that “captures the arithmetic of f”. Then
we consider the p-adic lattice Λ obtained by pairing, under a certain multiplicative integration
pairing, Ψf with certain homology classes with coefficients in degree zero divisors on Hp. The main
conjecture of this paper then claims that Λ is homothetic to the Tate lattice of an elliptic curve Ef
over K which is associated to f .

In Section 3 we describe the methods for explicitly computing the p-adic lattice, in the case where
K has at most one complex place. What remains to be done is extraction of the algebraic invariants
of Ef from Λ, which we discuss in Section 4. Let us say a few words about the implementation
and the data collected. A more detailed discussion can be found in Sections 3 and 4. All the data
regarding the geometry of arithmetic groups, which were used as the input for our (co)homology
programs, were obtained using programs of John Voight [Voi09] (for arithmetic Fuchsian groups)
and Aurel Page [Pag13] (for arithmetic Kleinian groups). In particular, we were only able to
compute with number fields K which were either totally real or almost totally real (that is, with a
unique complex place). The p-adic integration pairing was computed using the tools developed by
the first two authors in [GM14]. These employ the method of overconvergent cohomology without
which the necessary computations would not be feasible.

The homothety class of a lattice Λ = qZ ⊂ K×p is determined by its L-invariant

L(Λ) :=
logp q

ordp q
.
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If an elliptic curve E over K admits a p-adic Tate uniformization K×p /q
Z
E , then its p-adic L-invariant

is defined as L(qZE). So the main conjecture of our paper describes the conjectural Ef of Conjecture
1.1 through its p-adic L-invariant.
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2. Modular elliptic curves and p-adic lattices

We begin this section by restating Conjecture 1.1 in terms of certain classes in the cohomology of
unit groups of quaternion orders. Then we construct p-adic lattices from these cohomology classes
which, conjecturally, correspond to the associated modular elliptic curves.

2.1. Modular elliptic curves via cohomology. The followings are well known; we invite the
reader to consult [Har87], [Hid94, §3] or [GMS14, §2] for definitions or details that are missing.
Let K be a number field which we assume to be of narrow class number 1. Denote by (r, s) its
signature; i.e., K has r real places and s complex places. Let B be a quaternion algebra over K of
discriminant D and which splits at n of the real places. Thus there is an embedding

B×/K× ↪→ PGL2(R)n × PGL2(C)s,(2.1)

given by the choice of splitting isomorphisms at the archimedean places.
If m is an integral ideal of K which is coprime to D, we denote by RD

0 (m) an Eichler order of

level m. We set Γ̃D
0 (m) = RD

0 (m)×/O×K and assume that it is torsion-free. The group PGL2(R) acts
on the upper half-pane H = R×R>0 by fractional linear transformations (for negative determinant
matrices, we first apply complex conjugation). Similarly, PGL2(C) acts on the hyperbolic 3-space

H = C× R>0. Therefore, Γ̃D
0 (m) acts via (2.1) on Hn ×Hs and the quotient

Y D
0 (m) = Γ̃D

0 (m)\Hn ×Hs(2.2)

is a Riemannian manifold of real dimension 2n+3s, which is non-compact if and only if the ambient
quaternion algebra B is the 2× 2 matrix algebra over K.

For any abelian group A with a Γ̃D
0 (m)-action, the Betti cohomology groups Hn+s(Y D

0 (m), A)
are finitely generated abelian groups. As Hn ×Hs is contractible, we have

Hi(Y D
0 (m), A) ' Hi(Γ̃D

0 (m), A),

where the cohomology on the right is group cohomology. We shall often interchange the two sides
without alerting the reader.

These cohomology groups are equipped with the action of the Hecke operators, a collection of
endomorphism {Tl} indexed by the primes l - D. A cohomology class f ∈ Hn+s(Y D

0 (m),C) is said
to be a Hecke eigenclass if it is an eigenvector for all the Hecke operators and is said to be rational
if all its eigenvalues are integers. That is,

Tlf = al(f)f with al(f) ∈ Z, for all l - D.(2.3)
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We say that such an f is Eisenstein if al(f) = |l| + 1 for all l - D, where |l| stands for the norm
of the ideal l. Two Hecke eigenclasses f and f ′, possibly of different levels m and m′, are said to
be equivalent if al(f) = al(f

′) for all l - mm′. We say that f is new if it is not Eisenstein and not
equivalent to any Hecke eigenclass of level a strict divisor of m.

The generalized Eichler–Shimura isomorphism, as established by Harder, and the Jacquet–
Langlands correspondence tell us, roughly speaking, that the cohomology groups Hn+s(Y D

0 (m),C)
correspond to weight 2 modular forms of level Γ0(m). The following conjecture is a cohomological
version of Conjecture 1.1, in which we consider not only arithmetic groups for PGL2 over K but
also its inner forms.

Conjecture 2.1. Let f ∈ Hn+s(Y D
0 (m),C) be a new rational Hecke eigenclass. If K has some real

place, then there exists an elliptic curve Ef/K, of conductor Dm, such that

#Ef (OK/l) = 1 + |l| − al(f) for all l - D.(2.4)

If K is totally complex, then there exists either and elliptic curve Ef of conductor Dm satisfying
(2.4) or a fake elliptic curve Af/K, of conductor (Dm)2, such that

#Af (OK/l) = (1 + |l| − al(f))2 for all l - D.(2.5)

Remark 2.2. Observe that condition (2.4) does not uniquely characterize Ef , but only its K-
isogeny class. We will abuse the terminology and refer to any curve satisfying (2.4) as the curve
Ef associated to f . A similar remark holds for Af .

Remark 2.3. It is sometimes convenient to work with the group ΓD
0 (m) = RD

0 (m)×1 /{±1} (here
RD

0 (m)×1 denotes the group of elements of reduced norm 1 in RD
0 (m)×). In this case, one needs

to take into account the involutions coming from units of K. More precisely, denote by U ′+ the

units in O×K which are positive at the real places that ramify in B. Then any any representative

u ∈ U ′+/(O×K)2 gives rise to an involution Tu on Hn+s(ΓD
0 (m),C) (see [GMS14, §2]) and it follows

that Hn+s(Γ̃0(m),C) can be identified with the subspace of Hn+s(ΓD
0 (m),C) that is fixed under

these involutions. Hecke operators {Tl}l-D on Hn+s(ΓD
0 (m),C) are defined in the usual way and a

Hecke eigenclass in Hn+s(Γ̃D
0 (m),C) can be thought of as a Hecke eigenclass Hn+s(ΓD

0 (m),C) that
is fixed by the involutions Tu with u ∈ U ′+/(O×K)2.

From Section 2.2 on we will consider levels that have valuation 1 at some prime. The following
proposition and corollary rule out the possibility of having a fake elliptic curve in that setting.

Proposition 2.4. Let A be a fake elliptic curve over K of conductor L, and let p be a prime
dividing L. Then vp(L) ≥ 4.

Proof. Let A′ denote the connected component of the special fiber at p of the Néron model of A.
By the Chevalley theorem on algebraic groups there is an exact sequence

0 −→ T × U −→ A′ −→ B −→ 0,

with B an abelian variety, T a torus, and U a unipotent group. Denote by t the dimension of T ,
and by u the dimension of U . The valuation of L at p is given by

vp(L) = t+ 2u+ dp,

where dp is the Swan conductor. It is well known that A has potentially good reduction (see, e.g.,
[Rib81, Theorem 3]), so that t = 0. Since A has bad reduction at p, we have that necessarily u > 0.
Therefore, in order to finish the proof, we need to rule out the case u = 1.
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If u = 1 then B is an elliptic curve. Any endomorphism of A gives rise to an endomorphism of
its Neron model, so that End(A) acts on A′. By functoriality we see that End(A) also acts on B.
(This follows, for instance, from the fact that B is the Albanese variety of A′.) Thus B must be
a supersingular elliptic curve and, moreover, End(B) ⊗ Q ' End(A) ⊗ Q. But this is impossible:
by a theorem of Tate ([Tat66, Theorem 2]), the endomorphism algebra of a supersingular elliptic
curve is ramified at ∞; on the other hand, that of a fake elliptic curve is well known to be split at
∞. (This follows from results of Shimura [Shi63].) �

Corollary 2.5. Let f ∈ Hn+s(ΓD
0 (pm),C) be a rational Hecke eigenclass, where p is a prime that

does not divide Dm. Then the abelian variety associated to f in Conjecture 2.1 is an elliptic curve,
rather than a fake elliptic curve.

Proof. If it was a fake elliptic curve its conductor would be L = p2m2D2, with p - mD and therefore
vp(L) = 2. This would contradict Proposition 2.4. �

2.2. Construction of the p-adic lattice. Let p be a prime of K and put Cp = K̂p. Recall Tate’s
uniformization: If E is an elliptic curve over K whose conductor is exactly divisible by p, there
exists a lattice Λ ⊂ C×p such that E(Cp) ' C×p /Λ.

Let n be an ideal coprime to pD, and let f ∈ Hn+s(ΓD
0 (pn),C) be a new rational Hecke eigenclass.

The goal of this section is to construct a lattice Λf ⊂ C×p which we conjecture is homothetic to
the Tate lattice of some elliptic curve Ef over K that is associated to f . This will be done in
subsection 2.2.5 below. Before that, we briefly recall some of the tools that will be used and we fix
some notation.

2.2.1. Arithmetic and S-arithmetic groups. Let RD
0 (n) and RD

0 (pn) denote Eichler orders in B of
the indicated levels, chosen in such a way that RD

0 (pn) ⊂ RD
0 (n). We set ΓD

0 (pn) = RD
0 (pn)×1 /{±1}

and ΓD
0 (n) = RD

0 (n)×1 /{±1}.
For a set of primes S of OK we let OK,S denote the S-integers of K, that is the set of x ∈ K

such that vq(x) ≥ 0 for all primes q 6∈ S. We put R = RD
0 (pn)⊗OK

OK,{p} and Γ = R×1 . Observe

that Γ is an S-arithmetic group that contains the arithmetic groups ΓD
0 (pn) and ΓD

0 (n).

2.2.2. (Co)homology groups and Hecke operators. If V is a RD
0 (pn)×−module the cohomology

groups Hi(ΓD
0 (pn), V ) and Hi(Γ

D
0 (pn), V ) are endowed with the action of Hecke operators {Tl}

for l - D. Following the usual notational conventions, we set Ul = Tl for l | pn. As noted in Remark
2.3, one also has involutions Tu associated to units u ∈ U ′+/(O×K)2. Moreover, there are Atkin-
Lenher involutions Wl at the primes l | pn. For instance, if π is a generator of p which is positive
at the real places of K, then Wp is induced by an element ωπ ∈ RD

0 (pn)× of reduced norm π and
which normalizes ΓD

0 (pn).
If G denotes either ΓD

0 (n) or Γ, then there are analogous Hecke and Atkin–Lehner operators
acting on Hi(G,V ) and Hi(G,V ).

2.2.3. Bruhat–Tits tree, harmonic cocycles, and measures. Let T denote the Bruhat–Tits tree of
PGL2(Kp). Its set of vertices V is identified with the set of homothety classes of OKp

-lattices in

K2
p . Its set of directed edges E consists on ordered pairs (w1, w2) ∈ V ×V such that each wi can be

represented by a lattice Λi with pΛ1 ( Λ2 ( Λ1. The natural action of PGL2(Kp) on the lattices
induces an action on T .

For e = (w1, w2) ∈ E we let s(e) = w1 denote its source, t(e) = w2 its target, and ē = (w2, w1)
its opposite. Let v0 ∈ V be the vertex corresponding to OKp

×OKp
and v1 that corresponding to
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OKp
× pOKp

, and let e0 ∈ E be the directed edge (v0, v1). We denote by V0 the set of even vertices
(i.e., those at an even distance of v0), and by V1 the set of odd vertices. Similarly, E0 stands for
the set of even edges (those e such that s(e) is even) and E1 for the odd edges.

We can, and do, fix a splitting isomorphism

ιp : B ⊗K Kp −→M2(Kp)(2.6)

such that ιp(R
D
0 (n)) ' M2(OKp

) and ιp(RD
0 (pn)) ' {

(
a b
c d

)
∈ M2(OKp

) : c ∈ p}. In this way we

identify ΓD
0 (pn), ΓD

0 (n), and Γ with their images in PGL2(Kp) under ιp , so that they acquire
an action on T . It turns out that Γ acts transitively on E0, and this gives rise to one-to-one
correspondences

Γ/ΓD
0 (n)↔ V0 and Γ/ΓD

0 (pn)↔ E0,(2.7)

induced by g 7→ gv0 and g 7→ ge0, respectively. Similarly, if we set Γ̂D
0 (n) = ωπΓD

0 (n)ω−1
π then the

maps g 7→ gv1 and g 7→ ge1 induce bijections

Γ/Γ̂D
0 (n)↔ V1 and Γ/ΓD

0 (pn)↔ E1.(2.8)

As a consequence of (2.7), for any abelian group A (with trivial ΓD
0 (n)-action) we have isomor-

phisms

IndΓ
ΓD
0 (pn)A ' F(E0, A) and IndΓ

ΓD
0 (n)(A) ' F(V0, A),(2.9)

where Ind stands for the induced module and F(X,Y ) for the set of functions from X to Y . Similar
isomorphisms are deduced from (2.8).

Let F0(E , A) be the set of functions µ : E → A such that µ(e) + µ(ē) = 0. There are two
degeneracy maps ϕs, ϕt : F(E , A)→ F(V, A) given by

ϕs(µ)(v) =
∑
s(e)=v

µ(e) and ϕt(µ)(v) =
∑
t(e)=v

µ(e).

The map ϕs sends F0(E , A) exhaustively onto F(V, A). The group of A-valued harmonic cocycles,
denoted HC(A), is defined to be the kernel; that is, it is defined by the exact sequence

0 −→ HC(A) −→ F0(E , A) −→ F(V, A) −→ 0.

Denote by Meas0(P1(Kp), A) the set of A-valued measures on P1(Kp) with total measure 0. If B
is the set of compact-open balls in P1(Kp) then, by definition, µ ∈ Meas0(P1(Kp), A) is a function
µ : B → A such that f(P1(Kp)) = 0 and, for any B ∈ B, the following compatibility condition holds:

if B =
⊔
Bi is a finite decomposition with Bi ∈ B, then µ(B) =

∑
µ(Bi).(2.10)

One consequence is that, in particular, µ(P1(Kp) \B) = −µ(B).
An example of compact-open ball in P1(Kp) is OKp

, the ring of integers of Kp. Given B ∈ B,

either B or P1(Kp)\B can be expressed as γOKp
for some γ ∈ Γ. Moreover, the stabilizer of OKp

in

Γ is ΓD
0 (pn). This facts, together with (2.7), imply that any µ ∈ Meas0(P1(Kp),Z) can be identified

with a function µ : E0 → A satisfying the compatibility coming from (2.10). This compatibility
condition turns out to be that of being a harmonic cocycle. Therefore, we have an isomorphism
Meas0(P1(Kp), A) ' HC(A), which we will use to identify measures and harmonic cocycles from
now on.
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2.2.4. Multiplicative integration pairing. Let C(P1(Kp),Z) denote the Z−valued continuous func-
tions on P1(Kp). For µ ∈ Meas0(P1(Kp),Z) and f ∈ C(P1(Kp),Z)× one defines the multiplicative
integral of f with respect to µ to be

×
∫
P1(Kp)

fdµ = lim
||U||→0

∏
U∈U

f(tU )µ(U),(2.11)

where U runs over coverings of P1(Kp) by compact open balls whose diameter approaches to 0, and
tU is any sample point in U .

Let Hp = Cp \Kp denote the p-adic upper half plane. Using the above multiplicative integrals
one defines the following pairing:

Meas(P1(Kp),Z)×Div0(Hp) −→ C×p
(µ, τ1 − τ2) 7−→ ×

∫
P1(Kp)

(
t− τ2
t− τ1

)
dµ.

This induces, by cap product, a multiplicative integration pairing between Γ-(co)homology groups:

×
∫
〈 , 〉 : Hi(Γ,HC(Z))×Hi(Γ,Div0Hp) −→ C×p .(2.12)

Denote by Ω1
Hp

(Z) the Z-module of rigid-analytic 1-forms onHp for which all of their residues are

in Z. It is well known that by considering residues of harmonic cocycles on carefully chosen annuli
in Hp, one can exhibit an isomorphism between HC(Z) and Ω1

Hp
(Z) (see [GMS14, §4.2]). Thus

we may as well consider the above integration pairing using cohomology classes with coefficients in
Ω1
Hp

(Z), as done in [GMS14] and alluded to in the Introduction.

2.2.5. Construction of the lattice. Recall the rational Hecke eigenclass f ∈ Hn+s(ΓD
0 (pn),Z). In

this section we construct a lattice Λf ⊂ C×p . More precisely, Λf is the lattice generated by a

quantity qf ∈ C×p that is defined as

qf = ×
∫
〈ωf ,∆f 〉,

for certain cohomology class ωf ∈ Hn+s(Γ,HC(Z)) and homology class ∆f ∈ Hn+s(Γ,Div0Hp).
Next, we give the definition of ωf and ∆f .

By Shapiro’s Lemma and (2.9) we have the following isomorphisms:

Hn+s(ΓD
0 (pn),Z) ' Hn+s(Γ, IndΓ

ΓD
0 (pn) Z) ' Hn+s(Γ,F(E0,Z)).(2.13)

By definition of harmonic cocycles we have an inclusion HC(Z) ⊂ F0(E ,Z) ' F(E0,Z). Therefore,
there is a natural map

ρ : Hn+s(Γ,HC(Z)) −→ Hn+s(Γ,F(E0,Z)).

It turns out that the class corresponding to f under the identifications (2.13) lies in the image of
ρ, and we define ωf ∈ Hn+s(Γ,HC(Z)) to be an element such that ρ(ωf ) = f .

By duality between homology and cohomology groups, the Hecke eigenclass f ∈ Hn+s(ΓD
0 (pn),Z)

gives rise to f̂ ∈ Hn+s(Γ
D
0 (pn),Z) characterized, up to scaling, by the fact that it has the same

eigenvalues as f for all the Hecke operators.
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Since Γ is isomorphic to the amalgamated product ΓD
0 (n) ?ΓD

0 (pn) ΓD
0 (n) (cf. [Ser80, Chapter II,

§1]), the corresponding Mayer–Vietoris sequence gives, at degree n+ s:

· · · −→ Hn+s+1(Γ,Z)
d−→ Hn+s(Γ

D
0 (pn),Z)

∂∗−→ Hn+s(Γ
D
0 (n),Z)2 −→ · · · .(2.14)

The fact that f̂ is new at p is equivalent to ∂∗(f̂) = 0. Therefore, there exists a homology class

cf ∈ Hn+s+1(Γ,Z) such that d(cf ) = f̂ .

Now consider the exact sequence defining Div0(Hp):

0 −→ Div0Hp −→ DivHp
deg−→ Z −→ 0.

The homology exact sequence gives a connecting homomorphism

δ : Hn+s+1(Γ,Z) −→ Hn+s(Γ,Div0Hp),(2.15)

and we define ∆f = δ(cf ).
Finally, we define the period qf by

qf = ×
∫
〈ωf ,∆f 〉 ∈ C×p ,

and the p-adic lattice Λf = qZf ⊂ C×p .

Conjecture 2.6. The lattice Λf is commensurable with the Tate lattice of an elliptic curve Ef
over K which is associated to f .

Remark 2.7. The above conjecture is known for K = Q: for B = M2(Q) it was proven by Darmon
[Dar01, Theorem 1], who showed that in fact it is equivalent to the Mazur–Tate–Teitelbaum con-
jecture, now a theorem of Greenberg–Stevens [GS93]; for B a quaternion division algebra over Q it
was proven by Dasgupta–Greenberg [DG12] and, independently, by Longo–Rotger–Vigni [LRV12].
Conjecture 2.6 was stated for totally real K in [Gre09] and for K of arbitrary signature in [GMS14].
To the best of our knowledge, in these cases it remains open.

3. Explicit methods and algorithms

In this section we describe explicit algorithms for computing Λf , in the particular case that
n+ s = 1. Observe that n+ s is the degree of the (co)homology groups involved in the construction
of Λf , and this is precisely the reason why we impose this restriction: we want to work with
(co)homology groups of degree 1, because they are easier to handle computationally.

Recall that a number field is said to be almost totally real (ATR for short) if it has one complex
place. That is, if it is of signature (r, 1) for some r ≥ 0. The condition n + s = 1 implies that K
must be either totally real or almost totally real, which we assume from now on.

Remark 3.1. We believe that it should be possible to extend the algorithms of this section to
(co)homology groups of degrees > 1, and that this would be interesting because it would allow to
do computations in fields K of arbitrary signature. However, we have not made any serious attempt
in this direction.

The input for the algorithms of this section is the following: a quaternion algebra B/K of
discriminant D which is split at one archimedean place, an ideal n coprime to D, and a prime p
such that p - nD. The aim is to compute

(1) the rational Hecke eigenclasses f ∈ H1(ΓD
0 (pn),Z) or, equivalently, the rational Hecke

eigenclasses f̂ ∈ H1(ΓD
0 (pn),Z).
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Then, for each rational Hecke eigenclass (if any) we compute

(2) the homology class ∆f ∈ H1(Γ,Div0Hp),
(3) the cohomology class ωf ∈ H1(Γ,HC(Z)), and
(4) the period qf = ×

∫
〈ωf ,∆f 〉 ∈ C×p .

We will take for granted the algorithms for working with quaternion algebras and their orders (cf.,
e.g., [Voi13]), for instance those implemented in Magma [BCP97]. Key to the methods that we
present in this section are also the algorithms for computing arithmetic groups of the form ΓD

0 (m).
For quaternion algebras over totally real fields they are due to John Voight [Voi09], and over almost
totally real fields to Aurel Page [Pag13]. In particular, we assume that there are algorithms for
computing a presentation of ΓD

0 (m) in terms of generators and relations and to solve the word
problem, that is, any g ∈ ΓD

0 (m) can be effectively expressed in terms of the generators.
Let us also fix some notation and conventions regarding homology and cohomology groups. Let

G denote a group and A an abelian G-module. We will work with the so called bar resolution, in
which the group of i-chains is taken to be Z[G]⊗i ⊗Z A. The boundary maps, which we only need
in degrees 1 and 2, are given by

∂1(g ⊗ a) = ga− a, and ∂2(g1 ⊗ g2 ⊗ a) = g2 ⊗ g−1
1 a− g1g2 ⊗ a+ g1 ⊗ a.

For cohomology, the (inhomogeneous) i-cochains are the maps from Gi with values in A, and the
coboundaries in degrees 0 and 1 are

∂0(a)(g) = g−1a− a, and ∂1(c)(g1, g2) = g1c(g2)− c(g1g2) + c(g1).

3.1. The rational Hecke eigenclass. Finding rational Hecke eigenclasses amounts to compute
matrices of Hecke operators acting on H1(ΓD

0 (pn),Q) or H1(ΓD
0 (pn),Q). For totally real number

fields, one can use the algorithms of [GV11], which in fact are valid more generally for cohomology
groups of degree > 1. In this section we use the explicit presentations and solutions to the word
problem provided by [Pag13] to treat also the case of ATR fields, but only in (co)homological
degree 1. We present the methods just for homology, although everything can be easily adapted to
cohomology as well.

The main idea is that homology in degree 1 is the same as the abelianization of the group.
Indeed, for any group G there is a canonical isomorphism φ : Gab ' H1(G,Z). If we identify
the abelianization Gab with G/[G,G] (here [G,G] is the derived subgroup), and H1(G,Z) with
Z[G]/∂2(Z[G]⊗ Z[G]), then φ is induced by the map (which, by abuse of notation, we also call φ)

φ : G −→ Z[G]
g 7−→ g.

(3.1)

Using the algorithms of [Voi09] and [Pag13] we can compute a presentation for ΓD
0 (pn) of the form

ΓD
0 (pn) = 〈u1, . . . , ub | r1, . . . , rc〉,

where the ui’s are generators and the rj ’s relations. From this, it is easy to compute generators
{v1, . . . , ve} for ΓD

0 (pn)ab. Suppose that v1, . . . , vd are of infinite order and the rest are torsion.
That is to say, ΓD

0 (pn)ab ' Zd ⊕ Torsion. The torsion part is not important, as we are actually
interested in the Hecke action on H1(ΓD

0 (pn),Q). Therefore, for a prime l - pnD the Hecke operator
Tl will be described by a matrix M(Tl) ∈ Md(Z), which we next explain how to compute.
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Let πl ∈ RD
0 (pn) be an element whose reduced norm generates l and is positive under the real

embeddings of K. Then there is a decomposition

ΓD
0 (pn)πlΓ

D
0 (pn) =

|l|⊔
i=0

giΓ
D
0 (pn).

Since we know that there are |l| + 1 cosets, the gi’s are easy to find in practice. Indeed, all of
them are of the form gπl with g ∈ ΓD

0 (pn). One can run over different g’s in ΓD
0 (pn) and check for

equivalency modulo ΓD
0 (pn) on the right, until |l|+ 1 inequivalent cosets are found.

Now, for each i = 0, . . . , |l| let ti : ΓD
0 (pn)→ ΓD

0 (pn) be the map defined by means of the equation

h−1gi = gh(i)ti(h)−1,

for some index h(i) ∈ {0, . . . , |l|}. Suppose that A is a RD
0 (pn)×-module and let c =

∑
h h ⊗ ah ∈

Z[ΓD
0 (pn)]⊗A be a cycle. We denote by [c] the class of c in H1(ΓD

0 (pn), A). Then a cycle representing
Tl([c]) is given by the following formula (cf. [AS86, §1]):

Tl([c]) =

|l|∑
i=0

∑
h

ti(h)⊗ g−1
i ah.(3.2)

Each generator vi gives rise to a cycle [vi] ∈ Z1(ΓD
0 (pn),Z). Then formula (3.2) gives explic-

itly Tl([vi]), regarded as an element of Z[G]. It corresponds, via φ, to an element of ΓD
0 (pn)ab

which, using an algorithmic solution to the word problem of [Voi09] and [Pag13], we can express
as
∑e
j=1 ajivj for some integers aji. Since we are only interested in the non-torsion generators,

we just disregard the part corresponding to torsion and then the i-th column of M(Tl) is given by
(a1i, . . . , adi)

t.
Similarly, for any u ∈ U ′+, let ωu ∈ RD

0 (pn)× be an element of reduced norm u. The involution
Tu is given by the formula

Tu([c]) =
∑
h

ω−1
u hωu ⊗ ω−1

u ag,

and we can compute its matrix M(Tu) ∈ Md(Z) by the same procedure as with the Hecke operators
at finite primes Tl.

Now, in order to determine the rational Hecke eigenclasses one decomposes the free part of
ΓD

0 (pn)ab into simultaneous eigenspaces with respect to the action of M(Tu), for all u ∈ U ′K/(O
×
K)2,

and the matrices M(Tl), for several l’s until all the eigenspaces are irreducible (typically a few l’s
will suffice). The one dimensional eigenspaces, if any, correspond to the rational Hecke eigenclasses.

In view of what we explained, a rational Hecke eigenclass f will be regarded, in practice, as an
element γf ∈ ΓD

0 (pn) with the property that for all l - pnD one has [Tl([γf ])] = al[γf ] for some
al ∈ Z, where Tl is given by the formula (3.2). To lighten the notation, when there is no risk of
confusion we will identify γf with its homology class [γf ]; thus we think of γf as an element of
H1(ΓD

0 (pn),Z) when convenient.

3.2. The homology class. In this subsection we take as input the γf ∈ H1(ΓD
0 (pn),Z) con-

structed in §3.1, and we provide an algorithmic procedure to compute the homology class ∆f ∈
H1(Γ,Div0Hp) defined in §2.2.5. The first step is to compute the element cf ∈ H2(Γ,Z) which
maps to γf under the map d : H2(Γ,Z)→ H1(ΓD

0 (pn),Z) of (2.14).
We will again freely use the identification Gab ' H1(G,Z). Recall that it is induced by the map

φ of (3.1). The following properties are straightforward to check:
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(1) φ(g1g2) = φ(g1) + φ(g2)− ∂2(g1 ⊗ g2);
(2) φ([a, b]) = ∂2

(
a⊗ a−1 + b⊗ b−1 − a⊗ ba−1b−1 − b⊗ a−1b−1 − a−1 ⊗ b−1 + 2 · 1G ⊗ 1G

)
, where

[a, b] denotes the commutator and 1G the identity of G.

The second property implies that any element in [G,G] is mapped to a boundary. Such boundary
can be effectively computed, as we record in the next lemma.

Lemma 3.2. Let g ∈ [G,G], and suppose that an explicit expression of g as product of commutators
is known. Then there is an algorithm for explicitly computing a chain b ∈ Z[G] ⊗ Z[G] such that
φ(g) = ∂2(b).

Proof. The algorithm is recursive: write g = [a, b] · g′ with g′ a product of commutators. If g′ = 1
then we are done by property (2) above. If g′ 6= 1 then by the properties above we have that

φ([a, b] · g′) =φ([a, b]) + φ(g′)− ∂2([a, b]⊗ g′)
=φ(g′)− ∂2([a, b]⊗ g′)
+∂2

(
a⊗ a−1 + b⊗ b−1 − a⊗ ba−1b−1 − b⊗ a−1b−1 − a−1 ⊗ b−1 + 2 · 1G ⊗ 1G

)
.

�

Recall the element ωπ ∈ RD
0 (pn)× introduced in 2.2.2 when talking about the Atkin–Lehner

involutions: it normalizes ΓD
0 (pn) and its reduced norm generates p (and it is totally positive if

K is totally real). We also introduced the notation Γ̂D
0 (n) = ωπΓD

0 (n)ω−1
π . The group ΓD

0 (pn) is

contained in both ΓD
0 (n) and Γ̂D

0 (n), and it is well known that Γ = ΓD
0 (n) ?ΓD

0 (pn) Γ̂D
0 (n), where ?

stands for the amalgamated product.

The inclusions ΓD
0 (pn)ab ⊂ ΓD

0 (n)ab and ΓD
0 (pn)ab ⊂ Γ̂D

0 (n)ab correspond to the natural homo-
morphisms

α : H1(ΓD
0 (pn),Z) −→ H1(ΓD

0 (n),Z), α̂ : H1(ΓD
0 (pn),Z) −→ H1(Γ̂D

0 (n),Z).

The element γf ∈ H1(ΓD
0 (pn),Z) is new at p. This is equivalent to say that, after extending

coefficients to Q, it lies in ker(α) ∩ ker(α̂). Therefore, the class of γf is torsion when viewed as an

element in both ΓD
0 (n)ab and Γ̂D

0 (n)ab. In particular, there exists e ∈ Z>0 such that the class of

γef is trivial in ΓD
0 (n)ab and Γ̂D

0 (n)ab. Using the algorithms for the word problem of [Voi09] and

[Pag13], we can find explicit expressions of the form

γef =
∏

[ai, bi], with ai, bi ∈ ΓD
0 (n);

γef =
∏

[cj , dj ], with cj , dj ∈ Γ̂D
0 (n).

In fact, for computing the second decomposition we can decompose ωπγ
e
fωπ as a product of com-

mutators in ΓD
0 (n) and obtain a decomposition in Γ̂D

0 (n) by conjugating the found commutators.

Now, by Lemma 3.2 we can explicitly find elements z ∈ Z[ΓD
0 (n)]⊗Z[ΓD

0 (n)] and ẑ ∈ Z[Γ̂D
0 (n)]⊗

Z[Γ̂D
0 (n)] such that ∂2z = γef and ∂2(ẑ) = γef . Both elements z and ẑ can be viewed naturally

as elements in Z[Γ] ⊗ Z[Γ], via the inclusions ΓD
0 (n) ⊂ Γ and Γ̂D

0 (n) ⊂ Γ. Then the element
−z+ ẑ ∈ Z[Γ]⊗Z[Γ] clearly satisfies that ∂2(−z+ ẑ) = −γef + γef = 0, so that it is indeed a 2-cycle.

Its class cf in H2(Γ,Z) is the element we were looking for.
By definition ∆f = δ(cf ), so the next step is to compute the image of cf under the connecting

homomorphism δ : H2(Γ,Z) → H1(Γ,Div0Hp) of (2.15). The following lemma gives an explicit
formula in terms of cycles.
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Lemma 3.3. Let τ be any element in Hp. The connecting homomorphism δ is the one induced at
the level of chains by the map

Z[Γ]⊗ Z[Γ] −→ Z[Γ]⊗Div0Hp

g ⊗ h 7→ h⊗ (g−1τ − τ).

Proof. Let C =
∑
nigi ⊗ hi ∈ Z[Γ] ⊗ Z[Γ]. By the definition of the connecting homomorphism δ

we have that

δ(C) =∂2

(∑
nigi ⊗ hi ⊗ τ

)
(3.3)

=
∑

nihi ⊗ g−1
i τ −

∑
nigihi ⊗ τ +

∑
nigi ⊗ τ.(3.4)

But since c is a cycle we have that ∂2 (
∑
nigi ⊗ hi) = 0, and therefore∑

nigihi =
∑

nigi +
∑

nihi.

From this we have that ∑
nigihi ⊗ τ =

∑
nigi ⊗ τ +

∑
nihi ⊗ τ

and plugging this into (3.4) we obtain that

δ(C) =
∑

nihi ⊗ (g−1
i τ − τ).

�

3.3. The cohomology class. Unlike the homology class of the previous section, the cohomology
class ωf is exactly the same as that arises in the computation of Darmon points. Explicit algorithms
for its calculation were given in [GM14] in the case where the base field is K = Q, and they can be
adapted without much difficulty to general K. We next describe the main steps of these algorithms,
and the reader is referred to [GM14] for more details.

The element γf ∈ ΓD
0 (pn) computed in 3.2 gives rise to a cohomology class ϕf ∈ H1(ΓD

0 (pn),Z).
Since the 1-coboundaries are trivial in this case, there is no necessity of distinguishing between a
cocycle and its cohomology class. That is, ϕf is just a homomorphism ΓD

0 (pn)ab → Z. We have
seen that ΓD

0 (pn)ab decomposes as a direct sum of irreducible spaces for the action of the Hecke
algebra, and that one of the rank 1 subspaces is generated by γf . Then ϕf is the map that sends
γf to 1 and the elements in the other subspaces to 0.

Recall that Shapiro’s lemma and (2.9) give rise to

H1(ΓD
0 (pn),Z) ' H1(Γ, IndΓ

ΓD
0 (pn) Z) ' H1(Γ,F(E0,Z)).(3.5)

When constructing ωf we saw that the image of ϕf on the group of the right lies in the image of
the natural map

H1(Γ,HC(Z))
ρ→ H1(Γ,F(E0,Z)),

and a preimage is, by definition, ωf . The isomorphisms (3.5) are induced by maps on cocycles
which are completely explicit, so one can effectively compute a cocycle in Z1(Γ,F(E0,Z)) whose
class corresponds to the image of ϕf . However, this cocycle will not in general take values in the
submodule HC(Z) of F0(E ,Z) (what it is true is that it will be cohomologous to a cocycle with
values in harmonic cocycles).

The problem is that the map on cocycles that induces Shapiro’s isomorphism depends on the
choice of a system of representatives for ΓD

0 (pn)\Γ. Different choices lead to different cocycles in
Z1(Γ,F(E0,Z)). Of course, all of them are cohomologous inside Z1(Γ,F(E0,Z)), but only some of
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them actually lie in Z1(Γ,HC(Z)). Following an idea introduced in [LRV12, §4], it is possible to
choose a system of representatives in such a way that the obtained cocycle directly takes values in
HC(Z). They are called radial systems, and we next recall their definition.

Let us denote by Zp the completion of OK at p and by Fp its residue field. The first step is to
compute a system of representatives Υ = {γa}a∈P1(Fp) for ΓD

0 (pn)\ΓD
0 (n) satisfying that:

γ∞ = 1, and ιp(γa) = ua
(

0 −1
1 ã

)
(here ã is a lift of a to Zp),

where ua belongs to

ΓD,loc
0 (p) = {

(
a b
c d

)
∈ SL2(Zp) | c ∈ p}.

This induces a system of representatives {γ̃a}a∈P1(Fp) of ΓD
0 (pn)\Γ̂D

0 (pn) by putting γ̃∞ = 1 and

γ̃a = π−1ωπγaωπ for a 6=∞.
We will index the representatives of ΓD

0 (pn)\Γ by edges in E0 (recall that these are in bijection,
cf. (2.7)), and the representatives of ΓD

0 (n)\Γ by vertices in V0. We define {γe}e∈E0 and {γv}v∈V
to be the systems of representatives uniquely determined by the conditions:

• γv0 = γv1 = 1;
• {γe}s(e)=v = {γaγv}a∈P1(Fp) for all v ∈ V0;
• {γe}t(e)=v = {γ̃aγv}a∈P1(Fp) for all v ∈ V1;
• γs(e) = γe for all e ∈ E0 such that d(t(e), v0) < d(s(e), v0);
• γt(e) = γe for all e ∈ E0 such that d(t(e), v0) > d(s(e), v0).

We next describe a cocycle µf which represents the image of ϕf under (3.5). In order to lighten the
notation we set µ = µf , since f is fixed in this discussion. For e ∈ E0 and g ∈ Γ, let h(g, e) ∈ ΓD

0 (pn)
be the element determined by the identity

γeg = h(g, e)γg−1e.(3.6)

Now for g ∈ Γ, let µg : F(E0,Z)→ be the map defined by

µg(e) = ϕf (h(g, e)), for e ∈ E0.(3.7)

Since the system of representatives of ΓD
0 (pn)\Γ was taken to be radial, µg belongs in fact to HC(Z)

(cf. [LRV12, Proposition 4.8]). In addition, µ is a 1-cocycle, i.e., µ ∈ Z1(Γ,HC(Z)).
The cocycle µ is not yet a cocycle representing the cohomology class ωf , but almost. The last

step is to “project to the cuspidal part”. For this, let l be a prime not dividing pnD and consider
the projector Tl − |l| − 1. The cocycle (Tl − |l| − 1)µ turns to be the correct one, i.e., it represents
(a multiple of) ωf . Since considering a multiple of ωf does not change the homothety class of the
lattice Λf , we can assume that ωf is given by (Tl − |l| − 1)µ.

In view of the above discussion, the calculation of ωf in practice boils down to the effective
computation of the elements h(g, e) of (3.6). This can be done with the algorithm of [GM14,
Theorem 4.1].

3.4. The multiplicative pairing. In order to simplify a little bit the computations, it is conve-
nient to use the Hecke equivariance of the integration pairing and write

qf = ×
∫
〈ωf ,∆f 〉 = ×

∫
〈(Tl − |l| − 1)µ,∆f 〉 = ×

∫
〈µ, (Tl − |l| − 1)∆f 〉,

where µ is the explicit cocycle defined in (3.7). The reason is that the Hecke action is slightly easier
to compute on H1(ΓD

0 (pn),Div0Hp) than on H1(ΓD
0 (pn),HC(Z)), simply because the coefficients

are easier to manipulate. Indeed, we use the explicit formula (3.2) to compute Tl∆f .
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Now (Tl − |l| − 1)∆f is of the form

(Tl − |l| − 1)∆f =
∑

gi ⊗ (τ ′i − τi), for certain gi ∈ Γ and τ ′i , τi ∈ Hp,

so that

qf =
∏
×
∫
P1(Kp)

(
t− τ ′i
t− τi

)
dµg(t).

Therefore, computing qf boils down to compute multiplicative integrals of the form

×
∫
P1(Kp)

(
t− τ2
t− τ1

)
dµg(t).(3.8)

These integrals can in principle be computed, up to finite precision, by Riemann products. Namely,
by taking a finite covering U of P1(Kp) and evaluating the expression appearing in (2.11). However,
this method is of exponential complexity in terms of the number of p-adic digits of accuracy, and
it is too inefficient for practical purposes.

Integrals (3.8) can be computed instead by using the method of overconvergent cohomology
of [PP09], a generalization of Steven’s overconvergent modular symbols (cf. [PS11]) which is of
polynomial complexity and much more efficient in practice. This method is explained in [GM14,
§5] for the case where K = Q. However, the assumption that K = Q is by no means essential, and
all the calculations and algorithms of loc. cit. go through with no essential difficulty to any K.

4. Numerical computations

We have implemented in Sage [S+14] the algorithms described in Section 3 that compute approx-
imations to qf . Some of the code uses routines that are currently only available in Magma. The
implementation is done under the (inessential) additional restriction that the prime p is of residual
degree 1. This simplifies the routines involving calculations in the local field, since in that case Kp

is Qp (here p is the norm of p), rather than an extension of Qp. The code and the instructions for
using it are available at https://github.com/mmasdeu/darmonpoints.

4.1. Recovering the curve from the L-invariant. Recall that the rational Hecke eigenclass f
of level pn on a quaternion algebra of discriminant D should correspond to an elliptic curve Ef of
conductor N = pDn. According to Conjecture 2.6, the lattice generated by qf is commensurable
with the Tate lattice of a curve satisfying the defining properties of Ef (i.e., a curve of conductor
N and such that #Ef (OK/l) = |l|+ 1−al(f) for all primes l of K). In order to test this conjecture
we use the calculated qf to “discover” an equation for Ef .

Roughly speaking, the idea is that conjecturally the Tate parameter of Ef is of the form qrf for
some r ∈ Q, and from the Tate parameter one can compute the j-invariant by a well-known power
series. Therefore, the problem reduces to that of computing the equation of a curve over K, given
a p-adic approximation to its j-invariant. For this we use some of the methods of [CL07].

More precisely, we look for a Weierstrass model of the form

y2 = x3 − c4
48
x− c6

864
,

for which we know (an approximation of) the j-invariant. The main idea is to use the relation
j = c34/∆, where ∆ denotes the discriminant of the above model. Of course we do not know ∆

https://github.com/mmasdeu/darmonpoints
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a priori, but we have certain control on it: by [CL07, Proposition 3.2], its class in K×/(K×)12

belongs to

K(N, 12) = {x ∈ K×/(K×)12 | vq(N) ≡ 0 (mod 12) for all primes q | N},

which is a finite set. What we do is to run over ∆’s in K(N, 12); for each try of ∆, we can assume
that the valuation of ∆ equals the valuation of qE , and from this we get the r for which qrf is

a candidate for qE . We then compute j from the candidate to qE and try to recognize 3
√
j∆ as

an element of K. If we succeed, this is the c4 and the c6 can then be computed by means of
∆ = (c34 − c26)/1728.

Summing up, the algorithm that we use is the following. The input is the element qf ∈ C×p ,
which we have computed up to, say, N digits of p-adic accuracy (we can assume that vp(qf ) > 0,

for we can replace qf by q−1
f ). In all the examples we have tried, qf turns out to lie in Q×p . This is

of course consistent with Conjecture 2.6, because the Tate period of Ef lies in K×p = Q×p .

(1) Set d := vp(qf ), and compute the finite number of elements q0 such that qd0 = qf (in
particular, vp(q0) = 1).

(2) For every q0 as above, run over the finite number of ∆ ∈ K(N, 12) and set q = q
vp(∆)
0 .

(This is the candidate for qE at this step.)
(3) For each q as above, compute j = j(q) by means of the power series j(q) = 1/q + 744 +

196884q + · · · . This gives an element j ∈ Q×p , known up to precision pN . Then compute

c′4 = 3
√
j∆ ∈ Q×p .

(4) Using standard recognition techniques, try to find c4 ∈ K which coincides with c′4 up to
precision pN . If such a c4 is found, test whether c34 − 1728∆ is a square in K and, if so, set
c6 as one of its square roots.

(5) If in the previous step we have found c4, c6 ∈ K, compute the conductor of the curve
y2 = x3− c4

48x−
c6
864 . If the conductor is equal to N, then return this curve. Note that if we

reach this step, then there are six possilibities to try, for c4 can be modified by third roots
of unity, and c6 by a sign.

Two remarks are in order here:

a) Observe that the precision to which we need to know qf is determined by the height of the c4 in
a Weierstrass model of Ef . Indeed, if the precision of qf is too small one is in general not able
to recognize c4 from its p-adic approximation c′4.

b) If the above algorithm returns the equation of a curve, Conjecture 2.6 would imply that it is an
equation of Ef . In that sense, one might think that the algorithm is only conjectural. However,
if it returns a curve one can always check a posteriori whether such a curve satisfies the defining
properties of Ef , by checking that its ap’s coincide with the eigenvalues of f by Tp.

4.2. Numerical results. We have performed systematic calculations for totally real fields of degree
2 and 3, and for ATR fields of degree 2, 3, and 4. For each of these degrees, we have considered the
number fields of narrow class number 1 and discriminant in absolute value up to 5000 (this data
was obtained from LMFDB [LMF14]). For each such number field K we have exhausted all levels
N up to a norm 200 which satisfy certain additional restrictions. First of all, recall that the method
presented in this note can only be applied to those N satisfying that:

• N can be factored into pairwise coprime ideals pDn, where p is prime and D is the discrim-
inant of a quaternion algebra B/K which is split at one archimedean place.
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In addition, we have imposed additional restrictions in order to simplify the coding of some routines
and speed up the computations. Namely:

• The norm of p is at most 23 (primes of large norm slow down our implementation of the
integration routines);

• The norm of p is a prime number (so that Kp ' Qp rather than a finite extension, which
simplifies the p-adic routines).

For every field K and every factorization of N = pDn satisfying the conditions above, we have
computed H1(ΓD

0 (pn),Q) (for a choice of the quaternion algebra B of discriminant D and that
splits at one archimedean place). For most of the levels this homology group does not contain any
rational Hecke eigenline, and thus one does not expect an elliptic curve of that conductor. For the
levels in which there are rational lines, we have computed the L-invariant of each line, and tried
to recognize an algebraic curve over K whose L-invariant matches up to high p-adic precision and
whose conductor is N.

In the appendices we provide tables for the results of these computations. Each row contains the
number field K, the level N factored as pDn and the coefficients c4 and c6 for the found curve of
conductor N. These c4 and c6 are not necessarily minimal, in the sense that there might be curves
of smaller height in the same isogeny class.

We warn the reader that these tables are not complete in the sense that for each K not necessarily
all the levels N of norm ≤ 200 and satisfying the above restrictions appear. The first reason is that
H1(ΓD

0 (N),Q) might not contain any rational line and no curve is expected at that level. Such
levels can also be of some interest and they can be found in a more complete version of the tables
at https://github.com/mmasdeu/elliptic_curve_tables. Another reason, this one related to
our implementation, is that we imposed a limitation of time and computations taking too long were
stopped1. Also, in some occasions, the p-adic lattice has been successfully computed, but we have
not been able to recognize an algebraic curve of the right conductor from the Tate period qf . This
usually happens when the precision to which we have computed qf , which is roughly 100 decimal
digits2 in our case, is not enough because the curve has too large height. Finally, runtime errors
have occasionally arisen. They mostly occur during the calculation of the fundamental domain for
ΓD

0 (pn), a step which in addition seems to be the greatest bottleneck in the calculation (cf. §5
below for a possible improvement).

We remark that for each N there might be several choices for the prime p, as well as several
choices for the factorization of N as pDn. In particular, in the tables it is sometimes the case that
the same (isogeny class of) elliptic curve is found from different factorizations of N.

5. Discussion and further improvements

The extensive numerical calculations that we have carried out provide some evidence of the
validity of Conjecture 2.6. They also illustrate how the construction of the p-adic lattice can be
translated into explicit algorithms which are well suited for systematic computations.

Along the text we imposed a number of conditions to the fields and levels that we consider. Some
of these conditions are inherent to the method; the main one is the necessity of having a prime p || N
and a factorization N = pDn with D the discriminant of a quaternion algebra over K that splits

1We limited to 30 minutes the time allowed to compute the arithmetic group ΓD
0 (pn), and to 120 minutes the

time to do the rest of the calculation (homology class, cohomology class, and integration pairing).
2By which we mean that the number of p-adic digits is actually the integer part of logp(10100), which can be

interpreted as a precision of roughly 100 decimal digits.

https://github.com/mmasdeu/elliptic_curve_tables
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at one archimedean place. Most of the other extra restrictions we imposed were just simplifying
assumptions. Therefore, it might be interesting to relax them, as that would enlarge the types of
fields and levels for which one is able to compute curves. Some of the possible improvements, both
to the given algorithms and to our current implementation of them, might be:

• Do the local computations over finite extensions of Qp; this would allow to treat p’s of
residual degree > 1.

• Improve the integration routines in order to allow p’s of higher norm.
• One of the bottlenecks of our current implementation is the computation of ΓD

0 (pn) ⊂ B
using the routines of John Voight and Aurel Page. This is usually much more computa-
tionally demanding than computing ΓD

0 (1), the norm one elements of a maximal order.
In this kind of situations, a usual trick is to replace groups of the form Hi(Γ

D
0 (pn), A) by

Hi(Γ
D
0 (1), Ind

ΓD
0 (pn)

ΓD
0 (1)

A) via Shapiro’s Lemma. Implementing this approach is likely to lead

to an improvement of the overall running time.
• Develop algorithms for working with (co)homology groups of degree higher than one. This

would allow to treat fields K having more than one complex place.
• Provide a construction of the lattice Λf when K has narrow class number > 1. This would

probably involve working adelically.
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Appendix A. Tables

We include tables of curves for number fields other than Q of signatures (r, s) with s ≤ 1, and
for which r + s ≤ 3. That is, when s = 0 we looked at totally real quadratic and cubic fields;
when s = 1 we looked at cubic ATR fields (of signature (1, 1)) and quartic ATR fields (of signature
(2, 1)). Each row of the tables consists of five columns:

(1) the absolute value |∆K | of the discriminant of the field K,
(2) The coefficients [b0, . . . , bn−1] of a minimal polynomial fK(x) = xn+bn−1x

n−1 + · · · b1x+b0
of K.

(3) The norm Nm(N) of an ideal N (the level).
(4) A factorization N = pDm of the the level. All ideals are principal, and we use the notation

(α)a to indicate the ideal generated by an element α ∈ OK of norm a.
(5) The coefficients c4(E) and c6(E) of the elliptic curve E expressed in terms of r, a root of

fK(x).

The reader is encouraghed to refer to Subsection 4.2 for an account of the range of our calcula-
tions. Before each table we include a summary of the performed computations, where we list:

Found curves: the total number of curves that have been successfully identified.
No rational lines: the number of cases where no rational lines were identified in the coho-

mology group.
Total spaces: the number of cohomology groups successfully computed.
Timeouts: the number of cases where the computation was stopped after a set time.
Not recognized: the number of cases where we failed to recognize the Weierstrass coefficients

algebraically
p too large: the number of cases in which, despite having identified a rational line, the com-

putation was not carried out because the prime p had a norm larger than 23.
Runtime errors: the number of cases where the computation of the fundamental domain

did not succeed for some reason.

Real quadratic fields

Found curves 107 Time outs 507
No rational lines 19 Not recognized 38
Total spaces 743 p too large 6

Runtime errors 66

|∆K | fK(x) Nm(N) pDm c4(E), c6(E)
5 [−1,−1] 55 (−3r + 1)11(−2r + 1)5(1) 1224r + 737,

62972r + 39767
5 [−1,−1] 55 (−3r + 2)11(−2r + 1)5(1) −1224r + 1961,

−62972r + 102739
5 [−1,−1] 55 (−3r + 2)11(−2r + 1)5(1) −24r + 41,

28r − 77
5 [−1,−1] 76 (4r − 3)19(2)4(1) 1368r − 143,

21924r + 58751
5 [−1,−1] 76 (−4r + 1)19(2)4(1) −1368r + 1225,

−21924r + 80675
5 [−1,−1] 76 (−4r + 1)19(2)4(1) 72r + 25,

−756r − 469
5 [−1,−1] 76 (−4r + 1)19(2)4(1) −45r + 82,

432r − 917
5 [−1,−1] 76 (−4r + 1)19(2)4(1) 18212832r + 11266921,

116273070000r + 71861827211
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)
5 [−1,−1] 99 (−3r + 1)11(3)9(1) 1278699r + 790306,

2162225520r + 1336329431
5 [−1,−1] 99 (−3r + 1)11(3)9(1) 1278699r + 790306,

2162225520r + 1336329431
5 [−1,−1] 99 (−3r + 2)11(3)9(1) −1278699r + 2069005,

−2162225520r + 3498554951
5 [−1,−1] 99 (−3r + 2)11(3)9(1) −1278699r + 2069005,

−2162225520r + 3498554951
5 [−1,−1] 121 (−3r + 1)11(−3r + 2)11(1) 16,

−152
5 [−1,−1] 171 (−4r + 1)19(3)9(1) 21r + 37,

1548r + 647
8 [−2, 0] 34 (3r − 1)17(r)2(1) 228r + 313,

−5706r − 8063
8 [−2, 0] 34 (3r − 1)17(r)2(1) −1800r + 2489,

−131524r + 185571
8 [−2, 0] 34 (−3r − 1)17(r)2(1) 1800r + 2489,

131524r + 185571
8 [−2, 0] 34 (−3r − 1)17(r)2(1) −228r + 313,

5706r − 8063
8 [−2, 0] 46 (−r − 5)23(r)2(1) 720r + 1193,

35944r + 53163
8 [−2, 0] 46 (−r + 5)23(r)2(1) −7,

−160r + 243
8 [−2, 0] 46 (−r + 5)23(r)2(1) −720r + 1193,

−35944r + 53163
8 [−2, 0] 46 (−r + 5)23(r)2(1) 68r + 129,

−2002r − 3035
8 [−2, 0] 46 (−r + 5)23(r)2(1) 68r + 129,

−2002r − 3035
8 [−2, 0] 49 (2r + 1)7(−2r + 1)7(1) 24r + 20,

−56r − 288
8 [−2, 0] 119 (2r + 1)7(−3r − 1)17(1) 64r + 57,

608r + 947
8 [−2, 0] 119 (2r + 1)7(−3r − 1)17(1) 784r + 1257,

40424r + 57899
8 [−2, 0] 119 (−2r + 1)7(3r − 1)17(1) −64r + 57,

−608r + 947
8 [−2, 0] 119 (−2r + 1)7(3r − 1)17(1) −64r + 57,

−608r + 947
8 [−2, 0] 119 (2r + 1)7(3r − 1)17(1) −4312r + 9825,

−627836r + 1121375
8 [−2, 0] 119 (2r + 1)7(3r − 1)17(1) 8r − 15,

148r − 25
8 [−2, 0] 119 (−2r + 1)7(−3r − 1)17(1) 232r + 852,

18472r + 14416
8 [−2, 0] 119 (−2r + 1)7(−3r − 1)17(1) 4312r + 9825,

627836r + 1121375
8 [−2, 0] 119 (−2r + 1)7(−3r − 1)17(1) −40r + 84,

536r − 848
8 [−2, 0] 161 (−2r + 1)7(−r − 5)23(1) −8r + 33,

76r − 65
8 [−2, 0] 161 (2r + 1)7(−r + 5)23(1) 8r + 33,

−76r − 65
8 [−2, 0] 161 (2r + 1)7(−r + 5)23(1) 8r + 33,

−76r − 65
8 [−2, 0] 161 (2r + 1)7(−r − 5)23(1) −740r + 1185,

24674r + 138485
8 [−2, 0] 161 (−2r + 1)7(−r + 5)23(1) 740r + 1185,

−24674r + 138485
8 [−2, 0] 175 (2r + 1)7(5)25(1) −64r + 81,

544r − 1465
13 [−3,−1] 9 (−r + 1)3(−r)3(1) 15r + 220,

−1584r − 413
13 [−3,−1] 39 (−r)3(−2r + 1)13(1) 263r + 340,

7268r + 9475
13 [−3,−1] 51 (r − 5)17(−r + 1)3(1) 48r + 16,

−360r − 800
13 [−3,−1] 51 (r + 4)17(−r)3(1) −48r + 64,

360r − 1160
13 [−3,−1] 51 (r + 4)17(−r)3(1) 96r − 176,

−504r + 856
13 [−3,−1] 51 (r − 5)17(−r)3(1) −351r + 811,

−12744r + 29323
13 [−3,−1] 51 (r − 5)17(−r)3(1) −20959r + 48427,
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)
5780344r − 13310485

13 [−3,−1] 51 (r − 5)17(−r)3(1) 240r − 239,
−8r + 5575

13 [−3,−1] 51 (r + 4)17(−r + 1)3(1) −48r − 71,
360r + 595

13 [−3,−1] 51 (r + 4)17(−r + 1)3(1) 20959r + 27468,
−5780344r − 7530141

13 [−3,−1] 51 (r + 4)17(−r + 1)3(1) −165633r + 381436,
−128005408r + 294767771

13 [−3,−1] 68 (r + 4)17(2)4(1) −97r + 220,
−1840r + 4219

13 [−3,−1] 68 (r + 4)17(2)4(1) −97r + 220,
−1840r + 4219

13 [−3,−1] 68 (r − 5)17(2)4(1) 1537r + 2043,
115744r + 150555

13 [−3,−1] 68 (r − 5)17(2)4(1) 97r + 123,
1840r + 2379

13 [−3,−1] 69 (−r)3(−3r − 1)23(1) −784r + 1825,
−42088r + 96847

13 [−3,−1] 69 (−r)3(−3r − 1)23(1) −12544r + 29185,
−2695648r + 6202303

13 [−3,−1] 69 (−r + 1)3(3r − 4)23(1) 12544r + 16641,
2695648r + 3506655

13 [−3,−1] 87 (−r + 1)3(3r − 1)29(1) −8r + 249,
2084r − 1461

13 [−3,−1] 87 (−r)3(−3r + 2)29(1) −952r + 2401,
−62564r + 138215

13 [−3,−1] 87 (−r)3(−3r + 2)29(1) 8r + 241,
−2084r + 623

17 [−4,−1] 4 (−r + 2)2(−r − 1)2(1) 14832r + 23161,
−3654504r − 5706701

17 [−4,−1] 18 (−r + 2)2(3)9(1) 85392r + 133345,
50668200r + 79121071

17 [−4,−1] 18 (−r − 1)2(3)9(1) 841440r + 1313953,
−1286345520r − 2008696465

17 [−4,−1] 26 (−r − 1)2(−2r + 3)13(1) 64936r + 101401,
25480444r + 39789059

17 [−4,−1] 26 (−r + 2)2(2r + 1)13(1) 616r + 961,
−30740r − 48001

17 [−4,−1] 26 (−r + 2)2(2r + 1)13(1) 616r + 961,
−30740r − 48001

17 [−4,−1] 26 (−2r + 3)13(−r + 2)2(1) 29056560r + 45373353,
−318037634280r − 496632562389

17 [−4,−1] 26 (2r + 1)13(−r + 2)2(1) 2408r + 3761,
239756r + 374391

17 [−4,−1] 26 (−2r + 3)13(−r − 1)2(1) 824r + 1289,
−45724r − 71397

17 [−4,−1] 26 (2r + 1)13(−r − 1)2(1) 6672r + 10425,
1251720r + 1954611

17 [−4,−1] 26 (2r + 1)13(−r − 1)2(1) 6672r + 10425,
1251720r + 1954611

17 [−4,−1] 38 (2r − 7)19(−r − 1)2(1) 725832r + 1133425,
−1247421060r − 1947913865

17 [−4,−1] 38 (2r + 5)19(−r + 2)2(1) 734280r + 1146617,
−672205300r − 1049684077

17 [−4,−1] 38 (2r + 5)19(−r − 1)2(1) 45465r + 70996,
29323071r + 45789524

17 [−4,−1] 38 (2r + 5)19(−r − 1)2(1) 45465r + 70996,
29323071r + 45789524

29 [−7,−1] 25 (−r + 2)5(−r − 1)5(1) 609r + 1343,
−34924r − 76561

29 [−7,−1] 25 (−r + 2)5(−r − 1)5(1) −609r + 1952,
34924r − 111485

29 [−7,−1] 25 (−r − 1)5(−r + 2)5(1) 609r + 1343,
−34924r − 76561

29 [−7,−1] 25 (−r − 1)5(−r + 2)5(1) −609r + 1952,
34924r − 111485

29 [−7,−1] 28 (−r)7(2)4(1) −8r + 25,
100r + 155

29 [−7,−1] 28 (r − 1)7(2)4(1) 8r + 17,
−100r + 255

29 [−7,−1] 28 (r − 1)7(2)4(1) 8r + 17,
−100r + 255

29 [−7,−1] 28 (r − 1)7(2)4(1) −25r + 104,
17000r − 54141

29 [−7,−1] 28 (r − 1)7(2)4(1) −25r + 104,
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)
17000r − 54141

29 [−7,−1] 35 (r − 1)7(−r − 1)5(1) 111r + 240,
2484r + 5427

37 [−9,−1] 9 (r − 3)3(r + 2)3(1) 352534920r + 895925641,
12664709797068r + 32185856206819

37 [−9,−1] 21 (r − 2)7(r + 2)3(1) 9767379r + 24822634,
−71815557168r − 182510711533

37 [−9,−1] 21 (r − 2)7(r + 2)3(1) 34891r + 88674,
−16131716r − 40996845

37 [−9,−1] 21 (r − 2)7(r + 2)3(1) −6176r + 21873,
−1197008r + 4239063

37 [−9,−1] 21 (−r − 1)7(r − 3)3(1) 1147822821r + 2917055413,
93263190114960r + 237017324086199

37 [−9,−1] 21 (−r − 1)7(r − 3)3(1) 199128965r + 506062621,
−6658415065324r − 16921571302601

37 [−9,−1] 33 (r + 4)11(r − 3)3(1) 2203920r + 5601001,
3290718312r + 8362969867

37 [−9,−1] 33 (r − 5)11(r + 2)3(1) 157776r + 400969,
154126728r + 391694779

41 [−10,−1] 4 (−r + 4)2(r + 3)2(1) −41953280r + 155292673,
−687614216960r + 2545246737791

41 [−10,−1] 4 (r + 3)2(−r + 4)2(1) 41953280r + 113339393,
687614216960r + 1857632520831

41 [−10,−1] 10 (2r − 7)5(−r + 4)2(1) 2620227r − 9698933,
−12878240103r + 47669605721

41 [−10,−1] 10 (2r − 7)5(r + 3)2(1) 208r − 767,
19528r − 72289

41 [−10,−1] 10 (2r + 5)5(r + 3)2(1) −2620227r − 7078706,
12878240103r + 34791365618

53 [−13,−1] 28 (−r + 3)7(2)4(1) 21r − 47,
360r − 1765

53 [−13,−1] 28 (−r + 3)7(2)4(1) 21r − 47,
360r − 1765

53 [−13,−1] 28 (−r + 3)7(2)4(1) −53r + 286,
1436r − 5441

61 [−15,−1] 9 (r + 3)3(r − 4)3(1) −49335r + 217327,
30609540r − 134838845

61 [−15,−1] 9 (r + 3)3(r − 4)3(1) 111r + 376,
−3316r − 11293

61 [−15,−1] 9 (r + 3)3(r − 4)3(1) −111r + 487,
3316r − 14609

61 [−15,−1] 9 (r − 4)3(r + 3)3(1) 789255r + 2687512,
−1959559668r − 6672545297

89 [−22,−1] 4 (r + 4)2(−r + 5)2(1) −24480162480r + 127712776713,
11764205408351880r − 61373748632190885

113 [−28,−1] 4 (r + 5)2(−r + 6)2(1) −3672r + 21353,
391868r − 2278741

Table 2: Fields of degree 2

Cubic totally real fields

Found curves 23 Time outs 1349
No rational lines 71 Not recognized 19
Total spaces 1630 p too large 23

Runtime errors 145

|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

148 [1,−3,−1] 17 (2r + 1)17(1)(1) 269381372r2 + 315199506r − 124133929,

8968858286035r2 + 10494339880946r − 4132949696398

148 [1,−3,−1] 17 (2r + 1)17(1)(1) 269381372r2 + 315199506r − 124133929,

8968858286035r2 + 10494339880946r − 4132949696398

148 [1,−3,−1] 19 (−r2 − r − 1)19(1)(1) 76607638r2 + 89637562r − 35301652,

−1730949724156r2 − 2025360881264r + 797640893496

148 [1,−3,−1] 19 (−r2 − r − 1)19(1)(1) 80r2 + 96r − 32,

−39936r2 − 46736r + 18392

148 [1,−3,−1] 19 (−r2 − r − 1)19(1)(1) 586903510r2 + 686727866r − 270451668,

−37037821755228r2 − 43337454729856r + 17067440391656
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

148 [1,−3,−1] 19 (−r2 − r − 1)19(1)(1) 2336r2 + 2736r − 1072,

−415264r2 − 485888r + 191368

316 [2,−4,−1] 2 (−r + 1)2(1)(1) −134576r2 + 71264r + 571889,

−102113912r2 + 54050928r + 433896983

321 [1,−4,−1] 3 (r + 1)3(1)(1) −10208r2 + 7776r + 42768,

−2145960r2 + 1633176r + 8975456

361 [7,−6,−1] 7 (−r)7(1)(1) −7r2 + 27r − 10,

−109r2 + 448r − 428

361 [7,−6,−1] 11 (−r2 − r + 6)11(1)(1) 40r2 − 135r + 108,

−1034r2 + 3705r − 2995

361 [7,−6,−1] 11 (r2 − 3)11(1)(1) 135r2 + 175r − 407,

−3705r2 − 4739r + 11394

361 [7,−6,−1] 11 (r + 1)11(1)(1) −175r2 − 40r + 1008,

4739r2 + 1034r − 27121

404 [−1,−5,−1] 3 (r2 − 2r − 2)3(1)(1) −18788r2 + 49886r + 11362,

−69749044r2 + 185214584r + 42133128

469 [4,−5,−1] 7 (r − 3)7(1)(1) 22920625r2 + 31891354r − 38338703,

−140106818288r2 − 194942158372r + 234352848667

469 [4,−5,−1] 7 (r − 3)7(1)(1) 309713905r2 + 430930474r − 518049983,

−14792982115880r2 − 20582694673012r + 24743817192451

473 [−1,−5, 0] 3 (−r − 1)3(1)(1) 10397725505r2 + 24227311126r + 4462430625,

3562105767767207r2+8299915675450620r+1528762218426840

473 [−1,−5, 0] 3 (−r − 1)3(1)(1) 10397725505r2 + 24227311126r + 4462430625,

3562105767767207r2+8299915675450620r+1528762218426840

473 [−1,−5, 0] 3 (−r − 1)3(1)(1) −611r2 + 1305r + 288,

103499r2 − 220338r − 48637

473 [−1,−5, 0] 11 (r2 − 3)11(1)(1) 979r2 − 2079r − 459,

−95769r2 + 203819r + 44992

473 [−1,−5, 0] 11 (r2 − 3)11(1)(1) 979r2 − 2079r − 459,

−95769r2 + 203819r + 44992

473 [−1,−5, 0] 11 (r2 − 3)11(1)(1) −16r2 − 80r − 16,

−4216r2 − 10208r − 1888

568 [−2,−6,−1] 2 (r + 1)2(1)(1) −48r2 + 56r + 297,

−560r2 + 700r + 3275

733 [8,−7,−1] 2 (r2 − 6)2(1)(1) −3728r2 + 3424r + 36337,

−1668040r2 − 894160r + 9716535
Table 4: Fields of degree 3

Imaginary quadratic fields

Found curves 10 Time outs 30
No rational lines 168 Not recognized 6
Total spaces 218 p too large 0

Runtime errors 4

|∆K | fK(x) Nm(N) pDm c4(E), c6(E)
3 [1,−1] 196 (3r − 2)7(−6r + 2)28(1) −131065r,

47449331
3 [1,−1] 196 (−3r + 1)7(6r − 4)28(1) −131065r,

47449331
4 [1, 0] 130 (3r − 2)13(−r − 3)10(1) −264r + 257,

−6580r + 2583
4 [1, 0] 130 (−3r − 2)13(−3r − 1)10(1) 264r + 257,

6580r + 2583
7 [2,−1] 44 (r)2(3r + 1)22(1) 648r + 481,

−28836r + 4447
7 [2,−1] 44 (r − 1)2(3r − 4)22(1) −648r + 1129,

28836r − 24389
8 [2, 0] 99 (r + 1)3(−4r + 1)33(1) 444r + 25,

14794r − 16263
8 [2, 0] 99 (r − 1)3(−4r − 1)33(1) −444r + 25,

−14794r − 16263
8 [2, 0] 99 (−r − 3)11(3)9(1) −444r + 25,

−14794r − 16263
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)
8 [2, 0] 99 (r − 3)11(3)9(1) 444r + 25,

14794r − 16263
Table 6: Fields of degree 2

Cubic ATR fields

Found curves 130 Time outs 5199
No rational lines 1527 Not recognized 35
Total spaces 8019 p too large 9

Runtime errors 1119

|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

23 [1, 0,−1] 185 (r2 + 1)5(3r2 − r + 1)37(1) 643318r2 − 1128871r + 852306,

925824936r2 − 1624710823r + 1226456111

31 [−1, 1, 0] 129 (−r − 1)3(−3r2 − 2r − 1)43(1) −4787r2 + 10585r + 3349,

1268769r2 − 371369r + 424764

44 [1, 1,−1] 121 (2r − 1)11(r2 + 2)11(1) 4097022r2 − 6265306r + 7487000,

14168359144r2 − 21861492432r + 26039140708

44 [1, 1,−1] 121 (2r − 1)11(r2 + 2)11(1) 1774r2 − 1434r − 1304,

−42728r2 − 123104r − 54300

44 [1, 1,−1] 121 (2r − 1)11(r2 + 2)11(1) 4097022r2 − 6265306r + 7487000,

14168359144r2 − 21861492432r + 26039140708

59 [−1, 2, 0] 34 (−r2 − 1)2(−r2 − 2r − 2)17(1) 262r2 + 513r + 264,

−2592r2 + 448r + 13231

59 [−1, 2, 0] 34 (−r2 − 2r − 2)17(−r2 − 1)2(1) 16393r2 + 20228r − 12524,

4430388r2 − 5579252r + 1619039

59 [−1, 2, 0] 46 (−2r2 + r − 2)23(−r2 − 1)2(1) 18969r2 + 8532r + 41788,

4216716r2 + 1911600r + 9298151

59 [−1, 2, 0] 74 (−r2 − 1)2(2r2 + 2r + 1)37(1) 33054r2 + 15049r + 72776,

9702640r2 + 4400116r + 21401723

59 [−1, 2, 0] 88 (−r2 − 1)2(r − 2)11(r2 + r + 1)4 16609r2 + 7084r + 37332,

3522136r2 + 1613876r + 7760395

59 [−1, 2, 0] 187 (2r2 + r + 2)17(r − 2)11(1) −32r2 − 848r + 432,

−7600r2 + 23368r − 8704

76 [−2,−2, 0] 117 (2r2 − r − 3)13(−r2 + 2r + 1)9(1) 48r + 16,

−128r2 − 224r − 216

83 [−2, 1,−1] 65 (r + 1)5(−2r + 1)13(1) 3089r2 + 1086r + 4561,

333604r2 + 117840r + 493059

83 [−2, 1,−1] 65 (r + 1)5(−2r + 1)13(1) 304r2 + 112r + 449,

6616r2 + 2328r + 9791

83 [−2, 1,−1] 65 (−2r + 1)13(r + 1)5(1) 3089r2 + 1086r + 4561,

333604r2 + 117840r + 493059

83 [−2, 1,−1] 65 (−2r + 1)13(r + 1)5(1) 4499473r2 + 1589254r + 6650137,

18573712184r2 + 6560420272r + 27451337687

83 [−2, 1,−1] 106 (r)2(2r2 − 3r + 3)53(1) 2329r2 + 822r + 3441,

−34264r2 − 12104r − 50645

87 [1, 2,−1] 123 (r2 − r + 1)3(r2 + 4)41(1) 1424r2 + 3792r + 2384,

−245696r2 − 201800r − 4144

87 [1, 2,−1] 129 (r2 − r + 1)3(−3r + 1)43(1) −752r2 + 2272r + 1009,

27496r2 − 152144r − 63977

87 [1, 2,−1] 129 (r2 − r + 1)3(−3r + 1)43(1) −752r2 + 2272r + 1009,

27496r2 − 152144r − 63977

104 [−2,−1, 0] 143 (r2 + r − 1)11(2r + 1)13(1) 12r2 + 12r + 25,

−144r2 − 90r − 125

107 [−2, 3,−1] 40 (−r2 − 1)5(r2 − r + 3)4(r)2 3880r2 − 984r + 10473,

405820r2 − 105348r + 1142075

107 [−2, 3,−1] 135 (−r2 − 1)5(3)27(1) 16r2 − 16r,
184r − 296

108 [−2, 0, 0] 34 (2r + 1)17(r)2(1) 184r2 + 212r + 265,

−5010r2 − 6306r − 7773

108 [−2, 0, 0] 85 (−r2 − 1)5(2r + 1)17(1) 2224r2 + 2816r + 3520,

−229056r2 − 288672r − 363768
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

108 [−2, 0, 0] 85 (2r + 1)17(−r2 − 1)5(1) 2224r2 + 2816r + 3520,

−229056r2 − 288672r − 363768

108 [−2, 0, 0] 125 (−r2 − 1)5(r2 − 2r − 1)25(1) 496r2,
22088

108 [−2, 0, 0] 145 (−r2 − 1)5(r + 3)29(1) 144r2 + 176r + 240,

3816r2 + 4752r + 6088

108 [−2, 0, 0] 155 (−r2 − 1)5(r2 + 3)31(1) 16r2 + 20r + 17,

−606r2 − 762r − 929

116 [−2, 0,−1] 34 (−2r + 1)17(−r + 1)2(1) 846760r2 + 589024r + 998761,

1781332252r2 + 1239131712r + 2101097467

116 [−2, 0,−1] 34 (−r + 1)2(−2r + 1)17(1) 4592r2 + 3192r + 5417,

274400r2 + 190876r + 323659

116 [−2, 0,−1] 38 (−r + 1)2(2r + 1)19(1) 82921r2 + 57626r + 97746,

54599355r2 + 37980374r + 64400978

116 [−2, 0,−1] 38 (2r + 1)19(−r + 1)2(1) 1081r2 + 746r + 1266,

66555r2 + 46310r + 78482

116 [−2, 0,−1] 58 (−r + 1)2(r2 + r − 3)29(1) 22024r2 + 15320r + 25977,

−4956678r2 − 3447968r − 5846447

135 [−1, 3, 0] 55 (r2 − r + 2)11(r2 + 1)5(1) 4139r2 − 19599r + 5885,

2077971r2 − 1764501r + 352796

135 [−1, 3, 0] 88 (r2 − r + 2)11(2)8(1) −1751r2 − 1226r + 577,

−131901r2 − 120528r + 52524

139 [2, 1,−1] 46 (r − 3)23(−r)2(1) 22560r2 + 19560r + 1033,

−8413992r2 + 2336724r + 7421723

139 [2, 1,−1] 57 (r − 1)3(−2r + 1)19(1) 18r2 + 61r + 39,
296r + 239

139 [2, 1,−1] 57 (−2r + 1)19(r − 1)3(1) 258r2 + 541r + 279,

−17136r2 − 9280r + 3767

140 [−2, 2, 0] 25 (r2 + 1)5(r + 1)5(1) 1488r2 + 992r + 3968,

110440r2 + 88352r + 287144

140 [−2, 2, 0] 70 (r2 + r + 1)7(r + 1)5(r)2 139012r2 + 106502r + 360441,

−100613641r2 − 77548384r − 260995189

140 [−2, 2, 0] 95 (r2 + 1)5(r2 + 2r + 3)19(1) 16r2 + 16r,

−64r2 + 240r − 120

140 [−2, 2, 0] 95 (r2 + 1)5(r2 + 2r + 3)19(1) 64r2 − 64r + 48,

−824r2 − 368r + 616

172 [3,−1,−1] 45 (r − 2)5(r2 − r − 1)9(1) −1072r2 − 80r + 1872,

−49976r2 − 48864r + 25920

175 [−3, 2,−1] 27 (r)3(r2 − r + 2)9(1) −384r2 + 816r − 416,

5904r2 − 32472r + 31816

199 [−1, 4,−1] 21 (−r2 + r − 2)7(r2 − r + 3)3(1) 98529r2 + 22348r − 12672,

−41881233r2 + 130193546r − 31313977

199 [−1, 4,−1] 21 (−r2 + r − 2)7(r2 − r + 3)3(1) −112647r2 − 62978r + 24321,

−60304454r2 − 96556295r + 29529884

199 [−1, 4,−1] 33 (r − 2)11(r2 − r + 3)3(1) 2802r2 + 3055r − 996,

−398780r2 + 635911r − 139543

199 [−1, 4,−1] 49 (−r2 + r − 2)7(−r2 − 3)7(1) 6447r2 − 31223r + 7758,

3699375r2 − 3171676r + 577928

199 [−1, 4,−1] 49 (−r2 − 3)7(−r2 + r − 2)7(1) 6447r2 − 31223r + 7758,

3699375r2 − 3171676r + 577928

199 [−1, 4,−1] 77 (r + 1)7(r − 2)11(1) 12952r2 − 10791r + 49899,

2866751r2 − 2163173r + 10872899

199 [−1, 4,−1] 99 (r − 2)11(r2 + 1)9(1) −120r2 + 576r − 143,

380r2 + 4776r − 1281

200 [2, 2,−1] 14 (r + 1)2(r2 − r + 1)7(1) −401r2 − 3756r − 2274,

182521r2 − 243668r − 235802

200 [2, 2,−1] 14 (r2 − r + 1)7(r + 1)2(1) −241r2 + 404r + 366,

5649r2 + 3068r − 394

200 [2, 2,−1] 65 (−r2 − r − 1)13(−r2 + r − 3)5(1) −1176r2 − 1944r − 767,

75636r2 − 142236r − 124561

204 [−3, 1,−1] 21 (r2 + r + 1)7(r)3(1) −48r2 + 96r − 32,

−288r2 + 1008r − 872

204 [−3, 1,−1] 21 (r2 + r + 1)7(r)3(1) 262r2 − 326r − 44,

−1784r2 − 5128r + 11612

211 [−3,−2, 0] 21 (r + 2)7(−r)3(1) 22010896r2 + 41672992r + 34877233,

296072400488r2 + 560550677168r + 469139740087

212 [−2, 4,−1] 35 (r2 − r + 1)7(r2 − r + 3)5(1) 29888r2 − 13952r + 112113,

10054302r2 − 4693580r + 37714701
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

216 [−2, 3, 0] 34 (r)2(r2 + r + 5)17(1) 307r2 + 194r + 1057,

−11235r2 − 6786r − 37821

216 [−2, 3, 0] 34 (r2 + r + 5)17(r)2(1) 307r2 + 194r + 1057,

−11235r2 − 6786r − 37821

216 [−2, 3, 0] 38 (−2r2 − 2r − 7)19(r)2(1) 16r2 + 81,

−216r2 − 192r − 601

231 [3, 0,−1] 33 (−r + 1)3(r2 − r + 2)11(1) 465r2 − 1011r + 1189,

25273r2 − 54957r + 64546

231 [3, 0,−1] 33 (r2 − r + 2)11(−r + 1)3(1) 465r2 − 1011r + 1189,

25273r2 − 54957r + 64546

231 [3, 0,−1] 51 (r2 + 1)17(r)3(1) −47r2 − 50r + 145,

938r2 − 291r + 4

239 [−3,−1, 0] 24 (r + 1)3(2)8(1) 9r2 + 18r + 25,

143r2 + 236r + 268

239 [−3,−1, 0] 57 (−r2 − r + 1)19(r + 1)3(1) 1170r2 + 1953r + 2098,

108233r2 + 180929r + 194227

243 [−3, 0, 0] 10 (r − 2)5(r − 1)2(1) 27576r2 + 39771r + 57360,

11428272r2 + 16482420r + 23771763

243 [−3, 0, 0] 10 (r − 1)2(r − 2)5(1) 27576r2 + 39771r + 57360,

11428272r2 + 16482420r + 23771763

243 [−3, 0, 0] 22 (r + 2)11(r − 1)2(1) 2002130917752r2 + 2887572455827r + 4164600133648,

7076846143946804016r2 + 10206578310238918020r +
14720433182250993839

243 [−3, 0, 0] 34 (r2 + 2)17(r − 1)2(1) 10167352r2 + 14663859r + 21148944,

−80986535280r2 − 116802795708r − 168458781921

243 [−3, 0, 0] 46 (−2r + 1)23(r − 1)2(1) 19946163r2 + 28767345r + 41489691,

222892996797r2 + 321467328855r + 463636116909

255 [−3, 0,−1] 15 (−r2 − 1)5(r − 1)3(1) 248r2 − 320r − 263,

−2556r2 − 4104r + 16523

255 [−3, 0,−1] 15 (−r2 − 1)5(r)3(1) 19r2 − r + 88,

279r2 + 908

255 [−3, 0,−1] 51 (r2 − 2)17(r − 1)3(1) −32r2 + 240r − 336,

−3416r2 + 2400r + 7392

255 [−3, 0,−1] 51 (r2 − 2)17(r − 1)3(1) 80r2 − 80r − 128,

288r2 − 2088r + 2888

255 [−3, 0,−1] 65 (r2 − r + 1)13(r + 1)5(1) 3r2 − 105r + 88,

−909r2 + 1116r − 1576

268 [5,−3,−1] 14 (r2 − 2)7(r − 1)2(1) −285113701784r2 − 52062773310r + 950706811227,

144006413291532359r2 + 50857254178772568r −
433038348784793416

300 [−3,−3,−1] 9 (−r2 + 2r + 2)3(r)3(1) 26r2 + 46r + 4,

504r2 + 504r + 460

300 [−3,−3,−1] 9 (−r2 + 2r + 2)3(r)3(1) 26r2 + 46r + 4,

504r2 + 504r + 460

300 [−3,−3,−1] 33 (r2 − r − 1)11(r)3(1) 11072r2 + 17760r + 12865,

4675808r2 + 7475664r + 5398495

300 [−3,−3,−1] 90 (−r2 + 2r + 2)3(−r − 3)30(1) −71,
−1837

307 [2, 3,−1] 10 (r − 1)5(−r)2(1) −1450479r2 − 118958r + 338681,

−1778021804r2 − 7601175244r − 3506038549

307 [2, 3,−1] 45 (r − 1)5(r2 − 2r + 5)9(1) r2 + 154r + 81,

−1744r2 − 1756r − 441

324 [−4,−3, 0] 4 (r − 2)2(−r − 1)2(1) 345255874728r2 + 758120909880r + 628931968401,

686899433218582980r2 + 1508309811434747772r +
1251283596457392135

324 [−4,−3, 0] 22 (r2 − r − 1)11(r − 2)2(1) 808464801r2 + 1775245884r + 1472731953,

77832295537635r2 + 170905971571164r + 141782435639127

324 [−4,−3, 0] 84 (r2 + 3r + 3)7(−r2 − 3r − 2)12(1) 143742984r2 + 315634200r + 261847993,

4700399015844r2 + 10321245891900r + 8562435635987

327 [−3,−2,−1] 9 (r)3(r + 1)3(1) 13r2 + 22r + 25,

144r2 + 225r + 242

327 [−3,−2,−1] 15 (−r + 1)5(r)3(1) 1645r2 − 2647r − 2984,

55543r2 − 6268r − 298328

327 [−3,−2,−1] 15 (r)3(−r + 1)5(1) 1645r2 − 2647r − 2984,

55543r2 − 6268r − 298328

335 [1, 4,−1] 25 (r2 − r + 3)5(−r + 1)5(1) −951r2 + 1190r + 57,

61922r2 − 78025r − 346

335 [1, 4,−1] 25 (r2 − r + 3)5(−r + 1)5(1) 10r2 − 11r + 10,



UNIFORMIZATION OF MODULAR ELLIPTIC CURVES VIA p-ADIC PERIODS 29

|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

52r2 − 271r − 29

335 [1, 4,−1] 65 (−r2 + 2r − 4)13(−r + 1)5(1) 61r2 − 77r + 247,

101r2 − 107r + 380

351 [−3, 3, 0] 33 (r − 2)11(r)3(1) 16r2 + 144r − 128,

1824r2 − 72r − 1160

356 [7, 1,−1] 14 (−r − 2)7( 1
2
r2 − r + 3

2
)2(1) 1577904r2 + 58258032r + 83210433,

157810225239r2 + 783843846012r + 817040026548

356 [7, 1,−1] 26 (−r + 2)13(− 1
2
r2 + r − 5

2
)2(1) −353192r2 − 495936r + 44233,

−560380445r2 − 897785708r − 94909392

356 [7, 1,−1] 26 (−r + 2)13(− 1
2
r2 + r − 5

2
)2(1) 88412r2 + 1393648r + 1878333,

112777386r2 + 1758482408r + 2367346473

356 [7, 1,−1] 196 (r)7(r − 3)28(1) 4182384r2 − 3886864r − 15048991,

−37671142504r2 − 30349104360r + 38274580847

364 [−2, 4, 0] 21 (r − 1)3(−r − 1)7(1) −368r2 − 3712r + 1840,

−72736r2 + 343360r − 146264

364 [−2, 4, 0] 26 (−r2 − 1)13(−r)2(1) −266582r2 + 148350r − 10479,

−274275343r2 + 306719520r − 83736937

379 [−4, 1,−1] 6 (r − 1)3(−r + 2)2(1) 1418236432r2 + 1053691808r + 3254778265,

137488390576232r2 + 102148264969648r + 315528648990403

379 [−4, 1,−1] 6 (−r + 2)2(r − 1)3(1) 1418236432r2 + 1053691808r + 3254778265,

137488390576232r2 + 102148264969648r + 315528648990403

379 [−4, 1,−1] 21 (r − 1)3(r + 1)7(1) 15373338r2 + 11421763r + 35281005,

−155147444344r2 − 115268221468r − 356055251669

379 [−4, 1,−1] 21 (r + 1)7(r − 1)3(1) 15373338r2 + 11421763r + 35281005,

−155147444344r2 − 115268221468r − 356055251669

379 [−4, 1,−1] 27 (r − 1)3(r2 + 1)9(1) 1532208r2 + 1138368r + 3516337,

1280550616r2 + 951396864r + 2938796535

379 [−4, 1,−1] 34 (r − 3)17(−r + 2)2(1) 90342993r2 + 67121158r + 207332433,

2363568298948r2 + 1756034817652r + 5424265343699

439 [5,−2,−1] 15 (−r + 1)3(r − 2)5(1) −439r2 + 1212r − 1252,

27743r2 − 76494r + 78935

439 [5,−2,−1] 15 (r − 2)5(−r + 1)3(1) −439r2 + 1212r − 1252,

27743r2 − 76494r + 78935

440 [−8, 2, 0] 10 (−r2 − 2r − 5)5(− 1
2
r2 − r − 2)2(1) −349392832r2 − 1512227664r + 3500497481,

−12893566003280r2 − 143880769408104r + 276285496852283

440 [−8, 2, 0] 10 (− 1
2
r2 − r − 2)2(−r2 − 2r − 5)5(1) −349392832r2 − 1512227664r + 3500497481,

−12893566003280r2 − 143880769408104r + 276285496852283

440 [−8, 2, 0] 26 (2r − 3)13(− 1
2
r2 − r − 2)2(1) 953

2
r2 − 6046r + 8769,

− 419561
2

r2 + 835646r − 810505

451 [8,−5,−1] 26 (2r − 3)13(−r + 2)2(1) 34296r2 + 4776r − 189951,

5707476r2 + 13155804r − 1647297

459 [−8, 3, 0] 22 ( 1
2
r2 − 1

2
r + 1)11(− 1

2
r2 − 1

2
r − 2)2(1) 16r2 − 104r + 121,

−240r2 + 1260r − 1357

459 [−8, 3, 0] 33 (− 1
2
r2 − 1

2
r + 1)11( 1

2
r2 + 1

2
r + 3)3(1) − 19

2
r2 + 15

2
r + 21,

−36r2 + 96r − 37

459 [−8, 3, 0] 33 (r2 + r + 5)11( 1
2
r2 + 1

2
r + 3)3(1) 178829

2
r2 + 270521

2
r + 472861,

−83966694r2 − 127020222r − 444049333

459 [−8, 3, 0] 34 ( 1
2
r2 + 3

2
r − 3)17(− 1

2
r2 − 1

2
r − 2)2(1) 125

2
r2 + 79

2
r − 59,

282r2 − 2430r + 2691

459 [−8, 3, 0] 44 ( 1
2
r2 − 1

2
r + 1)11(r − 1)4(1) 31

2
r2 − 105

2
r + 44,

411r2 − 1452r + 1256

459 [−8, 3, 0] 44 ( 1
2
r2 − 1

2
r + 1)11(r − 1)4(1) 103

2
r2 − 55

2
r − 60,

237r2 + 1374r − 2984

460 [−3, 5,−1] 6 (−r)3(r − 1)2(1) 38808r2 + 63978r − 55637,

28650959r2 + 29220772r − 29738968

460 [−3, 5,−1] 25 (2r2 − r + 10)5(−r2 − 4)5(1) 36772r2 − 83396r + 37921,

32322356r2 − 98725758r + 49331449

460 [−3, 5,−1] 26 (r2 − r + 1)13(r − 1)2(1) 973808r2 − 7106166r + 4086627,

−8777739333r2 + 7426503436r − 1197128148

515 [−4,−1,−1] 14 (−r + 2)2(r2 − 2r − 1)7(1) −7341361r2 − 9117211r − 13098483,

−14436506787r2 − 17928648161r − 25757667905

519 [7,−4,−1] 39 (−r2 + 3)13(−r + 2)3(1) −280r2 − 960r − 751,

54220r2 + 11272r − 242353

547 [−4,−3,−1] 14 (−r + 1)7(r2 − 2r − 2)2(1) 14509048r2 + 24346088r + 21671521,

200457117220r2 + 336365736396r + 299413898447

652 [5, 7,−1] 14 (− 1
2
r2 + r + 1

2
)7(− 1

2
r2 + r − 9

2
)2(1) 18r2 − 36r + 147,

405r2 − 648r + 3294
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687 [3, 4,−1] 9 (r)3(r + 1)3(1) −7r2 + 38r + 25,

−18r2 − 423r − 244

743 [−3, 5, 0] 9 (−r + 1)3(r)3(1) 736r2 + 416r + 3913,

−110256r2 − 62192r − 586373

755 [2, 5,−1] 10 (−2r2 + 3r − 11)5(−r)2(1) −1634r2 + 10769r + 4135,

110372r2 + 1174880r + 412903

815 [−9,−7, 0] 9 (r + 1)3(−r + 3)3(1) 26678105835217r2 + 83793885354406r + 76443429630973,

717286463675094140331r2 + 2252941797094015980448r +
2055312234304678362824

1196 [−7, 5,−1] 14 (−r)7(−r + 1)2(1) −12r2 − 4r + 25,

−4r2 − 134r + 181
Table 8: Fields of degree 3

Quartic ATR fields

Found curves 94 Time outs 1378
No rational lines 2860 Not recognized 1
Total spaces 4640 p too large 122

Runtime errors 185

|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

643 [1,−2, 0,−1] 175 (r3 − r2 − r − 1)7(2r3 − r2 − 2)25(1) −1783r3 + 1032r2 + 522r + 3831,

116369r3 − 62909r2 − 30125r − 248439

688 [−1,−2, 0, 0] 11 (−r3 + r2 + r + 2)11(1)(1) 200r3 + 284r2 + 376r + 136,

−5184r3 − 7280r2 − 10024r − 3672

688 [−1,−2, 0, 0] 19 (2r3 − 3)19(1)(1) 552r3 + 764r2 + 1064r + 392,

−11536r3 − 16160r2 − 22584r − 8312

731 [−1, 0, 2,−1] 80 (r2 + 1)5(1)(2)16 −848r3 + 1529r2 + 456r − 420,

45471r3 − 164824r2 + 11648r + 72230

775 [−1,−3, 0,−1] 176 (−r3 + r2 + 1)11(2)16(1) − 6277
2

r3 − 2939r2 − 5696r − 3239
2

,

−528578r3 − 495324r2 − 959488r − 272875

976 [−1, 0, 3,−2] 44 (r − 2)11(1)(r3 − r2 + r + 2)4 −42r3 − 21r2 + 20r + 10,

−10860r3 − 12344r2 + 6618r + 4899

976 [−1, 0, 3,−2] 65 (r3 − 2r2 + 4r)13(1)(r3 − 2r2 + 3r + 1)5 72r3 + 20r2 − 40r − 4,

−1456r3 + 3800r2 − 176r − 1200

1107 [−1,−2, 0,−1] 99 (r − 1)3(−2r + 1)33(1) 105488r3 + 90125r2 + 152590r + 66821,

120373437r3 + 96189249r2 + 171765105r + 67816591

1156 [1,−1,−2,−1] 19 (r3 − r2 − 2r − 3)19(1)(1) −816481030r3 − 882631565r2 − 203810962r + 392346684,

−68032828897760r3−73544780430596r2−16982427384164r+
32692074898043

1156 [1,−1,−2,−1] 19 (r + 2)19(1)(1) −384131503r3 − 415253582r2 − 95887519r + 184588047,

82379129020040r3 + 89053403394404r2 + 20563566138596r −
39585957243581

1192 [−1, 1, 2,−1] 38 (r2 + 2)19(1)(r3 − r2 + 2r)2 9504r3 + 11111r2 − 4762r − 5690,

−2387028r3 + 7298060r2 + 2454128r − 3005365

1255 [−1,−3,−1, 0] 170 (r3 − r − 2)2(−2r3 + 2r2 + 3)85(1) 517916r3 + 904037r2 + 1060116r + 296716,

−1433064139r3 − 2501458160r2 − 2933309166r − 820990264

1423 [−1,−2, 1,−1] 98 (r − 1)2(2r3 − r2 + 2r − 2)49(1) 39690531r3 + 20246442r2 + 70104884r + 26465314,

702653466524r3 + 356968363314r2 + 1240909503739r +
466012978440

1423 [−1,−2, 1,−1] 98 (r3 − r2 + 2r − 1)7(r3 − 2r2 + 2r − 1)14(1) 54577r3 + 27699r2 + 96525r + 36260,

1735232r3 + 881975r2 + 3066920r + 1151600

1588 [2, 0,−3,−1] 56 (−r3 + r2 + 3r + 1)7(r3 − r2 − 3r)8(1) 94560r3 + 111816r2 − 39672r − 86639,

747493992r3 + 883740564r2 − 313920684r − 685060489

1588 [2, 0,−3,−1] 152 (r3 − 3r − 1)19(r3 − r2 − 3r)8(1) 3496200r3 + 4469800r2 − 803168r − 2816543,

26973722420r3+32247663708r2−10621228512r−24308855297

1600 [−4, 0,−2, 0] 11 ( 1
2
r2 − r − 1)11(1)(1) 12r3 + 48r2 + 56r + 20,

−284r3 − 460r2 − 472r − 1024

1600 [−4, 0,−2, 0] 11 ( 1
2
r2 + r − 1)11(1)(1) 276r3 + 490r2 + 336r + 628,

−18172r3 − 32652r2 − 22424r − 40464

1600 [−4, 0,−2, 0] 19 ( 1
2
r3 − 1

2
r2 − r − 1)19(1)(1) −44r3 + 112r2 − 56r + 148,

−1660r3 + 2572r2 − 2056r + 3136
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1600 [−4, 0,−2, 0] 19 (− 1
2
r3 − 1

2
r2 + r − 1)19(1)(1) 44r3 + 112r2 + 56r + 148,

1660r3 + 2572r2 + 2056r + 3136

1732 [−1, 3, 0,−1] 13 (r − 2)13(1)(1) 3455801r3 + 1359008r2 − 3314187r + 836393,

7590438778r3 − 14215787438r2 − 23508658710r + 9402560739

1732 [−1, 3, 0,−1] 182 (r3 − r + 3)7(r2 − r − 2)26(1) −17184648r3 − 14365296r2 + 9302744r − 813151,

93038140030r3 − 219828160822r2 − 331159079722r +
135298016971

1823 [−2, 3, 0,−1] 114 (−r3 + r − 3)3(r3 + r2 + 2)38(1) 233810r3 − 9696r2 − 336273r + 159951,

−70457084r3 − 403468159r2 − 171041003r + 342434077

1879 [1,−3,−2,−1] 140 ( 1
2
r3 − 2r − 1

2
)7(r3 − r2 − r − 2)20(1) −2436r3 − 3240r2 − 2688r + 1045,

−49029102r3 − 65262564r2 − 54075240r + 21032621

2051 [1, 3,−1,−1] 15 (r3 − r2 + 2)5(1)(−r + 1)3 −489r3 + 1228r2 − 1242r + 18,

46792r3 − 100917r2 + 73440r + 47160

2068 [1, 3,−2,−1] 7 (r − 2)7(1)(1) 26909497r3 + 20141314r2 − 35624307r − 11296953,

247303058576r3 − 3168333376r2 − 656295560992r −
182979737393

2068 [1, 3,−2,−1] 13 (−r3 + r2 + 2r − 1)13(1)(1) 34500648r3 + 3814392r2 − 84122424r − 23737447,

−77408488074r3 − 354426093238r2 − 415474468618r −
92161502469

2068 [1, 3,−2,−1] 56 (r − 2)7(r3 − 2r + 1)8(1) −3576591826r3 − 1882130113r2 + 6123537074r + 1835712204,

321001991693952r3 + 322520099276304r2 −
281263304453488r − 100176319060369

2068 [1, 3,−2,−1] 182 (r − 2)7(−r3 + r2 − 2)26(1) −1994707423r3 − 282234694r2 + 4755878517r + 1346474783,

−8733155599162r3 − 54136988565986r2 − 71594660083402r−
16347374680241

2092 [−2,−3, 1,−1] 8 (r)2(1)(r − 1)4 −3r3 + 29r2 − r + 75,

231r3 − 61r2 + 497r − 287

2096 [2,−2,−2, 0] 28 (r3 − r − 1)7(1)(r3 + r2 − 2)4 116r3 − 390r2 + 402r − 94,

7354r3 + 222r2 − 29620r + 17640

2116 [−2, 0, 1,−1] 5 (r2 + 1)5(1)(1) 129712r3 + 31248r2 + 168480r + 209073,

−109612390r3 − 26402860r2 − 142375012r − 176669575

2116 [−2, 0, 1,−1] 130 (r2 + 1)5(r + 2)26(1) 105064r3 + 25312r2 + 136464r + 169353,

78278092r3 + 18855232r2 + 101675032r + 126166043

2116 [−2, 0, 1,−1] 130 (r3 − r2 + r + 1)13(r3 + r)10(1) 105064r3 + 25312r2 + 136464r + 169353,

78278092r3 + 18855232r2 + 101675032r + 126166043

2183 [−1, 1, 3,−2] 126 (−r3 + 2r2 − 4r)7(r3 − 2r2 + 4r + 1)18(1) −330539r3 − 223654r2 + 72664r + 52816,

421344240r3 + 649688112r2 − 51218957r − 170790474

2191 [−1, 0, 3,−1] 70 (−r3 − 2r − 2)5(−2r3 + r2 − 5r − 2)14(1) −928r3 + 6929r2 − 312r − 2120,

−885775r3 + 1164640r2 + 179150r − 336602

2191 [−1, 0, 3,−1] 80 (−r3 − 2r − 2)5(2)16(1) −408r3 + 2689r2 − 105r − 821,

120899r3 + 70135r2 − 44492r − 24989

2243 [−1,−3,−1,−1] 75 (r − 1)5(−r3 + 2r2 − r + 2)15(1) 586900359r3 + 694528587r2 + 929522310r + 268803085,

63399246832324r3 + 75025661482408r2 + 100410590521972r +
29037147633615

2243 [−1,−3,−1,−1] 75 (r3 − r2 − 2r − 2)5(−r3 + r2 + 2r + 3)15(1) 586900359r3 + 694528587r2 + 929522310r + 268803085,

63399246832324r3 + 75025661482408r2 + 100410590521972r +
29037147633615

2243 [−1,−3,−1,−1] 105 (−r3 + 2r2 + 2)7(−r3 + 2r2 − r + 2)15(1) 4336158r3 + 5131353r2 + 6867535r + 1985981,

−22914354769r3 − 27116483373r2 − 36291344215r −
10494880213

2243 [−1,−3,−1,−1] 105 (r − 1)5(r2 − r + 1)21(1) 920025r3 + 1088737r2 + 1457115r + 421377,

3942374598r3 + 4665343442r2 + 6243862193r + 1805625754

2284 [−4, 2, 2,−2] 22 (−r2 + r + 1)11(1)( 1
2
r3 − r2 + 1)2 −4322076r3 + 3371584r2 − 4531104r − 14171719,

−293858698818r3 + 229234508344r2 − 308070583688r −
963537590781

2327 [−2,−1,−1, 0] 48 (r2 − 1)3(2)16(1) 60947675662300r3 + 95467421346487r2 + 88590894936957r +
77819621400035,

1595218950381053851625r3 + 2498724287457442364789r2 +
2318740987988175420378r + 2036818157516553727423

2327 [−2,−1,−1, 0] 66 (r2 − 1)3(−r3 + 2)22(1) 24654r3 + 41044r2 + 36631r + 33971,

13602419r3 + 21481224r2 + 19830770r + 17549287

2327 [−2,−1,−1, 0] 78 (r2 − 1)3(r3 − r2 + r)26(1) 1632339r3 + 2556895r2 + 2372706r + 2084241,

5442997756r3 + 8525820467r2 + 7911705090r + 6949764691

2443 [−1,−3, 0, 0] 63 (r3 − 2)3(−r − 2)21(1) 51601r3 + 81980r2 + 123695r + 33695,

−38870055r3 − 59926714r2 − 92404714r − 25325630

2443 [−1,−3, 0, 0] 117 (−r3 + r2 − r + 2)13(−r2 + 1)9(1) −26624r3 − 78583r2 + 147974r + 56321,

41156101r3 − 906363r2 − 80062921r − 24803969

2480 [−2,−2, 0, 0] 17 (−r3 + r2 + r + 1)17(1)(1) 8r3 − 12r2 − 12r + 17,

212r3 + 628r2 − 818r − 887
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2480 [−2,−2, 0, 0] 19 (−r2 + r − 1)19(1)(1) −648r3 + 524r2 − 408r + 1636,

29224r3 − 23272r2 + 18616r − 73216

2608 [−2,−2,−2, 0] 50 (−r + 1)5(r3 − r2 − r)10(1) −18122952r3 + 23309952r2 + 6270652r + 28184369,

−178706675384r3 + 229835084602r2 + 61821736238r +
277904169213

2696 [1,−3, 0,−1] 24 (r3 − 2)3(r3 − 3)8(1) 25999152r3 + 20125515r2 + 35704342r − 14654974,

−282591287516r3 − 218749239468r2 − 388079405968r +
159288610195

2816 [−1,−4,−2, 0] 15 (r2 − r − 1)5(1)(r3 − r2 − 2r − 1)3 134184108r3 − 165313100r2 − 203588440r − 41893502,

2470282983044r3 − 3964870336170r2 − 2128766125800r −
223343175430

2859 [−3, 3,−1,−1] 7 (−r3 + r − 1)7(1)(1) −4976r3 + 12905r2 − 15523r + 9529,

1469059r3 − 3794717r2 + 4539759r − 2782843

3119 [−4,−3,−2,−1] 23 ( 2
3
r3 − r2 − 1

3
r − 1

3
)23(1)(1) 16743632r3 + 25416768r2 + 30512064r + 26598352,

−406345115512r3 − 616830291616r2 − 740486023984r −
645505557528

3188 [2,−4, 1,−1] 24 (−r3 + r2 − r + 3)3(−r3 + r2 − r + 4)8(1) 2788172026368r3 + 1423837175512r2 + 4939120830288r −
3691304019543,

−10952993228320557238r3 − 5593370421245480720r2 −
19402732864546458324r + 14500836945256233797

3216 [3, 0,−1,−2] 5 (−r − 1)5(1)(1) 16r3 − 40r2 + 48r − 20,

104r3 − 376r2 + 816r − 608

3271 [−1,−1, 3, 0] 110 (r3 + r2 + 3r + 2)5(−r3 + r2 − 2r + 2)22(1) 228r3 − 115r2 + 220r + 132,

6359r3 − 2608r2 − 6398r − 1760

3275 [−9, 6, 2,−1] 19 (− 1
9
r3 − 2

9
r2 − 8

9
r − 7

3
)19(1)(1) 23

3
r3 − 20

3
r2 + 34

3
r − 14,

496
9

r3 − 1690
9

r2 + 1979
9

r − 263
3

3275 [−9, 6, 2,−1] 19 (r − 2)19(1)(1) 3r3 + 30r2 − 27r − 10,
332
9

r3 − 632
9

r2 − 7136
9

r + 2693
3

3284 [−2, 0,−1,−1] 6 (r − 1)3(1)(r)2 2016r3 + 1720r2 + 1160r + 2161,

−290488r3 − 248004r2 − 169132r − 313401

3407 [−3, 1,−2,−1] 84 ( 1
2
r3 − 2r + 1

2
)7(r2 − r)12(1) 28129013

2
r3 + 15057426r2 + 3048856r + 40754921

2
,

−125734882980r3 − 134611455788r2 − 27256382584r −
182171881573

3475 [−11, 8,−2,−1] 11 (− 1
7
r3 − 2

7
r2 − 4

7
r + 1

7
)11(1)(1) 61

7
r3 − 214

7
r2 − 351

7
r + 905

7
,

− 1632
7

r3 + 2420
7

r2 + 6940
7

r − 10751
7

3475 [−11, 8,−2,−1] 11 (−r)11(1)(1) −16r3 − 8r2 + 24r − 95,
9008

7
r3 + 5948

7
r2 − 8124

7
r + 59025

7
3559 [−2,−1, 3,−2] 20 (r2 − 1)5(1)(−r2 + r − 2)4 266r3 − 251r2 + 481r + 402,

−8721r3 + 6359r2 − 17561r − 13594

3571 [3, 5,−5,−1] 45 (r2 − 3)3(r2 + r − 5)15(1) −247r3 + 1481r2 + 5186r + 1954,

313052r3 + 544864r2 − 374892r − 240173

3632 [2,−2, 0,−2] 13 (r3 − r2 − r − 1)13(1)(1) 110352r3 + 24580r2 + 54624r − 99300,

124669648r3 + 27763200r2 + 61709112r − 112178880

3632 [2,−2, 0,−2] 14 (−r − 1)7(1)(−r)2 2474r3 + 522r2 + 1234r − 2217,

523532r3 + 116757r2 + 258994r − 471065

3632 [2,−2, 0,−2] 26 (r3 − r2 − 3)13(1)(−r)2 10028r3 + 2232r2 + 4964r − 9023,

−3562482r3 − 793354r2 − 1763358r + 3205557

3723 [−1, 3, 1,−1] 7 (r3 − r2 + 2r + 2)7(1)(1) 381r3 − 208r2 − 592r + 201,

−9752r3 − 3598r2 + 7307r − 1656

3723 [−1, 3, 1,−1] 17 (r − 2)17(1)(1) 168r3 − 1126r2 − 1303r + 504,

−24313r3 + 42209r2 + 63347r − 22837

3775 [−11, 7, 0,−1] 19 ( 3
8
r3 − 1

4
r2 + 1

4
r + 3

8
)19(1)(1) 36r3 + 8r2 + 32r + 253,

−662r3 − 228r2 − 448r − 5011

3775 [−11, 7, 0,−1] 19 ( 3
8
r3 − 1

4
r2 + 1

4
r + 27

8
)19(1)(1) −17r3 + 30r2 − 70r + 8,

489
2

r3 − 607r2 + 1283r − 1633
2

3888 [3,−6, 0,−2] 3 ( 1
2
r3 − 1

2
r2 − 1

2
r − 5

2
)3(1)(1) 12362r3 + 8406r2 + 22518r − 13842,

7035016r3 + 4781484r2 + 12812832r − 7875996

3899 [−3, 1, 2,−2] 23 (r3 − 2r2 + r + 1)23(1)(1) −14r3 + 14r2 − 25r − 21,

381r3 − 249r2 + 364r + 978

3967 [1, 5,−2,−1] 13 ( 1
2
r3 − 2r + 1

2
)13(1)(1) 3321

2
r3 + 1456r2 − 2668r − 1081

2
,

−163448r3 + 28056r2 + 583644r + 107371

3967 [1, 5,−2,−1] 17 ( 1
2
r3 − 2r + 5

2
)17(1)(1) − 3537

2
r3 − 125r2 + 4948r + 1841

2
,

−99064r3 − 306744r2 − 273576r − 41165

4108 [−2,−2, 0,−1] 52 (r2 − r + 1)13(−r3 + 2r2 − r + 2)4(1) −52r3 + 56r2 + 316r + 177,

3676r3 − 2050r2 − 1438r + 1283

4192 [−2,−2, 1, 0] 28 (r2 + r + 1)7(r2 + r + 2)4(1) 68388r3 − 97900r2 − 25440r + 47889,

50048814r3 − 57380110r2 − 27657416r + 22526745

4192 [−2,−2, 1, 0] 44 (r3 + r − 1)11(r2 + r + 2)4(1) 993568r3 − 1182928r2 − 521264r + 485673,
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|∆K | fK(x) Nm(N) pDm c4(E), c6(E)

−2157501576r3 + 964037714r2 + 2148667444r + 353613881

4204 [−4,−2, 0, 0] 20 (−r + 1)5(−r)4(1) 145360531282796r3 + 161931312392192r2 −
390193058066092r − 440654493862007,

−1159392135670300645002r3 + 9949620873463783912066r2 −
2497558503469317783050r − 17611520739674724691341

4319 [2,−1,−4,−1] 42 (r)2(−r3 + 2r2 + 3r − 1)21(1) 2626337501r3 + 4156522706r2 + 229413693r − 2033846625,

694511908654437r3 + 1099155960247844r2 +
60666438159866r − 537832894958445

4384 [−4, 0, 3,−2] 10 ( 1
2
r3 − r2 + 5

2
r − 2)5(1)( 1

2
r3 + 1

2
r + 2)2 −39342r3 + 91445r2 + 10340r − 83032,

−8399230r3 − 58605841r2 + 42062128r + 73787052

4423 [1, 4,−3,−1] 50 (−r + 2)5(−r2 − r + 2)10(1) −4642767r3 − 1724885r2 + 13234188r + 2913911,

−19031399895r3 − 11910891879r2 + 44594523793r +
10072542896

4423 [1, 4,−3,−1] 50 (−r + 2)5(−r2 − r + 2)10(1) 3516856r3 + 2151917r2 − 8338704r − 1880324,

−9366159063r3 + 477887546r2 + 34591729866r + 7408649776

4564 [1,−5, 0,−1] 5 ( 1
2
r3 + r − 3

2
)5(1)(1) −280r3 + 240r2 + 64r + 1449,

10942r3 − 8954r2 − 1978r − 55513

4568 [−1,−3, 2,−1] 12 (r2 + 2)3(1)(r2 + 3)4 10845937505r3 + 4588202505r2 + 28221044093r + 7621698413,

−1760006389370257r3 − 744542896235865r2 −
4579522784006957r − 1236798376628657

4652 [2, 5,−3,−1] 44 ( 1
2
r3 − 3

2
r + 2)11(− 1

2
r3 + 3

2
r − 1)4(1) −1938032413r3 + 62742964314r2 + 143570326721r +

41574563255,

14844318169935843r3 + 50626339684931473r2 +
49275897864569564r + 11502761970012547

4663 [2,−5, 2,−1] 11 (−2r3 + r2 − 3r + 9)11(1)(1) 4296r3 + 1705r2 + 10968r − 6148,

−3722961r3 − 1477666r2 − 9510026r + 5330364

4775 [−9,−9, 2,−1] 11 (− 5
12

r3 + 2
3
r2 − 5

6
r + 13

4
)11(1)(1) 307

4
r3 − 499r2 − 2771

2
r − 2953

4
,

− 69064
3

r3 + 146785
3

r2 − 182723
3

r − 87279

4775 [−9,−9, 2,−1] 11 ( 1
6
r3 + 1

3
r2 + 1

3
r − 1

2
)11(1)(1) 247r3 + 539r2 − 163r − 335,

−41241r3 − 13659r2 − 21597r − 27719

4832 [−2,−4,−1, 0] 17 (−r3 + r2 + 2r + 5)17(1)(1) −24r3 + 17r2 + 12r + 82,

580r3 − 347r2 − 524r − 1770

4907 [−1,−4,−2,−1] 11 (r3 − r2 − 3r − 3)11(1)(1) −191405r3 − 287504r2 − 336559r − 76491,

1214356660r3 + 1824081112r2 + 2135314036r + 485335595

4944 [−1,−4,−1, 0] 17 (r3 − 4)17(1)(1) 316049736r3 + 586633069r2 + 772824316r + 170272429,

−23749113529508r3−44081717952580r2−58072797643568r−
12794882314805

4979 [1,−3,−1,−1] 13 (−r3 + r2 + r + 1)13(1)(1) 32r3 − 128r2 + 144r − 32,

−1464r3 + 3856r2 − 1824r + 240
Table 10: Fields of degree 4
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