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Abstract. We develop the (co)homological tools that make effective the construction of the
quaternionic Darmon points introduced by Matthew Greenberg. In addition, we use the over-

convergent cohomology techniques of Pollack–Pollack to allow for the efficient calculation of such

points. Finally, we provide the first numerical evidence supporting the conjectures on their ra-
tionality.

1. Introduction

Let E be an elliptic curve over Q of conductor N and let p be a prime dividing N exactly.
Consider a factorization of the form N = pDM , with D the product of an even (possibly zero)
number of distinct primes and (D,M) = 1. Let K be a real quadratic field in which all primes
dividing M are split, and all primes dividing pD are inert. Denote by Hp = Kp \Qp the Kp-points
of the p-adic upper half plane.

In the case D = 1, Darmon introduced in the seminal article [Dar01] a construction of local
points Pτ ∈ E(Kp) associated to elements τ ∈ K ∩ Hp, defined as certain Coleman integrals of
the modular form attached to E. He conjectured these points to be rational over certain ring class
fields of K, and to behave in many aspects as the classical Heegner points arising from quadratic
imaginary fields. A proof of these conjectures would certainly shed new light on new instances
of the Birch–Swinnerton-Dyer conjecture. The reader can consult [Dar01, Section 5] and [DG02,
Section 4] for a discussion of this circle of ideas.

These conjectures are supported by some partial theoretical results such as [BD09], but at the
moment the main evidence comes from explicit numerical computations. Darmon–Green [DG02]
provided the first systematic algorithm and numerical calculations for curves satisfying the addi-
tional restriction that M = 1. Using overconvergent methods in the evaluation of the integrals
Darmon–Pollack [DP06] were able to give a much faster algorithm, which in practice can be used
(assuming Darmon’s conjectures) as an efficient method for computing algebraic points of infinite
order on E(Kab). The restriction M = 1 in these algorithms was dispensed with in [GM14], which
allowed to provide numerical evidence for curves of non-prime conductor.

In the case D > 1, Greenberg [Gre09] proposed a construction of Darmon-like points in E(Kp),
by means of certain p-adic integrals related to modular forms on quaternion division algebras of
discriminant D. He also conjectured that these points behave in many aspects as Heegner points
and, in particular, that they are rational over ring class fields of K.

Greenberg’s conjecture was motivated by the analogy with [Dar01], but up to now there was
no numerical evidence of the rationality of such points in the quaternionic case D > 1. In fact,
as Greenberg points out in [Gre09, Section 12], the lack of sufficiently developed algorithms for
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computing in the cohomology of arithmetic groups has prevented the finding of any such evidence.
The main purpose of the present work is precisely to provide an explicit algorithm that allows for
the effective computation of the quaternionic p-adic Darmon points introduced by Greenberg.

Actually, the aim of the article is threefold. Firstly, we develop the (co)homological methods
that make effective the construction of [Gre09]. Secondly, we relate the p-adic integrals that appear
in the construction to certain overconvergent cohomology classes, in order to derive an efficient
algorithm for the computation of the quaternionic Darmon points. Finally, we gather extensive
evidence supporting the rationality conjectures of [Gre09].

In order to describe more precisely the contents of the article, it is useful to briefly recall the
structure of Greenberg’s construction (a more complete and detailed account will be given in Sec-
tion 3). Let B/Q be the indefinite quaternion algebra of discriminant D. Let also R0(M) ⊂ B be
an Eichler order of level M , and denote by Γ the group of reduced norm 1 units in R0(M)⊗ZZ[1/p].
The construction of the point Pτ ∈ E(Kp) can be divided into three stages:

(1) The construction a certain cohomology class µE ∈ H1(Γ,Meas(P1(Qp),Z)) canonically
attached to E, where Meas(P1(Qp),Z) denotes the Z-valued measures of P1(Qp);

(2) The construction of a homology class cτ ∈ H1(Γ,Div0Hp), associated to the element τ ∈
Hp; and

(3) Finally, the construction of a natural K×p -valued integration pairing ×
∫
〈 , 〉 between the above

cohomology and homology groups.

The point Pτ is then defined as the image under Tate’s isomorphism K×p /〈qE〉 ' E(Kp) of the

quantity Jτ := ×
∫
〈cτ , µE〉 ∈ K×p .

Section 2 is devoted to background material and to fix certain choices on the (co)homology
groups that will be useful in our algorithms, and in Section 3 we give a more detailed description
of the construction of Greenberg. The main contributions of this work are presented in Sections 4,
5, and 6.

In Section 4 we provide algorithms for computing the homology class cτ and the cohomology class
µE . That is to say, we give explicit methods for working with the (co)homology groups arising in the
construction, which allow for the effective numerical calculation of µE and cτ in concrete examples.
This already gives rise to an algorithm for the calculation of the point Pτ , since the integration
pairing ×

∫
〈cτ , µE〉 can then be computed by the well known method of Riemann products. We end

Section 4 with a detailed concrete calculation of a Darmon point Pτ by means of this algorithm.
Although the method of Riemann products is completely explicit and can be used in principle to

evaluate the integration pairing, it has the drawback of being computationally inefficient. In fact,
its running time depends exponentially on the number of p-adic digits of accuracy to which the
output is desired. This is the problem that we address in Section 5, in which we give an efficient,
polynomial-time, algorithm for computing the integration pairing ×

∫
〈 , 〉. This method is based on

the overconvergent cohomology lifting theorems of [PP09], and can be seen as a generalization to the
quaternionic setting of the overconvergent modular symbols method of [DP06]. Used in conjunction
with the algorithms of Section 4 for the homology and cohomology classes, it provides an efficient
algorithm for computing the quaternionic Darmon points.

Finally, in Section 6 we provide extensive calculations and numerical evidence in support of
the conjectured rationality of Greenberg’s Darmon points, which were computed using an imple-
mentation in Sage ([S+13]) and Magma ([BCP97]) of the algorithms described in Sections 4 and
5.
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Notation. The following notation shall be in force throughout the article. Let E be an elliptic
curve over Q of conductor N and let p be a prime dividing N exactly. The conductor is factored
as N = pDM , where D > 1 is the product of an even number of distinct primes and M and D are
relatively prime. Let K be a real quadratic field in which all primes dividing M are split and all
primes dividing pD are inert, and let OK be the ring of integers of K.

Let B be the quaternion algebra over Q of discriminant D. For every ` | pM we fix an algebra
isomorphism

ι` : B ⊗Q Q`
'−→ M2(Q`).

Let R0(M) ⊂ B be an Eichler order of level M such that for every ` |M
ι`(R0(M)) =

{(
a b
c d

)
∈ M2(Z`) : c ≡ 0 (mod `)

}
.(1.1)

Similarly, let R0(pM) ⊂ R0(M) be an Eichler order of level pM that satisfies (1.1) also for ` = p.
Denote by ΓD0 (M) = R0(M)×1 and ΓD0 (pM) = R0(pM)×1 their group of reduced norm 1 units.
Finally, let

R = R0(M)⊗Z Z[1/p] and Γ = R×1 = {γ ∈ R : nrd(γ) = 1} .

2. Preliminaries on Hecke operators, the Bruhat–Tits tree, and measures

All the material in this section is well-known. We present it particularized to our setting and we
fix certain choices that will be important especially in Section 5.2.

2.1. Hecke operators on homology and cohomology. We recall first some well-known facts
on group (co)homology which can all be found for example in [Bro82]. This will also fix the notation
to be used in the sequel.

Let G be a group and V a commutative left G-module. The groups of 1-chains and 2-chains are
defined, respectively, as

C1(G,V ) = Z[G]⊗Z V, C2(G,V ) = Z[G]⊗Z Z[G]⊗Z V.

The boundary maps are induced by the formulas, for g and h in G and v ∈ V ,

∂1(g ⊗ v) = gv − v; ∂2(g ⊗ h⊗ v) = h⊗ g−1v − gh⊗ v + g ⊗ v.(2.1)

We denote by Z1(G,V ) = ker ∂1 the group of 1-cycles, by B1(G,V ) = im ∂2 the group of 1-
boundaries, and by H1(G,V ) = Z1/B1 the first homology group of G with coefficients in V .

Dually, one defines the group of 1-cochains C1(G,V ), the group of 1-coboundaries B1(G,V ), the
group of 1-cocycles Z1(G,V ) and the first cohomology group H1(G,V ) = Z1/B1.

We are mainly interested in the (co)homology of the group G = ΓD0 (pM). Consider also the
semigroup Σ0(pM) defined as

Σ0(pM) = B× ∩
∏
`

Σ`, where(2.2)
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Σ` =

{
the set of elements in R0(pM) with non-zero norm, if ` - pM ;

ι−1
`

(
{
(
a b
c d

)
∈ M2(Z`) : c ≡ 0 (mod `), d ∈ Z×` , ad− bc 6= 0}

)
, if ` | pM.

Suppose that the ΓD0 (pM)-action on V extends to an action of the semigroup Σ0(pM). Then there
are natural Hecke operators acting on H1(ΓD0 (pM), V ) and H1(ΓD0 (pM), V ) whose definition we
proceed to recall, following [AS86].

The operators T` and U`. Let ` be a prime not dividing D, and let g(`) ∈ Σ0(pM) be an element
of reduced norm `. The double coset ΓD0 (pM)g(`)ΓD0 (pM) decomposes as a finite disjoint union of
right ΓD0 (pM)-cosets:

ΓD0 (pM)g(`)ΓD0 (pM) =
⊔
i∈I`

giΓ
D
0 (pM),(2.3)

for certain gi ∈ Σ0(pM) of reduced norm `. The number of cosets in (2.3), i.e., the cardinal of I`,
is `+ 1 if ` - pM and ` otherwise. Let ti : ΓD0 (pM)→ ΓD0 (pM) be the map defined by the equation

γ−1gi = gγ·iti(γ)−1, for some index γ · i ∈ I`.

We remark that i 7→ γ · i is a permutation of I`. Decomposition (2.3) induces maps T` on 1-
chains and 1-cochains as follows: for a chain c =

∑
g g ⊗ vg ∈ C1(ΓD0 (pM), V ) and a cochain

f ∈ C1(ΓD0 (pM), V ) then

T`c =
∑
i∈I`

∑
g

ti(g)⊗ g−1
i vg; (T`f)(g) =

∑
i∈I`

gif(ti(g)).(2.4)

The map T` on chains (resp. cochains) respects cycles and boundaries (resp. cocycles and cobound-
aries). The Hecke operators are the induced endomorphisms on homology and cohomology which
do not depend neither on the choice of g(`) nor on the representatives gi of (2.3). Following the
usual notational conventions if ` | pM we set U` = T`. We remark that the operators T` and U`
on homology and cohomology are independent of the choices made in the definition. However, as
maps on chains and cochains (and even as maps on cycles and cocycles) they do depend on these
choices.

In §5 it will be important to work with the Up-operator on cochains obtained by means of a
specific decomposition (2.3) which we now describe. In order to do so, we next fix a choice of
certain elements of Σ0(pM); these elements (and the notation for them) shall be in force for the
rest of the article.

• Let Υ = {γ0, . . . , γp} be a system of representatives for ΓD0 (pM)\ΓD0 (M) satisfying that

γ0 = 1, and for i > 0 ιp(γi) = ui
(

0 −1
1 i

)
,(2.5)

for some ui belonging to

Γloc
0 (p) = {

(
a b
c d

)
∈ SL2(Zp) : c ≡ 0 (mod p)}.

• Let ωp ∈ R0(pM) be an element that normalizes ΓD0 (pM) and such that

ιp(ωp) = u′
(

0 −1
p 0

)
, for some u′ ∈ Γloc

0 (p).(2.6)

Also, let ω∞ ∈ R(pM) be an element of reduced norm −1 that normalizes ΓD0 (pM).
• Finally, set

π = γ−1
p ωp and si = γ−1

i ω−1
p , for i = 1, . . . , p.(2.7)
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We remark that

ιp(π) =
(
p 0
0 1

)
uπ and ιp(si) =

(
p −i
0 1

)
u′i(2.8)

for some uπ, u
′
i ∈ Γloc

0 (p).

Observe that π ∈ Σ0(pM) has reduced norm p; we will work with the Hecke operator on cycles and
cocycles associated to the double coset ΓD0 (pM)πΓD0 (pM). One checks that the si defined above
decompose it into right cosets, namely

ΓD0 (pM)πΓD0 (pM) =

p⊔
i=1

siΓ
D
0 (pM).(2.9)

Then ti : ΓD0 (pM)→ ΓD0 (pM) is the function defined by

γ−1si = sγ·iti(γ)−1, for certain index γ · i ∈ {1, . . . , p}.(2.10)

For c =
∑
g g ⊗ vg ∈ Z1(ΓD0 (pM), V ) and f ∈ Z1(G,V ) formulas (2.4) particularize to

Upc =

p∑
i=1

∑
g

ti(g)⊗ s−1
i vg; (Upf)(g) =

p∑
i=1

sif(ti(g)).(2.11)

Atkin–Lehner involutions. The Atkin-Lehner involutions at p on cycles and cocycles are given by
the formulas:

Wpc =
∑
g

ω−1
p gωp ⊗ ω−1

p vg; (Wpf)(g) = ωpf(ω−1
p gωp).

Similarly, Atkin–Lehner involutions at infinity are defined as:

W∞c =
∑
g

ω−1
∞ gω∞ ⊗ ω−1

∞ vg; (W∞f)(g) = ω∞f(ω−1
∞ gω∞).

These formulas induce well-defined involutions on the homology H1(ΓD0 (pM), V ) and on the coho-
mology H1(ΓD0 (pM), V ).

Hecke algebras. Let [T`], [U`] and [W∞] be formal variables. If m ∈ Z>0 we denote by T(m) the
Hecke algebra “away from m”; i.e., the Z-algebra generated by [W∞] and by the [T`] and [U`]
with ` - m. Since the Hecke operators commute with each other T(m) acts on H1(ΓD0 (pM), V ) and
H1(ΓD0 (pM), V ) by letting each formal variable act as the corresponding Hecke operator.

If λ : T(m) → Z is a ring homomorphism and H is a T(m)-module let

Hλ = {x ∈ H : tm = λ(t)x for all t ∈ T(m)}.

The degree character deg : T(pD) → Z is defined by

deg[T`] = `+ 1, deg[U`] = `, degW∞ = 1.

Thanks to the modularity theorem of [Wil95], [BCDT01] the elliptic curve E/Q defines two char-
acters λ+

E , λ
−
E : T(pD) → Z by

λ±E [T`] = `+ 1− |E(F`)|, λ±E [U`] = `+ 1− |E(F`)|, λ±E [W∞] = ±1.(2.12)
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Remark 2.1. There are also Hecke operators acting on H1(Γ, V ) and H1(Γ, V ). They are defined
similarly, but using double cosets of the form Γg′(`)Γ (this time g′(`) is an element of R of reduced
norm `); see, e.g., [LRV12, §2] for more details. For our purposes it is enough to say that for
` - pM one can choose g(`) ∈ R0(pM) and g′(`) ∈ R elements of reduced norm ` such that the
decompositions

ΓD0 (pM)g(`)ΓD0 (pM) =
⊔̀
i=0

giΓ
D
0 (pM) and Γg(`)Γ =

⊔̀
i=0

giΓ

hold with the same choice of gi ∈ Σ0(pM). Thus formulas (2.4) also give the T` operator on
H1(Γ, V ) and H1(Γ, V ) in this case.

2.2. The Bruhat-Tits Tree. Let T be the Bruhat–Tits tree of PGL2(Qp) and denote by V its
set of vertices and by E its set of (directed) edges. It is well known that T is a (p+ 1)-regular tree.
In addition V can be identified with the set of homothety classes of Zp-lattices in Q2

p, and directed
edges with ordered pairs of vertices (v1, v2) such that v1 and v2 can be represented by lattices Λ1,
Λ2 with pΛ1 ( Λ2 ( Λ1. For e = (v1, v2) ∈ E we denote by s(e) = v1 the source of e, by t(e) = v1

its target and by ē = (v2, v1) its opposite.
Let v∗ be the vertex represented by Z2

p, let v̂∗ be the one represented by Zp ⊕ pZp, and let e∗
be the edge (v∗, v̂∗). A vertex v is said to be even (resp. odd) if its distance d(v, v∗) to v∗ is even
(resp. odd), and e ∈ E is said to be even (resp. odd) if s(e) is even (resp. odd). We denote by V+

(resp. V−) the set of even (resp. odd) vertices and by E+ (resp. E−) the set of even (resp. odd)
edges.

The group GL2(Qp) acts on Qp by fractional linear transformations

gτ =
aτ + b

cτ + d
, for g =

(
a b
c d

)
∈ GL2(Qp) and τ ∈ Qp.

This induces an action of GL2(Qp) on Zp-lattices, which gives rise to an action of GL2(Qp) on V
that preserves distance, thus inducing an action on T and on E .

We can make Γ act on T by means of the fixed isomorphism

ιp : B ⊗Qp −→ M2(Qp).

We denote this action simply as g(v) and g(e), for g ∈ Γ and v ∈ V, e ∈ E . Strong approximation,
using the fact that B is unramified at infinity, implies that Γ acts transitively on E+. A fundamental
domain (in the sense of [Ser80, §4.1]) for this action is given by

v∗ e∗ v̂∗
• // •

Moreover, we have:

(1) StabΓ(v∗) = ΓD0 (M), and StabΓ(v̂∗) = Γ̂D0 (M) := ω−1
p ΓD0 (M)ωp.

(2) StabΓ(e∗) = ΓD0 (pM).

This implies that Γ = ΓD0 (M) ?ΓD
0 (pM) Γ̂D0 (M), where ? denotes “amalgamated product”.

In particular, the maps g 7→ g−1(e∗) and g 7→ g−1(v∗) induce bijections

ΓD0 (pM)\Γ 1:1←→ E+, ΓD0 (M)\Γ 1:1←→ V+.

In the following we will fix a convenient system of coset representatives of ΓD0 (pM)\Γ indexed by the
even edges, and another system of coset representatives of ΓD0 (M)\Γ indexed by the even vertices.
These were introduced in [LRV12, Definition 4.7] and called radial systems.
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Recall Υ = {γ0 = 1, γ1, . . . , γp} the set of representatives for ΓD0 (pM)\ΓD0 (M) we fixed in (2.5).
Define γ̃0 = 1 and, for i = 1, . . . , p, define γ̃i = p−1ωpγiωp.

Lemma 2.2. We have

ΓD0 (pM)\Γ̂D0 (M) =

p∐
i=0

ΓD0 (pM)γ̃i.

Proof. Clearly the set {1, ω−1
p γ1ωp, . . . , ω

−1
p γpωp} is a system of representatives for the quotient

ΓD0 (pM)\Γ̂D0 (M). The elements p−1ωpγiωp and ω−1
p γiωp belong to the same coset modulo ΓD0 (pM).

Indeed, this follows from the identity

p−1ωpγiωp = p−1ω2
pω
−1
p γiωp

and the fact that p−1ω2
p ∈ ΓD0 (pM) (see, e.g., [Gre09, §3.2]). �

Definition 2.3. Define {γe}e∈E+ and {γv}v∈V to be the systems of representatives respectively for
ΓD0 (pM)\Γ and ΓD0 (M)\Γ uniquely determined by the conditions:

(1) γv∗ = γv̂∗ = 1;
(2) {γe}s(e)=v = {γiγv}pi=0 for all v ∈ V+;

(3) {γe}t(e)=v = {γ̃iγv}pi=0 for all v ∈ V−;

(4) γs(e) = γe for all e ∈ E+ such that d(t(e), v∗) < d(s(e), v∗);

(5) γt(e) = γe for all e ∈ E+ such that d(t(e), v∗) > d(s(e), v∗).

By construction Y = {γe}e∈E+ is a radial system. Indeed, by definition a radial system is one
satisfying conditions 1, 2, and 3 above for some set of representatives for ΓD0 (pM)\ΓD0 (M) and

ΓD0 (pM)\Γ̂D0 (M). What we have done is to fix a choice of radial system by choosing {γ0, . . . , γp}
and {γ̃0, . . . , γ̃p} as such representatives, and adding conditions 4 and 5 to make the choice unique.
Figure 1 shows the first even edges of T labeled with representatives of Y, in the simple case p = 2.

2.3. Measures on P1(Qp). Let B(P1(Qp)) be the set of compact-open balls in P1(Qp), which forms
a basis for the topology of P1(Qp). There is a GL2(Qp)-equivariant bijection

E
∼=−→ B(P1(Qp))

e 7−→ Ue

sending e∗ to Zp. Therefore, if γ(e) = e∗ then Ue = γ−1Zp; in particular Ue = γ−1
e Zp. Under this

bijection an open ball Ue is contained in Ue′ if and only if there is a path (directed and without
backtracking) in T having initial edge e and final edge e′.

The following basic lemma will be useful in Section 5. We denote by |U | the diameter of an open
ball U ∈ B(P1(Qp)).

Lemma 2.4. Let gi = s−1
i = ωpγi. For each r ≥ 0 denote by B(Zp, p−r) the set of open balls

U ⊆ Zp of diameter p−r. Then for all r ≥ 0:

B(Zp, p−r) = {(gi1 · · · gir )−1Zp | 1 ≤ ik ≤ p}.(2.13)

Proof. We do induction on r, and note that the case of r = 0 is trivial since both sets consist of
only one open, namely Zp.

Note that g−1
i Zp ⊂ Zp, and actually

Zp =

p∐
i=1

g−1
i Zp.
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γ0

v∗

γ̃0 v̂∗

γ1 γ2

γ̃1 γ̃2γ1γ̃1

γ2γ̃2

γ1γ̃1

γ2γ̃2

γ̃1γ2

γ̃2γ2

γ̃1γ1

γ̃2γ1

γ1γ̃2γ1 γ2γ̃2γ1

γ̃1γ2γ̃2 γ̃2γ2γ̃2

γ0 = γ̃0 = 1e∗

γ1 γ2

γ̃1

γ1γ̃1

γ2γ̃1

γ̃2

γ1γ̃2

γ2γ̃2

γ̃1γ1

γ̃2γ1

γ̃1γ2

γ̃2γ2

γ̃1γ2γ̃1 γ̃2γ2γ̃1

γ1γ̃2γ1 γ2γ̃2γ1

Figure 1. Vertices and edges of the Bruhat-Tits tree labeled using the radial
system (p = 2). Blue vertices are even and red ones are odd, and only the even
edges are shown.
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This follows from the local form of the gi as in (2.8): for i ≥1, ιp(g
−1
i ) =

(
p −i
0 1

)
ui with the

ui ∈ Γloc
0 (p). Therefore, we obtain the inclusion ⊇ in (2.13). The set B(Zp, p−r) has size pr, so it

only remains to show that:

(i1, . . . , ir) 6= (j1, . . . , jr) =⇒ (gi1 · · · gir )−1Zp 6= (gj1 · · · gjr )−1Zp.

Again, the previous decomposition of Zp and the induction hypothesis prove the above claim. �

From the above lemma we deduce:

Corollary 2.5. (1) An open ball Ue corresponding to an even edge e is contained in Zp if and
only if γe is of the form

γe = γ̃i1γj1 · · · γ̃inγjn , with all ik, jk ∈ {1, . . . , p} and some n ≥ 0.

(2) An open ball Ue corresponding to the opposite of an even edge e is contained in Zp if and
only if γe is of the form

γe = γj1 γ̃i2γj2 · · · γ̃inγjn
with all ik, jk ∈ {1, . . . , p}, and some n ≥ 0.

Proof. Note that γ̃ikγjk = p−1gikgjk , so

(γ̃ikγjk)−1Zp = (gikgjk)−1Zp.

Now the first claim follows from the fact that even edges correspond to balls of diameter p−2n for
some n ≥ 0 and the lemma. The second claim is similar. �

Let Meas0(P1(Qp),Z) denote the set of Z-valued measures on P1(Qp) of total measure 0. It ac-
quires the structure of left GL2(Qp)-module as follows: for m ∈ Meas0(P1(Qp),Z) and g ∈ GL2(Qp)

(gm)(U) = m(g−1U) for all compact-open U.

Let F(E ,Z) denote the set of functions from E to Z and let

F0(E ,Z) = {c ∈ F(E ,Z) : c(e) = −c(ē) for all e ∈ E}.

A Z-valued harmonic cocycle is a function c ∈ F0(E ,Z) such that∑
s(e)=v

c(e) = 0 for all v ∈ V.

The bijection E ↔ B(P1(Qp)) induces an identification between Meas0(P1(Qp),Z) and Fhar(Z).

Remark 2.6. The module Fhar(Z) also appears in the theory of modular forms. Indeed, the Jacquet–
Langlands correspondence and the theory of Cerednik–Drinfeld relate harmonic cocycles that are
invariant with respect to arithmetic subgroups of definite quaternion algebras of discriminant D to
pD-new modular forms (see, e.g., [Dar04, §5]). However, in this work we only consider indefinite
quaternion algebras. In this case, the corresponding invariant harmonic cocycles are trivial, and one
needs to look at higher cohomology groups (cf. §3 below), hence deviating from the more classical
theory.
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3. Quaternionic p-adic Darmon points

This section is devoted to reviewing Greenberg’s construction of quaternionic p-adic Darmon
points [Gre09] in the case of elliptic curves over Q. Recall that in this setting E is an elliptic curve
over Q of conductor N = pDM , and K a real quadratic field in which all primes dividing pD are
inert and all primes dividing M are split.

The method attaches to any embedding of Z[1/p]-algebras ψ : OK ↪→ R a Darmon point Pψ ∈
E(Kp), which is the image under Tate’s uniformization map of a certain quantity Jψ ∈ K×p . The
construction of Jψ can be divided into three stages:

(1) Construct a 1-cohomology class [µ̃] = [µ̃E ] ∈ H1(Γ,Meas0(P1(Qp),Z)) associated to E;

(2) Construct a 1-homology class [cψ] ∈ H1(Γ,Div0(Hp)) associated to ψ; and
(3) Set Jψ = ×

∫
〈[cψ], [µ̃]〉, where ×

∫
〈 , 〉 is a certain “integration pairing” .

We describe each one of the steps separately.

3.1. The cohomology class attached to E. Recall the two characters λ±E of the Hecke algebra
associated to E in (2.12). Choose a sign σ ∈ {±} and consider the character λ = λσE . If we denote
by H1(ΓD0 (pM),Z)p-new the p-new subspace (see, e.g. [Gre09, §3] for the definition), then the

submodule
(
H1(ΓD0 (pM),Z)p-new

)λ
is free of rank 1. In fact, the coboundary group B1(ΓD0 (pM),Z)

is trivial (for ΓD0 (pM) acts trivially on Z), so there exists a cocycle ϕ = ϕE ∈ Z1(ΓD0 (pM),Z)p-new

such that:

(1) T`ϕ = a`ϕ for all primes ` - pMD,
(2) U`ϕ = a`ϕ for all ` | pM ,
(3) W∞ϕ = σϕ, and
(4) the image of ϕ is not contained in any proper ideal of Z.

The cocycle ϕ is uniquely determined, up to sign, by these conditions and therefore me may and do
fix such a cocycle ϕ. The following theorem can be seen as a generalization of [DP06, Proposition
1.3] to the case where B is a division algebra.

Theorem 3.1 (Greenberg [Gre09]). There exists µ̃ ∈ Z1(Γ,Meas0(P1(Qp,Z))) whose cohomology
class [µ̃] ∈ H1(Γ,Meas0(P1(Qp),Z)) satisfies:

(1) T`[µ̃] = a`[µ̃] for all primes ` - pM ;
(2) U`[µ̃] = a`[µ̃] for all ` |M ,
(3) W∞[µ̃] = σ[µ̃], and
(4) µ̃γ(Zp) = ϕγ for all γ ∈ ΓD0 (pM).

In addition, [µ̃] is uniquely determined by this conditions.

One can think of the cocycle µ̃ as a “system of measures”: for any γ ∈ Γ there is an associated
measure µ̃γ . A cocycle µ̃ as in the above theorem can be explicitly constructed by applying the
methods of [LRV12, §4.2] as follows. First of all we need to define a related cocycle µ = µE , which
will actually play an important role in our explicit algorithms. Given e ∈ E+ and g ∈ Γ let h(g, e)
be the element of ΓD0 (pM) defined by the equation

γeg = h(g, e)γg−1(e).(3.1)

Recall Y = {γe}e∈E+ the radial system fixed in Definition 2.3. For g ∈ Γ let µg ∈ F(E0,Z) be the
function defined by

µg(e) = ϕh(g,e), if e ∈ E+.(3.2)
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This condition already determines the values of µg(e) for e ∈ E−, for if µg belongs to F0(E ,Z) then
µg(e) = −µg(ē) and ē ∈ E+. The map g 7→ µg defined this way turns out to be a 1-cocycle.

Fix a prime r not dividing N and set tr = (Tr−r−1) ∈ T(pD). The following proposition, which
essentially restates results of [Gre09] and [LRV12], claims that [µ̃] can be computed from tr[µ].

Proposition 3.2. The cocycle µ belongs to Z1(Γ,Meas0(P1(Qp),Z)), and tr[µ] is a multiple of the
cohomology class [µ̃] given by Theorem 3.1.

Proof. Recall the identification Meas0(P1(Qp),Z) with Fhar(Z). First of all, since ϕ belongs to(
H1(ΓD0 (pM),Z)p-new

)λ
by Remark 3.3 and the fact that the isomorphism of Shapiro’s Lemma

commutes with the Hecke action [AS86, Lemma 1.1.4] we see that [µ] ∈ H1(Γ,F0(E ,Z))λ. The
system Y used to define µ is radial, and by [LRV12, Proposition 4.8] this implies that µg belongs to
Fhar(Z) for all g ∈ Γ. In particular [µ] can be viewed as an element of H1(Γ,Fhar(Z)). The natural
map

ρ : Q⊗H1(Γ,Fhar(Z)) −→ Q⊗H1(Γ,F0(E ,Z))p-new

is surjective but not injective: its kernel is H1(Γ,Fhar(Z))deg (see [Gre09, §8]). Since λ arises
from a cuspidal eigenform, λ(Tr) is not r + 1 = deg(Tr) and thus Tr − r − 1 projects to the
complementary of Q⊗H1(Γ,Fhar(Z))deg, and that it acts as multiplication by ar − r − 1 on Q ⊗
H1(Γ,Fhar(Z))λp-new. �

In view of this result there exists an integer cr such that tr[µ] = cr[µ̃]. We abuse the notation to
denote c−1

r tr simply as tr, so that we have an equality [µ̃] = tr[µ].

Remark 3.3. In fact, the cohomology class of [µ̃] ∈ H1(Γ,F0(E ,Z)) is nothing but the image of ϕ
under the isomorphisms

H1(ΓD0 (pM),Z) ' H1(Γ, coindΓ
ΓD

0 (pM)(Z)) ' H1(Γ,F0(E ,Z)),

where the first isomorphism is given by Shapiro’s Lemma and the second comes from the isomor-
phism coindΓ

ΓD
0 (pM)(Z) ' F0(E ,Z) (cf. [Gre09, Corollary 16]).

3.2. The homology class attached to ψ. Let Hp = Kp \ Qp be the Kp-rational points of the
p-adic upper half plane. The group ψ(O×K) acts on Hp via the isomorphism ιp : B ⊗Qp ' M2(Qp).
Since p is inert in K the action has two fixed points; let τψ ∈ Hp be one of them. Let also εK ∈ O×K
be a unit of norm 1, and set γψ = ψ(εK). Since γψτψ = τψ, the element γψ ⊗ τψ belongs to
Z1(Γ,DivHp). From the exact sequence

0 −→ Div0Hp −→ DivHp
deg−→ Z −→ 0(3.3)

we obtain the long exact sequence in Γ-homology

· · · −→ H2(Γ,Z)
δ−→ H1(Γ,Div0Hp) −→ H1(Γ,DivHp)

deg∗−→ H1(Γ,Z) −→ · · ·(3.4)

where δ is the connecting homomorphism. The group H1(Γ,Z) is isomorphic to the abelianization
of Γ, which is finite (see, e.g., [LRV13, §2]). If we let eΓ denote its exponent, then eΓ[γψ⊗ τψ] has a

preimage [cψ] ∈ H1(Γ,Div0Hp), and this is the homology class attached to ψ we were looking for.

Remark 3.4. The homology class [cψ] is well-defined up to elements in δ (H2(Γ,Z)).
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3.3. Integration pairing and Darmon points. Let f : P1(Qp)→ K×p be a continuous function

and let m ∈ Meas0(P1(Qp),Z). The multiplicative integral of f with respect to m is defined as the
limit of Riemann products

×
∫
P1(Qp)

f(t)dm(t) = lim
||U||→0

∏
U∈U

f(tU )m(U) ∈ K×p ,

where the limit is taken over increasingly finer finite coverings U of P1(Qp) by compact-opens, and
tU is any sample point in U . If U ⊂ P1(Qp) it is customary to denote

×
∫
U

f(t)dm(t) = ×
∫
P1(Qp)

f(t)1U (t)dm(t).

For D ∈ Div0(Hp) let fD : P1(Qp) → K×p be a function with divisor D (for instance, if D =

(τ0) − (τ1) one can take fD(t) = t−τ0
t−τ1 ). Observe that fD is well-defined up to multiplication by

scalars in K×p ; nevertheless, since these scalars integrate to 1 there is a well defined pairing

Div0(Hp)×Meas0(P1(Qp),Z) −→ K×p

(D,m) 7−→ ×
∫
P1(Qp)

fD(t)dm(t).

By cup product this defines a pairing

H1(Γ,Div0(Hp))×H1(Γ,Meas0(P1(Qp),Z))

×
∫
〈 , 〉

// K×p

(
∑
g g ⊗Dg, ξ)

� //
∏
g

×
∫
P1(Qp)

fDg (t)dξg(t),

which is equivariant for the Hecke action:

×
∫
〈T`
∑
g

g ⊗Dg, ξ〉 = ×
∫
〈
∑
g

g ⊗Dg, T`ξ〉.(3.5)

Define

L =

{
×
∫
〈δc, [µ̃]〉 : c ∈ H2(Γ,Z)

}
⊂ K×p ,

where [µ̃] = tr[µ] is the cohomology class associated to E in Section 3.1. It turns out that L is a
lattice in K×p [Gre09, Proposition 30]. The following key result, which was independently proven
by Dasgupta–Greenberg and Longo–Rotger–Vigni, relates L to the Tate lattice of E.

Theorem 3.5 ([DG12],[LRV12]). The lattice L is commensurable to the Tate lattice 〈qE〉 of E/Kp.

Thanks to this theorem one can find an isogeny β : K×p /L → K×p /〈qE〉. Denote by ΦTate :

K×p /〈qE〉 → E(Kp) Tate’s uniformization map and let

Jψ = ×
∫
〈cψ, [µ̃]〉.

Observe that Jψ is a well-defined quantity in K×/L thanks to Remark 3.4.

Conjecture 3.6 (Greenberg). The local point Pψ = (ΦTate
aβ)(Jψ) ∈ E(Kp) is a global point.

More precisely, it is rational over the narrow Hilbert class field H+
K of K.
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Remark 3.7. The integration pairing is equivariant with respect to the Hecke action, so Jψ can also
be computed as

Jψ = ×
∫
〈[trcψ], [µ]〉.(3.6)

4. The effective computation of quaternionic p-adic Darmon points

In this section we present the explicit algorithms that allow for the effective calculation of the
quaternionic p-adic Darmon points. As we reviewed in §3, this amounts to compute the cohomology
class associated to the elliptic curve, the homology class corresponding to an optimal embedding,
and the integration pairing.

In §4.1 we show how to compute the cohomology class (the main algorithmic result is given in
Theorem 4.1), and in §4.2 how to compute the homology class (the main algorithm is stated as
Theorem 4.2). In fact, these two algorithms are already enough to compute the Darmon points, as
one can then evaluate the integration pairing via Riemann products, which can be thought of as
the most naive method of integration. This is briefly recalled in §4.3.

Finally, in §4.4 we illustrate the use of this method by giving a detailed explicit example of
a Darmon point calculated with the algorithms introduced this section, together with Riemann
products for approximating the integrals. This also serves as a motivation for Section 5, because
even though in principle is possible to compute the integrals using Riemann products, it is too
computationally costly. Section 5 will be devoted to an efficient method for calculating the type of
integrals arising in p-adic Darmon points.

4.1. Computation of the cohomology class. The first step is to calculate a cocycle ϕ ∈
H1(ΓD0 (pM),Z)p-new that lies in the λ-isotypical component by the Hecke action. We remark
that there are algorithms for effectively dealing with arithmetic subgroups of indefinite quaternion
division algebras. More concretely, there are algorithms that:

• compute a presentation of ΓD0 (M) and ΓD0 (pM) in terms of generators and relations, and
• express an element of ΓD0 (M) or ΓD0 (pM) as a word in the generators.

These algorithms were introduced by John Voight [Voi09] and are implemented in Magma [BCP97].
Note that we have

H1(ΓD0 (pM),Z) = Hom(ΓD0 (pM),Z) = Hom(ΓD0 (pM)ab,Z),

and that the finitely generated abelian group ΓD0 (pM)ab is easy to calculate from an explicit pre-
sentation of ΓD0 (pM). Using this description and formula (2.4) one can algorithmically compute
the Hecke action on H1(ΓD0 (pM),Z) (cf. [GV11] for more details).

Using the Atkin–Lehner operator Wp one computes the p-new part of the group H1(ΓD0 (pM),Z),
and one then proceeds to diagonalize it with respect to several Hecke operators T`, until the common
eigenspace corresponding to λ has rank 2. In practice, a few values of ` are usually enough. Then
the space where the Atkin–Lehner operator W∞ acts with sign σ ∈ {±1} has rank 1, and we can
take ϕ to be one of its generators.

The final step is to compute the values of µ by means of formula (3.2). In order to do so, one
needs to be able to express any element g ∈ Γ as g = h(g)γe, where h(g) ∈ ΓD0 (pM) and γe ∈ Y.
In the next theorem we show that this can be, indeed, computed in an algorithmic fashion.

Theorem 4.1. There is an algorithm that, given g ∈ Γ, outputs h(g) ∈ ΓD0 (pM) and γe ∈ Y such
that g = h(g)γe, in time proportional to the distance from e∗ to e = g−1(e∗)
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In order to describe the algorithm and prove its correctness, it is useful to recall the notion
of distance between lattices (cf. [Ser80, Chapter II, §1.1]). If Λ and Λ′ are lattices in Q2

p there
exists a basis {b1, b2} for Λ such that {pxb1, pyb2} is a basis for Λ′ for certain x, y ∈ Z. Then the
distance d(Λ,Λ′) is defined to be |x − y|. It is independent of the choice for {b1, b2}, and it only
depends on the homothety classes of Λ and Λ′. In addition, this notion of distance coincides with
the distance in the Bruhat–Tits tree; that is to say, if Λ and Λ′ represent vertices v and v′ in V
then d(Λ,Λ′) = d(v, v′).

Under the correspondence ΓD0 (pM) \ Γ↔ E+ an element g ∈ Γ is associated with e = g−1(e∗) ∈
E+. Its source s(e) = g−1(v∗) is then represented by the lattice g−1(Zp ⊕ Zp), and its target
t(e) = g−1(v̂∗) by the lattice g−1(Zp⊕pZp). Thus, if we let ιp(g

−1) =
(
a b
c d

)
, the columns

(
a b
c d

)
are

a basis for the lattice s(e) and the columns of
(
a bp
c dp

)
are a basis for t(e). The distances d(s(e), v∗)

and d(t(e), v∗) are easily read from the Smith normal form of these matrices: if(
a b
c d

)
= G

(
d1 0
0 d2

)
H,

(
a pb
c pd

)
= G′

(
d′1 0

0 d′2

)
H ′, for some G,G′, H,H ′ ∈ GL2(Zp),

then

d(s(e), v∗) = |vp(d1)− vp(d2)| and d(t(e), v∗) = |vp(d′1)− vp(d′2)|.(4.1)

We may identify g with its associated edge e = g−1(e∗), and use expressions such as d(s(g), v∗)
or d(t(g), v∗). We say that e (or g) is an outward edge if d(s(g), v∗) < d(t(g), v∗) and that it is
inward otherwise. Observe that one can easily determine whether g is inward or outward by means
of formula (4.1).

Proof of Theorem 4.1. Given an element g ∈ Γ let e be the edge g−1(e∗). It is enough to
compute the representative γe ∈ Y, since then h(g) = gγ−1

e ∈ ΓD0 (pM).
Observe that if g is outward and d(s(g), v∗) = 0 then γe equals some γi ∈ Υ (see the edges

leaving v∗ in Figure 1), and it is easily computed since it is the single γi such that γ−1
i g ∈ ΓD0 (pM).

For general g the algorithm consists on recursively reducing to this particular case as follows:

(1) If g is outward and d(s(g), v∗) > 0, then there exists a single γi such that γ−1
i g is associated

with an inward edge. Compute such γi and set g = γ−1
i g.

(2) If g is inward, then there exists a single γ̃i such that γ̃−1
i g is outward. In addition, for such

γ̃i we have that d(s(γ̃−1
i g), v∗) < d(s(g), v∗). Set g = γ̃−1

i g.

(3) If g is outward and d(s(g), v∗) = 0 compute the single γi such that γ−1
i g ∈ ΓD0 (pM) and

end the algorithm. Otherwise go to step 1.

Every time we run step 2 the distance d(s(g), v∗) decreases, so the algorithm terminates. The
representative γe is then the product of all the γi and γ̃j computed in each step. Finally, it is clear
that the number of stages is d(s(e), v∗).

�

4.2. Computation of the homology class. Given the real quadratic field K and its ring of
integers OK = Z[ω], the first step is to compute an embedding of Z[1/p]-algebras OK ↪→ R. In
fact, thanks to our running assumptions on K we can find Z-algebra embeddings OK ↪→ R0(M).
Computing them in practice amounts to finding elements in B whose reduced norm and trace
coincide with that of ω, and one can use the routines of Magma [BCP97] to compute them (e.g.
the routine Embed( , )).
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Every embedding ψ0 : OK ↪→ R0(M) induces ψ : OK ↪→ R via the inclusion R0(M) ⊂ R, giving
rise to the 1-cycle γψ ⊗ τψ in Z1(Γ,DivHp) via the process described in Section 3.2. Denote by eΓ

the exponent of H1(Γ,Z), so that the element

eΓ[γψ ⊗ τψ] ∈ H1(Γ,DivHp)

lifts under deg∗ to an element [cψ] ∈ H1(Γ,Div0Hp) (cf. the exact sequence (3.4)).
We devote the rest of this subsection to describe an algorithm for computing cψ. Note that once

cψ is found, it is easy to compute c̃ψ by means of formula (2.4).
Let 〈X | R〉 be a presentation of Γ, where X = {x1, . . . , xn} are the generators and R =

{r1, . . . , rm} the relations. It can be explicitly computed by means of Voight’s algorithms, which
provide presentations for ΓD0 (M) and ΓD0 (pM), say

ΓD0 (M) = 〈Y | S〉 and ΓD0 (pM) = 〈Z | T 〉.

A set of generators of Γ̂D0 (M) is Ŷ = {ŷi := ω−1
p yiωp : yi ∈ Y }, and a set of relations Ŝ is that in

which the ŷi satisfy the same relations as the yi. Then each z ∈ Z can be expressed as a word in
the generators of Y , that we denote α(z), and as a word in the generators of Ŷ , that we denote

α̂(z). If we let SZ = {α(z)α̂(z)−1 : z ∈ Z} then a presentation of Γ = ΓD0 (M) ?ΓD
0 (pM) Γ̂D0 (M) is

given by

〈X | R〉 = 〈Y ∪ Ŷ | S ∪ Ŝ ∪ SZ〉.
Any g ∈ ΓD0 (M) can be expressed as a word in Y by means of Voight’s algorithm [Voi09]. Combining
this with the algorithm of Theorem 4.1 we obtain an algorithm for expressing any g ∈ Γ as a word
in X.

The following notation will be useful in describing the algorithm for computing cψ: If w is a
word and x ∈ X, we define vx(w) ∈ Z as the sum of the exponents of x appearing in w. We also
set vX(w) = (vx1

(w), . . . , vxn
(w)). For example, if w = x3

1x
3
2x
−1
3 x−2

1 x3
3, then vX(w) = (1, 3, 2).

The first step in lifting eΓ[γψ⊗ τψ] = [γeΓψ ⊗ τψ] consists in computing eΓ. This is easily obtained
using integral linear algebra to obtain the structure of Γab from the presentation of Γ.

Next, one obtains a word representation w for γeΓψ . Since we are assuming that γeΓψ is trivial in

H1(Γ,Z) ∼= Γab, the vector vX(w) belongs to the image of the abelianized relations, say vX(w) =
a1vX(r1) + · · · + akvX(rm). We consider instead the word w′ = wr−a1

1 · · · r−amm , which represents
the same element γeΓψ ∈ Γ, but which satisfies vX(w′) = 0.

In what follows we write ≡ to mean equality up to boundaries. The algorithm of Theorem 4.2
below provides a way to find elements xi ∈ Γ and Di ∈ Div0(Hp) such that

w′ ⊗ τψ ≡
n∑
i=1

xi ⊗Di, with the Di ∈ Div0(Hp),

and therefore to compute cψ =
∑n
i=1 xi ⊗Di.

Theorem 4.2. There exists an algorithm that, given g ∈ Γ represented by a word w and given
D ∈ DivHp, computes elements xi ∈ Γ and Di ∈ Div0Hp such that

g ⊗D ≡
n∑
i=1

xi ⊗Di, with deg(Di) = vxi(w) deg(D).

The proof of this theorem consists on making systematic use of the following Lemma.

Lemma 4.3. The following relations hold true in Z1(Γ,DivHp).
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(1) gh⊗D ≡ g ⊗D + h⊗ g−1D.
(2) For all k ≥ 0, gk ⊗D ≡ g ⊗D′, with D′ = D + g−1D + · · ·+ g1−kD.
(3) g−1 ⊗D ≡ −g ⊗ gD.
(4) If gD = D, then gk ⊗D ≡ kg ⊗D for all k ∈ Z.

Proof. The first statement is direct from the relation in homology (cf. (2.1)). Note that D′ = g−1D
has the same degree as D.

Next, observe that:

0 ≡ g−1g ⊗D ≡ g−1 ⊗D + g ⊗ gD,
so we obtain g−1 ⊗ D ≡ g ⊗ D′, with D′ = −gD satisfying deg(D′) = −deg(D), which is the
third statement. The second statement is proven using induction on k, and the last statement is a
particular case of the second and third ones. �

Proof of Theorem 4.2. Suppose that w = xa1
i1
· · ·xatit is a word representing g. Repeated applications

of Lemma 4.3, part 1 allow to express:

g ⊗D ≡
t∑

s=1

xasis ⊗D
′
s, deg(D′s) = deg(D).

Using Lemma 4.3, part 2 the above can be rewritten as

g ⊗D ≡
t∑

s=1

xis ⊗D′′s , degD′′s = as deg(D).

Finally, one can collect the terms involving each of the generators x ∈ X, to obtain:

g ⊗D ≡
n∑
i=1

xi ⊗Di,

and note that deg(Di) = vxi
(w) deg(D), as wanted.

4.3. Computation of the integration pairing via Riemann products. In §4.1 and §4.2 we
have seen how to compute in practice the cocycle µ attached to E and the cycle cψ attached to an
optimal embedding. The integration pairing then gives the Darmon point attached to ψ. That is
to say,

Jψ = ×
∫
〈[c̃ψ], [µ]〉 =

C∏
k=1

×
∫
P1(Qp)

fDk
(t)dµgk(t).(4.2)

Each individual term ×
∫
P1(Qp)

fD(t)dµg(t) can be numerically approximated by a partial Riemann

product, which for a covering U of P1(Qp) is∏
U∈U

fD(tU )µg(U), tU any sample point in U.

Suppose that D = τ2 − τ1 ∈ Div0Hp, and that we want to compute the integral

×
∫
P1(Qp)

fD(t)dµg = ×
∫
P1(Qp)

(
t− τ2
t− τ1

)
dµg
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with an accuracy of p−n. The size of the covering U is determined by the affinoids in which τ1 and
τ2 lie. To be more precise, let r be a positive integer such that none of the elements τ1, τ2, ωpτ1, ωpτ2
is congruent to an integer modulo pr. That is to say, such that

|τ1 − i|p > p−r, |τ2 − i|p > p−r, |ωpτ1 − i|p > p−r, |ωpτ2 − i|p > p−r for all i ∈ Z.(4.3)

Observe that we can find such an r because τ1, τ2, ωpτ1, ωpτ2 do not belong to Qp. The function

fD(t) is locally constant modulo pn when restricted to open balls of diameter p−(n+r). Therefore,
in order to obtain the value of Jψ correct modulo pn it is enough to consider a finite covering Un+r

of P1(Qp) consisting of open balls of diameter p−(n+r).
Since µg is defined as an element of F0(E ,Z) ' F(E+,Z) it is useful to describe this covering of

P1(Qp) in terms of E+ as follows. Note that

P1(Qp) =

p∐
t=0

γ̃−1
t Zp,

with γ̃−1
t Zp of diameter 1/p. In Corollary 2.5 we have described a covering B(Zp, p−n) of Zp, and

therefore one obtains the corresponding covering of P1(Qp) as:

P1(Qp) =
∐

t,im,jm

(γ̃i1γj1 · · · γ̃inγjn γ̃t)−1Zp,

where the indexes im, jm vary over {1, . . . , p} and t varies over {0, . . . , p}.

4.4. A numerical example. We let p = 13, D = 2 · 3, and M = 1. Consider the elliptic curve
with Cremona label “78a1”:

E : y2 + xy = x3 + x2 − 19x+ 685

Let K = Q(
√

5), which is the quadratic field with smallest discriminant satisfying that 2, 3 and

13 are inert in K. One observes that the point P = (−2, 12
√

5 + 1) ∈ E(K) generates the free part
of E(K).

Let B be the quaternion algebra ramified precisely at 2 and 3. It can be given as the Q-algebra
Q〈i, j〉, with relations i2 = 6, j2 = −1, ij = −ji.

Let ι13 be the Q-algebra embedding of B →M2(Q13) which sends:

i 7→
(

0 −1
1 0

)
, j 7→ 1

ρ

(
−1 −24
4 1

)
,

with ρ being the unique square root of 95 in Q13 which satisfies ρ ≡ 2 (mod 13). Let R0(1) ⊂ B
be the maximal order with generators {1, i, (1 + i + j)/2, (i + k)/2}, and let ψ : OK ↪→ R0(1) be

the embedding that sends
√

5 ∈ K to −i− j. This yields:

τψ = (11g + 9) + (12g + 7) · 13 + (12g + 11) · 132 + (12g + 12) · 133 + (12g + 7) · 134 +O(135),

where g ∈ K13 satisfies g2 − g − 1 = 0, and γψ = (3− i− j)/2.
The element γψ does not belong to the commutator subgroup of Γ6

0(1)ab, but γ12
ψ does. We

rewrite the cycle γ12
ψ ⊗ τψ in H1(Γ6

0(1),DivH13) as the sum of 16 terms. Also, we act on γ12
ψ with

t5.
Finally, we compute the integration pairing using Riemann products on coverings consisting of

those opens of diameter 13−n for n ∈ {1, 2, 3}. Table 1 gives the time that this computation took in
our test computer. Observe that the number of evaluations grows exponentially in n, and therefore
so does the time it takes to complete the integration.
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n Num. opens Time (s)

1 14 3
2 182 49
3 2366 1158

Table 1. Running time increases exponentially with the precision.

We obtain the value Jψ = (3g+2)13+(g+9)132+O(133) and, after applying the Tate parametriza-
tion, obtain Pψ ∈ E(K13) having coordinates

(x, y) = (11 + 8 · 13 + 5 · 132 +O(133), (11g + 2) + (7g + 11) · 13 + (7g + 12) · 132 +O(133)).

This point agrees with 48 · P up to the working precision of three 13-adic digits. Note that 48 =
12 · (5 + 1− a5(E)). The factor of 5 + 1− a5(E) appears because of the application of t5, and the
factor of 12 appears because it was needed to kill the torsion of Γ6

0(1)ab.
Although the previous computation gives evidence in support of the conjecture, the result is not

very satisfying. Firstly, an approximation modulo 133 could conceivably come from a numerical
coincidence. More importantly, a previous knowledge of a generator for E(K) was needed, and
finding such a point is a hard problem in general. If we had a way to obtain a much better
approximation, we could use algebraic recognition routines to guess the algebraic point. This is in
fact the goal of the next section.

5. The integration pairing via overconvergent cohomology

We continue with the notation of §4.3. Namely, µ denotes the cohomology class associated to E
and c̃ψ the homology class associated to an optimal embedding ψ, which is of the form

c̃ψ =
∑
k

gk ⊗ (τ ′k − τk)

for some gk ∈ Γ and τk, τ
′
k ∈ Hp. Therefore, the integrals involved in the computation of Jψ are of

the form

×
∫
P1(Qp)

(
t− τ2
t− τ1

)
dµg(t), with g ∈ Γ and τ1, τ2 ∈ Hp.(5.1)

The goal of this section is to provide an algorithm for computing these integrals based on the
overconvergent cohomology lifting theorems of [PP09] which is more efficient than evaluating the
Riemann products. In fact, the complexity of the overconvergent method that we present is poly-
nomial in the number of p-adic digits of accuracy, whereas computing via Riemann sums is of
exponential complexity.

Since the type of integrals that can be directly computed by means of overconvergent cohomology
are not exactly of the form (5.1), we first need to perform certain transformations and reductions.
Thus the method that we next describe can be divided into the following two steps:

(1) Reduce the problem of computing integrals of the form (5.1) to that of computing the so-
called moments of µ at elements of ΓD0 (pM). That is to say, express the integrals of (5.1)
in terms of integrals of the form∫

Zp

tidµg, for g ∈ ΓD0 (pM) and i ∈ Z≥0.(5.2)
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(2) Give an algorithm for computing the integrals (5.2) by means of the overconvergent coho-
mology lifting techniques of [PP09].

These two steps are explained in §5.1 and §5.2, respectively.

5.1. From general integrals to moments. The first step in order to express integrals of the
form (5.1) in terms of the moments (5.2) is to consider covers of P1(Qp) such that the integrand is
analytic on each of the opens. Before fixing our choice of cover, we begin by proving a lemma that
we will need in this process.

Lemma 5.1. Suppose that γ ∈ Γ is of the form γ = γ̃k1
γk2

γ̃k3
· · · for some k` ∈ {1, . . . , p}. Then

µγ|Zp
= 0 (i.e., the restriction of µγ to Zp is 0).

Proof. It is enough to show that µγ(Ue) = 0 for all Ue contained in Zp. By Corollary 2.5 if
Ue = γ−1

e Zp is contained in Zp then γe = γ̃i1γj1 · · · γ̃irγjr for some is, js ∈ {1, . . . , p}. Then we see
that

γeγ = γ̃i1γj1 · · · γ̃irγjr γ̃k1
γk2

γ̃k3
· · · ,

from which we see that γeγ belongs to our system of representatives Y for ΓD0 (pM)\Γ. Therefore,
from the identity γeγ = 1·γeγ and the definition of µ (see (3.2)) we obtain that µγ(Ue) = ϕ1 = 0. �

Let r be a positive integer such that none of the elements τ1, τ2, ωpτ1, ωpτ2 is congruent to an
integer modulo pr, as in (4.3). Consider a covering of P1(Qp) of the form

P1(Qp) =

p⊔
t=0

⊔
im,jm

(γ̃i1γj1 · · · γ̃inγjn γ̃t)−1Zp,

with the im, jm varying over {1, . . . , p}, and such that every open has diameter ≤ p−(r+1). Using
this covering for breaking the integral (5.1) we are reduced to consider integrals of the form

×
∫

(γ̃i1γj1 ···γ̃inγjn γ̃t)−1Zp

(
t− τ2
t− τ1

)
dµg(t), for g ∈ Γ

and t ∈ {0, . . . , p}, is, js ∈ {1, . . . , p}.
To lighten the notation set α = γ̃i1γj1 · · · γ̃inγjn γ̃t. Then we have that

×
∫
α−1Zp

(
t− τ2
t− τ1

)
dµg(t) =×

∫
Zp

(
α−1t− τ2
α−1t− τ1

)
dµg(α

−1t) = ×
∫
Zp

(
α−1t− τ2
α−1t− τ1

)
d(αµg)(t)

=×
∫
Zp

(
α−1t− τ2
α−1t− τ1

)
dµαg(t)÷×

∫
Zp

(
α−1t− τ2
α−1t− τ1

)
dµα(t)

=×
∫
Zp

(
α−1t− τ2
α−1t− τ1

)
dµαg(t),

where we have used the cocycle property of µ and the fact that µα|Zp
= 0 by Lemma 5.1. Therefore,

letting φ0(t) :=
(
α−1t−τ2
α−1t−τ1

)
, we have reduced the problem to compute integrals of the form

×
∫
Zp

φ0(t)dµg, for g ∈ Γ.(5.3)
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The next step is to express the above integrals in terms of integrals with respect to measures of the
form µg0 , where g0 ∈ ΓD0 (pM). For instance, if we write g = g0γ with g0 ∈ ΓD0 (pM) and γ ∈ Y,
Proposition 5.2 below asserts that, under a certain condition on γ, we have an equality

×
∫
Zp

φ0(t)dµg(t) = ×
∫
Zp

φ0(t)dµg0(t).

Recall that an edge e ∈ E is said to be inward if d(t(e), e∗) < d(s(e), e∗). Given g ∈ Γ the edge
g−1(e∗) is inward if and only if g = g0γ with g0 ∈ ΓD0 (pM) and γ ∈ Y of the form

γ = γ̃tγi1 γ̃i2 · · · for some t, i1, . . . , in ∈ {1, . . . , p}.(5.4)

Proposition 5.2. Let g be an element in Γ such that g−1(e∗) is an inward edge. If g = g0γ with
γ as in (5.4) then µg|Zp

= µg0|Zp
.

Proof. By Lemma 5.1 the measure µγ is 0 when restricted to Zp. By the cocycle condition we

have that µg = µg0γ = µg0
+ g0µγ . Since g0 ∈ ΓD0 (pM) if U ⊂ Zp then g−1

0 U ⊂ Zp, so that

g0µγ(U) = µγ(g−1
0 U) = 0 and we see that g0µγ is 0 when restricted to Zp. �

Suppose now that g−1(e∗) is outward, so that we can not directly apply Proposition 5.2. In this
case observe that (γ̃ig)−1(e∗) is inward for all i ∈ {1, . . . , p}. Thus we can write

×
∫
Zp

φ0(t)dµg(t) =

(
×
∫
P1(Qp)\Zp

φ0(t)dµg(t)

)−1

=

p∏
i=1

(∫
γ̃−1
i Zp

φ0(t)dµg(t)

)−1

=

p∏
i=1

(∫
Zp

φ0(γ̃−1
i t)dµg(γ̃

−1
i t)

)−1

=

p∏
i=1

(∫
Zp

φ0(γ̃−1
i t)dµγ̃ig(t)

)−1

and apply Proposition 5.2 to each of the integrals in the last term.
Summing up, we have expressed any integral as in (5.1) as a product of integrals of the form

×
∫
Zp

φi(t)dµg(t) for g ∈ ΓD0 (pM),

where φi := φ0(γ̃−1
i t) for i = 0, 1, . . . , p.

Next, we show that the functions φi(t) are analytic on Zp, thanks to our choice of the covering
of P1(Qp). We begin by analyzing φ0(t), since the result for the other φi(t) will follow easily from
this case.

Lemma 5.3. The function φ0(t) = α−1t−τ2
α−1t−τ1 is analytic on Zp and has a series expansion of the

form

α−1t− τ2
α−1t− τ1

= α0

(
1 +

∞∑
n=1

αnp
2ntn

)
(5.5)

with the αn belonging to Op, the ring of integers of Kp, for all n ≥ 1.

Proof. Let J = {
(
a b
c d

)
∈ GL2(Zp) : p | c}, which is the stabilizer of Zp under the action GL2(Qp)

in the set of balls of P1(Qp). Observe that if a function φ(t) satisfies the conclusions of the lemma,
then also φ(γt) does for all γ ∈ J. There are two cases to consider:



OVERCONVERGENT COHOMOLOGY AND DARMON POINTS 21

(1) α−1Zp is contained in Zp. Then, since α−1Zp is a ball of diameter p−(r+1) we find that

α−1Zp =
(
pr+1 i

0 1

)
Zp, for some i ∈ Z.

Therefore α−1u0 =
(
pr+1 i

0 1

)
for some u0 ∈ J. Then, by our previous remark we can replace

t by u0t, and we find that

φ0(u0t) =
α−1u0t− τ2
α−1u0t− τ1

=

(
pr+1 i

0 1

)
t− τ2(

pr+1 i
0 1

)
t− τ1

=
(i− τ2)

(i− τ1)

(1 + pr+1

i−τ2 t)

(1 + pr+1

i−τ1 t)
.

Now the key point is that by our choice of r in (4.3) we have that vp(i − τ2) < r, so that

vp

(
pr+1

i−τj

)
≥ 2, and we result follows by taking the power series expansion in the above

expression.
(2) α−1Zp is contained in P1(Qp) \ Zp. In this case observe that ωpα

−1Zp ⊂ Zp. Therefore

α−1t− τ2
α−1t− τ1

=
ωpα

−1t− ωpτ2
ωpα−1t− ωpτ1

,

and the argument is exactly the same as before by noting that ωpα
−1Zp is of diameter

p−(r+1) and therefore ωpα
−1 =

(
pr+1 i

0 1

)
for some i, and that our choice of r also works

well for ωpτ1 and ωpτ2.

�

Proposition 5.4. For every i = 0, 1, . . . , p the function φi(t) = φ0(γ̃−1
i t) is analytic on Zp and has

a series expansion of the form

α−1t− τ2
α−1t− τ1

= α0

(
1 +

∞∑
n=1

αnp
ntn

)
(5.6)

with the αn belonging to Op, the ring of integers of Kp, for all n ≥ 1.

Proof. The result is clear for i = 0. For i > 0 observe that γ̃i is (up to an element in J) locally of

the form
(
−i 1/p
p 0

)
. Thus we can assume that

φi(t) = φ0

(
−1/p

pt− i

)
(5.7)

and the result follows directly from Lemma 5.3 (note the factor p2n in the series expansion (5.5)). �

At this point, we have reduced to compute integrals of the form

I = ×
∫
Zp

φ(t)dµg(t), where g ∈ ΓD0 (pM) and φ(t) = α0

(
1 +

∞∑
n=1

αnp
ntn

)
.(5.8)

Let log be the unique homomorphism log : K×p → Kp such that log(1 − t) = −
∑∞
n=1 t

n/n and

log(p) = 0. Its kernel is pZ × U, where U denotes the group of roots of unity in K×p . Observe that

the series of φ(t) converges for t ∈ Zp and is constant modulo pvp(α0)+1. Thus the integral I of
(5.8) can be computed as

I = pvp(α0) · ζ · exp(log I),
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where ζ is the Teichmüller lift of the unit part of I modulo p, which can be computed as the
Riemann product in the covering of Zp by balls of diameter p−1. Therefore, it only remains to
compute the logarithm of I, which is the additive integral

log I =

∫
Zp

log φ(t)dµg(t).(5.9)

Observe that log φ(t) is analytic on Zp and it has a series expansion of the form

log (φ(t)) = β0 +

∞∑
n=1

βn
n
pntn, with βi ∈ Op.

Let µg |Zp
denote the measure on Zp obtained by restriction of µg, and let ωg(n) denote its n-th

moment:

ωg(n) =

∫
Zp

tndµg(t).

We see that the additive integral of (5.9) can be expressed as

β0ωg(0) +
∑
n≥1

pn

n
βnωg(n)(5.10)

for some βn ∈ Op. Now, suppose that we want to evaluate (5.10) modulo pM ; i.e., we want
to compute the first M p-adic digits of (5.10). For this it is enough to compute, for each i =

0, 1, . . . ,M ′, the moment ωg(i) to an accuracy of pM
′′−i, where

M ′ = sup{n : ordp(p
n/n) < M} and M ′′ = M + [log(M ′)/ log(p)].

Summing up, we have reduced the problem of computing integrals as in (5.1) to that of computing
moments of the form

ωg(i) =

∫
Zp

tndµg(t) (mod pM
′′−i) for g ∈ ΓD0 (pM) and i = 0, . . . ,M ′.(5.11)

In the next subsection we present an algorithm for computing the moments (5.11) based on over-
convergent cohomology.

5.2. Computing the moments via overconvergent cohomology. We present an algorithm
for efficiently computing the moments ωg(n) =

∫
Zp
tndµg(t) for g ∈ ΓD0 (pM), based on the overcon-

vergent cohomology methods of Pollack–Pollack [PP09]. We begin by slightly adapting the lifting
results of [PP09, §3] (because we need to lift cocycles rather than just cohomology classes), and
then we will show how to compute the moments µ by means of the lifted overconvergent cocycles.

Consider the module D of locally-analytic Zp-valued distributions on Zp. That is to say, given a
distribution ν ∈ D and a locally analytic function h : Zp → Zp we have that ν(h(t)) ∈ Zp, and the
map h(t) 7→ ν(h(t)) is linear and continuous. Let Σ0(p) be the subsemigroup of B×

Σ0(p) = ι−1
p

(
{
(
a b
c d

)
∈ M2(Zp) : c ≡ 0 (mod p), d ∈ Z×p , ad− bc 6= 0}

)
.

It acts on the left on D as follows: if h(t) is a locally analytic function on Zp then

(γ · ν)(h(t)) = ν(h(γ · t)), for ν ∈ D, γ ∈ Σ0(p),

where

γ · t =
at+ b

ct+ d
if ιp(γ) =

(
a b
c d

)
.
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The element π ∈ R0(pM) defined in (2.7) lies in Σ0(p) and the double coset ΓD0 (pM)πΓD0 (pM)
induces the Up-operator on the cocycles Z1(ΓD0 (pM),D) and on H1(ΓD0 (pM),D). On cocycles, it
is given explicitly by formula (2.11).

The module D is equipped with the decreasing filtration

FilnD = {ν ∈ D : ν(1) = 0, ν(ti) ∈ pn−i+1Zp, ∀i ≥ 1},

which enjoys the following key properties:

Lemma 5.5. (1) The natural projection D → lim←−
n

D/FilnD is an isomorphism.

(2) If ν ∈ FilnD then π · ν ∈ Filn+1D.

Proof. If ν lies in FilnD for all n then it is necessarily the 0 distribution, and this gives the first
property. As for the second, we shall see that π · ν(ti) = ν(π · ti) lies in pn−i+2Zp whenever

ν ∈ FilnD. Recall that π =
(
p 0
0 1

)
uπ for some uπ ∈ Γloc

0 (p), say uπ =
(
a b
pc d

)
= 1

d

(
a0 b0
pc0 1

)
. Then

π · ti = p
(
uπ · ti

)
=
a0pt

i + b0p

c0pti + 1
=
∑
j≥0

ej(pt
i)j ,

where the ej ∈ Zp arise from the series expansion of 1/(c0pt
i + 1). Since ν ∈ FilnD we have that

ν(1) = 0 and ν(ti) ∈ pn−i+1Zp for all i ≥ 1,

which implies that ν(π · ti) belongs to pn−i+2Zp. �

Thanks to these two properties we are in the setting of [PP09, §3], in which very general lifting
theorems for cohomology classes hold. However, we will need the following slightly refined version
of [PP09, Theorem 3.1], as we are interested in lifting cocycles rather than cohomology classes.

Proposition 5.6. Let θ0 ∈ Zr(ΓD0 (pM),D/Fil0D) be an element such that Upθ0 = αθ0 for some
α ∈ Z×p . Then there exists Θ ∈ Zr(ΓD0 (pM),D) such that:

(1) The image of Θ in Zr(ΓD0 (pM),D/Fil0D) is equal to θ0 (i.e., Θ is a lift of θ0), and
(2) Θ is an eigen-cocycle for Up with eigenvalue α.

Moreover, if Θ′ ∈ Zr(ΓD0 (pM),D) is another cocycle that lifts θ0 such that UpΘ
′ = αΘ′ then

Θ′ = Θ.

As in [PP09], before proving this we state two lemmas that are, in fact, key to the proof.

Lemma 5.7. If θ ∈ Cr(ΓD0 (pM),FilnD) then Upθ lies in Cr(ΓD0 (pM),Filn+1D).

Proof. This is identical to the proof of [PP09, Lemma 3.3]. �

Lemma 5.8. If θ lies in the kernel of Zr(ΓD0 (pM),D) → Zr(ΓD0 (pM),D/Fil0D) and Upθ = αθ
for some α ∈ Z×p , then θ = 0.

Proof. That θ lies in the kernel of Zr(ΓD0 (pM),D) → Zr(ΓD0 (pM),D/Fil0D) is equivalent to the
fact that θ ∈ Zr(ΓD0 (pM),Fil0D). Now θ = α−1Upθ, and iterating this we find that θ = α−nUnp θ.

Thus by Lemma 5.7 we see that θ lies in Zr(ΓD0 (pM),FilnD) for all n, and it must be θ = 0. �



OVERCONVERGENT COHOMOLOGY AND DARMON POINTS 24

Proof of proposition 5.6. The proof is essentially the same as in [PP09], but keeping track of the
cocycles and not just the cohomology classes. It is important to mention that the proof is actually
constructive, and it provides with a very efficient method for algorithmically computing such lifts.

First we show the existence of Θ. Let θ̃0 ∈ Cr(ΓD0 (pM),D) be an arbitrary lift of θ0, and

for n > 0 define θ̃n := α−nUnp θ̃0. Since θ0 is a cocycle and θ̃0 is a lift of θ0, we have that

∂r θ̃0 ∈ Cr+1(ΓD0 (pM),Fil0D). Now

∂r θ̃n = α−n∂r(Unp θ̃0) = α−nUnp (∂r θ̃0);

by Lemma 5.7 this takes values in FilnD. Let θn be the image of θ̃n in

Cr(ΓD0 (pM),D/FilnD).

We have seen that, in fact, θn ∈ Zr(ΓD0 (pM),D/FilnD). Since Upθ0 = αθ0, we have that

Upθ̃0 − αθ̃0 belongs to Cr(ΓD0 (pM),Fil0D). Therefore, one easily checks that Upθ̃n − αθ̃n lies

in Cr(ΓD0 (pM),FilnD), and we see that Upθn = αθn. Also, it is easy to see that θ̃n − θ̃n−1 is in
Cr(ΓD0 (pM),FilnD). Then we can define Θ as

Θ = {θn} ∈ lim←−Z
r(ΓD0 (pM),D/FilnD) = Zr(ΓD0 (pM),D).

By construction Θ lifts θ0 and UpΘ = αΘ.
Now in order to prove uniqueness, let Θ′ ∈ Zn(ΓD0 (pM),D) be an element that lifts θ0 and such

that UpΘ
′ = αΘ′. The difference Θ−Θ′ will be an element in the kernel of

Zr(ΓD0 (pM),D)→ Zr(ΓD0 (pM),D/Fil0D)

such that Up(Θ−Θ′) = α(Θ−Θ′). By Lemma 5.8 we have that Θ−Θ′ = 0.
�

We will apply Proposition 5.6 to the cocycle ϕ = ϕE ∈ Z1(ΓD0 (pM),Z) attached to E (and to a
choice of sign at infinity) that we fixed in §3.1. Indeed, since

Fil0D = {ν ∈ D(Zp) : ν(1) = 0}

the map ν 7→ ν(1) induces an isomorphism D/Fil0D ∼= Zp. Thus ϕ can be naturally seen, after
extending scalars to Zp, as a 1-cocycle

ϕ ∈ Z1(ΓD0 (pM),Zp) = Z1(ΓD0 (pM),D/Fil0D).

Since Upϕ = apϕ with ap ∈ {±1}, as a direct application of Proposition 5.6 we have:

Proposition 5.9. There exists a unique Φ ∈ Z1(ΓD0 (pM),D) lifting ϕ and such that UpΦ = apΦ.

The proof of Proposition 5.6 gives an effective method for computing (approximations to) Φ:

one takes any cochain Φ̃ in C1(ΓD0 (pM),D) that lifts ϕ, and iterates apUp. After k iterations, the

natural image of the resulting cochain akpU
k
p Φ̃ belongs to Z1(ΓD0 (pM),D/Filk D), and we can think

of it as an approximation to the desired Φ, correct up to an element of Z1(ΓD0 (pM),Filk D).
Let g1, . . . , gt be the generators of ΓD0 (pM), explicitly provided by Voight’s algorithms [Voi09].

If g ∈ ΓD0 (pM) we can express Φg in terms of the Φgj by means of the cocycle relation of Φ. A

possible choice for Φ̃ is then the chain determined by:

Φ̃gj (1) = ϕgj , Φ̃gj (ti) = 0 for i > 0.
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The action of apUp is computed by means of formula (2.11). After k iterations only the values

apΦ̃gj (ti) with i ≤ k will be different from 0, and the resulting chain will be equal to Φ modulo

Filk D. Namely, we will have computed the quantities

Φgj (ti) (mod pk−i+1), i = 0, . . . , k.(5.12)

The next step is to show that Φg(t
i) is equal to the moment ωg(i) for any g ∈ ΓD0 (pM). This

means that the moments ωg(i) (mod pk−i+1) for g ∈ ΓD0 (pM) can be computed by the method
explained above.

Proposition 5.10. Let h be an analytic function on Zp and g ∈ ΓD0 (pM). Then

Φg(h(t)) =

∫
Zp

h(t)dµg(t).

Proof. Let Ψ be the cochain Ψ ∈ C1(ΓD0 (pM),D) defined by the formula

Ψg(h(t)) =

∫
Zp

h(t)dµg(t).

We will show that Ψ is a cocycle, which lifts ϕ, and which satisfies UpΨ = apΨ. This will finish the
proof, because the uniqueness part of Proposition 5.6 will imply that Ψ = Φ.

That Φ lifts ϕ is an immediate consequence of property 4 of Theorem 3.1. The cocycle property
of µ implies that of Ψ:

Ψgh(h(t)) =

∫
Zp

h(t)dµgh(t) =

∫
Zp

h(t)d(µg(t) + µh(g−1t))

=

∫
Zp

h(t)dµg(t) +

∫
Zp

h(gt)dµh(t) = Ψg(h(t)) + (g ·Ψh)(h(t)),

where the second equality follows from a change of variables and the fact that g−1Zp = Zp for all
g ∈ ΓD0 (pM). As for the last claim, it follows from the computation:

(UpΨ)g(h(t)) =

p∑
i=1

∫
Zp

h(sit)dµti(g)(t)
(∗)
=

p∑
i=1

∫
Zp

h(sit)d (apµg(sit))

= ap

p∑
i=1

∫
siZp

h(t)dµg(t) = ap

∫
Zp

h(t)dµg(t) = apΨg(h(t)),

where the equality (∗) is justified by Lemma 5.13 below. �

We remark that Lemma 5.13, although of a technical nature, provides the key calculation in the
proof of the above proposition. Before proving it, we need two easy lemmas.

Lemma 5.11. Suppose γe ∈ Y is of the form γe = γ̃i1γj1 · · · γ̃inγjn with all ik, jk > 0. Then
ω−1
p γeωp = γi1 γ̃j1 · · · γin γ̃jn .

Proof. We will see it by induction. If n = 1 we have that γe = γ̃i1γj1 , and then

ω−1
p γeωp = ω−1

p (p−1ωpγi1ωp)γj1ωp = γi1p
−1ωpγj1ωp = γi1 γ̃j1 .

For n > 1 we write γe = γe′ γ̃inγjn , where γe′ = γ̃i1γj1 · · · γ̃in−1
γjn−1

. Then

ω−1
p γeωp = (ω−1

p γe′ωp)(ω
−1
p γ̃inγjnωp)

and now the result follows directly from the induction hypothesis. �
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Lemma 5.12. Let γe ∈ Y be such that Ue ⊆ Zp. Then ω−1
p γeωpγk belongs to Y for all k = 0, . . . , p.

Proof. The statement is clear if γe = 1. If γe 6= 1, then by Corollary 2.5 we have that γe is of the
form γe = γ̃i1γj1 · · · γ̃inγjn . Now by Lemma 5.11 we see that

ω−1
p γeωpγk = γi1 γ̃j1 · · · γin γ̃jnγk,

which clearly belongs to Y. �

Lemma 5.13. Let g be an element in ΓD0 (pM). For each k = 1, . . . , p we have:

(µtk(g))|Zp
= (aps

−1
k µg)|Zp

;(5.13)

that is to say, the measures µtk(g) and aps
−1
k µg coincide when restricted to Zp.

Proof. It is enough to show that for every Ue ⊂ Zp one has

µtk(g)(Ue) = apµg(skUe).(5.14)

Recall that Ue = γ−1
e Zp with γe ∈ Y. By the definition of µ (see (3.2)) we have that

µtk(g)(Ue) = ϕb,

where b ∈ ΓD0 (pM) is the element uniquely determined by the equation

γetk(g) = bγe′ , for some γe′ ∈ Y.(5.15)

Because of the definition of tk(g) (see (2.10)) we have

γetk(g) = γes
−1
k gsg·k = γeωpγkgγ

−1
g·kω

−1
p ,

and combining this with (5.15) we obtain

γeωpγkg = bγe′ωpγg·k.(5.16)

Now to calculate the right-hand side of (5.14) we need to consider the open

skUe = skγ
−1
e Zp = γ−1

k ω−1
p γ−1

e Zp =
(
ω−1
p γeωpγk

)−1
ω−1
p Zp

= P1(Qp) \
((
ω−1
p γeωpγk

)−1 Zp
)
.

Therefore, the measure on the right-hand side of (5.14) can be computed as

µg(skUe) = −µg((ω−1
p γeωpγk)−1Zp).(5.17)

Note that ω−1
p γeωpγk ∈ Y thanks to Lemma 5.12, so in order to compute (5.17) we use (5.16) to

get the identity

ω−1
p γeωpγkg = ω−1

p bγe′ωpγg·k = (ω−1
p bωp)ω

−1
p γe′ωpγg·k.

Now observe that γ−1
e′ Zp ⊂ Zp, so again Lemma 5.12 gives that ω−1

p γe′ωpγg·k ∈ Y and we see that

µg(skUe) = −ϕω−1
p bωp

= −(Wpϕ)b = (Upϕ)b = apϕb,

and this concludes the proof. �
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6. Implementation and numerical evidence

We have implemented1 the algorithms of Sections 4 and 5 in Sage [S+13] and Magma [BCP97].
Thanks to the overconvergent method we have been able to compute the integrals up to a precision
of p60, although one can easily reach much higher precision if needed. Recall the sample calculation
of Section 4.4, which we have recalculated using the overconvergent method. In Table 2 we list the
time t1 that it took to lift the original cocycle to the target precision n, and the time t2 that it took
to integrate the cycle to obtain Jτ with the target precision. One observes, as expected from the
analysis carried out in [DP06] and which would easily carry over to our setting, that the complexity
of the algorithms is polynomial (indeed quadratic). Note also that, while it took 1158 seconds to
obtain 3 digits of precision using Riemann products, it took less than a third of this time to obtain
55 digits of precision using the overconvergent method.

n t1 (s) t2 (s) t1 + t2 (s)

5 11 6 17
10 24 7 31
15 36 9 45
20 55 12 67
25 78 16 94
30 108 21 129
35 149 26 175
40 191 32 223
45 245 39 284
50 307 46 353
55 395 55 450

Table 2. Running time increases sub-quadratically with the precision n.

Another salient feature of the overconvergent method is that one can regard the lifting of the
cohomology class as a precomputation which depends only on the elliptic curve and the prime
p. Note that, as the table indicates, this is what dominates the computing time. With this
precomputation at hand, one can perform several integrals of different cycles (that is, yielding
points attached to different real quadratic fields) with little extra effort. All this allows for a direct
computation of rational points, as opposite to the example of §4.4, in which the low precision only
permitted to compare the computed Darmon point with an algebraic point previously found by
naive search.

Indeed, let Jτ ∈ K×p be a Darmon point and let Pτ ∈ E(Kp) denote its image under Tate’s
uniformization, whose coordinates conjecturally belong to a number field H. Using the algorithms
described in this article on can compute an approximation to Jτ , and therefore to Pτ . Then one
can try to recognize its coordinates as algebraic numbers via standard reconstruction techniques
(see for instance [DP06, §1.6]). For this to work, the number of correct digits one needs to know of
Jτ is roughly the height of Pτ .

One difficulty that arises in this method is that Pτ is usually a multiple of the generator of
E(H)/E(H)tors, say Pτ = nP ′τ . Therefore, Pτ might have very large height, even if the generator

1The code is available at https://github.com/mmasdeu/darmonpoints.
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P ′τ had small height. In this case it is easier to reconstruct P ′τ , which has smaller height. Note that
P ′τ is the image under Tate’s uniformization of an element of the form

J ′τ = ζ exp

(
1

n
log Jτ

)
,

where ζ is some Teichmüller representative in Kp. Therefore, since we can compute good approxi-
mations to log Jτ , we can try to reconstruct J ′τ by trial and error on ζ.

As a first example, consider the curve with Cremona label 78a1 with equation

E : y2 + xy = x3 + x2 − 19x+ 685.

Table 3 lists points on E(Q(
√
dK)) for those discriminants dK < 600 in which 2, 3 and 13 are inert

and such that K = Q(
√
dK) has class number one. They are computed using the plus character

λ+
E and optimal embeddings of the maximal order OK . Observe that the points are defined over K

rather than over abelian extensions, since the class number is one.
Table 4 lists similar computations for the curve with Cremona label 110a1 and equation

E : y2 + xy + y = x3 + x2 + 10x− 45.

Observe that some of the points, e.g. the one over Q(
√

237), could have not been found by naive
search methods due to their height. Table 5 shows the same points computed with the different
factorization of the conductor 110, namely p = 11 and D = 10. Note that for dK = 277 we were
not able to recognize the point. This is probably due to the fact that the working precision (p60 in
this case) is lower, since p = 5 instead of p = 11. In these two cases the points obtained are twice
the expected multiple of the generator. Table 6 is another example with D = 6, but in this case
some of the points obtained (note e.g. dK = 269) have considerable height.

The examples shown above have in common that the group H1(ΓD0 (M),Z) is finite. Although
our algorithms do not require this condition to be true, the implementation is greatly simplified
in this case. However, our implementation works in a broader range of cases. As an example, we
have computed an example with D = 15, where the above group has Z-rank 1: consider the elliptic
curve with Cremona label 285c1 (285 = 19 · 15) given by the equation

E : y2 + xy = x3 + x2 + 23x− 176.

Working with p = 19 and precision 1960, our algorithm has been able to recover the point:

P =

(
372503

60543
,

60805639

78826986

√
413− 372503

121086

)
∈ E

(
Q(
√

413)
)
.
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dK P

5 1 · 48 ·
(
−2, 12

√
5 + 1

)
149 1 · 48 ·

(
1558,−5040

√
149− 779

)
197 1 · 48 ·

(
310
49
, 720
343

√
197− 155

49

)
293 1 · 48 ·

(
40,−15

√
293− 20

)
317 1 · 48 ·

(
382,−420

√
317− 191

)
437 1 · 48 ·

(
986
23
, 7200

529

√
437− 493

23

)
461 1 · 48 ·

(
232,−165

√
461− 116

)
509 1 · 48 ·

(
− 2

289
,− 5700

4913

√
509 + 1

289

)
557 1 · 48 ·

(
75622
121

, 882000
1331

√
557− 37811

121

)
Table 3. Darmon points on curve 78a1 with p = 13 and D = 6.

dK P

13 2 · 30 ·
(
1103
81
− 250

81

√
13,− 52403

729
+ 13750

729

√
13

)
173 2 · 30 ·

(
1532132
9025

,− 1541157
18050

− 289481483
1714750

√
173

)
237 2 · 30 ·

(
190966548837842073867
4016648659658412649

− 10722443619184119320
4016648659658412649

√
237,

− 3505590193011437142853233857149
8049997913829845411423756107

+ 235448460130564520991320372200
8049997913829845411423756107

√
237

)
277 2 · 30

(
46317716623881
12553387541776

,− 58871104165657
25106775083552

− 20912769335239055243
44477606117965542976

√
277

)
293 2 · 30 ·

(
7088486530742
2971834657801

,− 10060321188543
5943669315602

− 591566427769149607
10246297476835603402

√
293

)
373 2 · 30 ·

(
298780258398
62087183929

,− 360867442327
124174367858

− 19368919551426449
30940899762281434

√
373

)
Table 4. Darmon points on curve 110a1 with p = 11 and D = 10.

dK P

13 2 · 12 ·
(
4, 5

2

√
13− 5

2

)
173 2 · 12 ·

(
1532132
9025

,− 289481483
1714750

√
173− 1541157

18050

)
237 2 · 12 ·

(
5585462179
1193768112

,− 53751973226309
71439858894528

√
237− 6779230291

2387536224

)
277 —

293 2 · 12 ·
(
7088486530742
2971834657801

,− 591566427769149607
10246297476835603402

√
293− 10060321188543

5943669315602

)
373 2 · 12 ·

(
298780258398
62087183929

, 19368919551426449
30940899762281434

√
373− 360867442327

124174367858

)
Table 5. Darmon points on curve 110a1 with p = 5 and D = 22.
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dK P

29 1 · 72 ·
(
− 6

25

√
29− 38

25
,− 18

125

√
29 + 86

125

)
53 1 · 72 ·

(
− 1

9
, 7
54

√
53 + 1

18

)
173 1 · 72 ·

(
− 3481

13689
, 347333
3203226

√
173 + 3481

27378

)
269 1 · 72 ·

(
1647149414400
23887470525361

√
269− 43248475603556

23887470525361
,

2359447648611379200
116749558330761905641

√
269 + 268177497417024307564

116749558330761905641

)
293 1 · 72 ·

(
21289143620808
4902225525409

, 4567039561444642548
10854002829131490673

√
293− 10644571810404

4902225525409

)
317 1 · 72 ·

(
− 25

9
,− 5

54

√
317 + 25

18

)
341 1 · 72 ·

(
3449809443179
499880896975

, 3600393040902501011
3935597293546963250

√
341− 3449809443179

999761793950

)
413 1 · 72 ·

(
59
7
, 113

98

√
413− 59

14

)
Table 6. Darmon points on curve 114a1 with p = 19 and D = 6.



OVERCONVERGENT COHOMOLOGY AND DARMON POINTS 31

References

[AS86] Avner Ash and Glenn Stevens, Cohomology of arithmetic groups and congruences between systems of
Hecke eigenvalues, J. Reine Angew. Math. 365 (1986), 192–220. MR 826158 (87i:11069)

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves

over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). MR 1839918
(2002d:11058)

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language,

J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London,
1993). MR 1484478

[BD09] Massimo Bertolini and Henri Darmon, The rationality of Stark-Heegner points over genus fields of real

quadratic fields, Ann. of Math. (2) 170 (2009), no. 1, 343–370. MR 2521118 (2010m:11072)
[Bro82] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New

York, 1982. MR 672956 (83k:20002)

[Dar01] Henri Darmon, Integration on Hp ×H and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3,
589–639. MR 1884617 (2003j:11067)

[Dar04] , Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics,
vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004.

MR 2020572 (2004k:11103)

[DG02] Henri Darmon and Peter Green, Elliptic curves and class fields of real quadratic fields: algorithms and
evidence, Experiment. Math. 11 (2002), no. 1, 37–55. MR 1960299 (2004c:11112)

[DG12] Samit Dasgupta and Matthew Greenberg, L-invariants and Shimura curves, Algebra Number Theory 6

(2012), no. 3, 455–485. MR 2966706
[DP06] Henri Darmon and Robert Pollack, Efficient calculation of Stark-Heegner points via overconvergent mod-

ular symbols, Israel J. Math. 153 (2006), 319–354. MR 2254648 (2007k:11077)

[GM14] Xavier Guitart and Marc Masdeu, Elementary matrix decomposition and the computation of Darmon
points with higher conductor, Math. Comp. (2014), To appear.

[Gre09] Matthew Greenberg, Stark-Heegner points and the cohomology of quaternionic Shimura varieties, Duke

Math. J. 147 (2009), no. 3, 541–575. MR 2510743 (2010f:11097)
[GV11] Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert

modular forms, Math. Comp. 80 (2011), no. 274, 1071–1092. MR 2772112 (2012c:11103)
[LRV12] Matteo Longo, Victor Rotger, and Stefano Vigni, On rigid analytic uniformizations of Jacobians of

Shimura curves, Amer. J. Math. 134 (2012), no. 5, 1197–1246. MR 2975234

[LRV13] , Special values of L-functions and the arithmetic of Darmon points, J. Reine Angew. Math. 684
(2013), 199–244, To appear.

[PP09] David Pollack and Robert Pollack, A construction of rigid analytic cohomology classes for congruence

subgroups of SL3(Z), Canad. J. Math. 61 (2009), no. 3, 674–690. MR 2514491 (2010k:11085)
[S+13] W. A. Stein et al., Sage Mathematics Software (Version 5.9), The Sage Development Team, 2013,

http://www.sagemath.org.

[Ser80] Jean-Pierre Serre, Trees, Springer-Verlag, Berlin, 1980, Translated from the French by John Stillwell.
MR 607504 (82c:20083)

[Voi09] John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux 21
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