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Abstract

For modular elliptic curves over number fields of narrow class number one, and with
multiplicative reduction at a collection of p-adic primes, we define new p-adic invariants.
Inspired by Nekovář and Scholl’s plectic conjectures, we believe these invariants control
the Mordell–Weil group of higher rank elliptic curves and we support our expectations
with numerical experiments.

1. Introduction

In the late 1960s, Birch and Swinnerton-Dyer made a discovery that profoundly changed the
study of the arithmetic of elliptic curves. Mordell had already shown in 1922 that the set of
rational solutions A(Q) of an elliptic curve is always a finitely generated abelian group. However,
the rank of its free part, called the algebraic rank ralg(A/Q), was proving to be a subtle invariant
difficult to compute. Birch and Swinnerton-Dyer’s insight was to use local, and easy to compute,
information about an elliptic curve to reconstruct its algebraic rank. Crucially informed by
numerical calculations, they ended up formulating a momentous conjecture:

for all but finitely many primes ℓ, it is possible to reduce the Weierstrass equation of A/Q
modulo ℓ to obtain an elliptic curve Ā/Fℓ

over a finite field. Every such curve is much simpler
than the original one – for instance, in the 1980s Schoof discovered a polynomial time algorithm1

[Sch85] that quickly computes the number Nℓ(A) := |Ā(Fℓ)| of points modulo ℓ. As there are
natural reduction maps A(Q) → Ā(Fℓ), one could heuristically expect a large algebraic rank
to force the sets Ā(Fℓ) to also be large on average. Birch and Swinnerton-Dyer turned this
heuristic into a quantitative mathematical statement and successfully tested it on a computer.
They noticed that a normalized product of Nℓ(A)’s grows as the ralg(A/Q)-th power of the
logarithm function ∏

ℓ⩽X

Nℓ(A)

ℓ

?∼+∞

(
logX

)ralg(A/Q)
. (1)

The expectation that every elliptic curve over a number field satisfies an appropriate gener-
alization of (1) became known as the BSD conjecture2. The intrinsic appeal of the problem
has inspired the research of many mathematicians who unearthed surprising connections with
different parts of mathematics. Among the landmarks in the field one finds (in publishing or-
der) the works of Coates–Wiles [CW77], Gross–Zagier [GZ86], Kolyvagin [Kol88], Zhang [Zha01],
Skinner–Urban [SU14], Darmon–Rotger [DR17] and Skinner [Ski20]. It is interesting to note that
all these works are limited to elliptic curves of small rank, the ultimate reason for this arguably

2010 Mathematics Subject Classification 11F41, 11G05, 11G40, 11Y99
1Birch and Swinnerton-Dyer performed their computations on CM elliptic curves whose number of points mod ℓ
can be quickly computed using Hecke characters.
2Goldfeld proved that the asymptotic conjecture of Birch and Swinnerton-Dyer implies the modern formulation
of the BSD conjecture in terms of order of vanishing of L-functions [Gol82].
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being that the only known general approach to prove that the algebraic rank is at least r is to
produce r linearly independent points. Therefore, the need becomes apparent for a systematic
strategy to construct linear independent points on elliptic curves. In order to formulate such task
precisely, we recall that when studying an elliptic curve A over a number field F , experience has
shown that is beneficial to consider an auxiliary quadratic extension E/F .

Problem 1.1. Construct an element P ∈ ∧rA(E) such that

P non-torsion ⇐⇒ ralg(A/E) = r.

For r = 1, the constructions of Heegner and Stark–Heegner points give a satisfactory answer
to Problem 1.1 – with a caveat. While Heegner points are defined for quadratic CM extensions
and are known to be algebraic by the theory of complex multiplication, their generalization to
arbitrary quadratic extensions E/F , called Stark–Heegner points, are only conjecturally algebraic
in general. Stark–Heegner points were first defined for real quadratic fields in [Dar01] and later
generalized to arbitrary extensions in ([Gre09], [GMS15], [GMM20]). While their definition is
inherently local and relies on analytic methods, the theoretical and numerical evidence is so
overwhelming that it is commonly accepted that Heegner and Stark–Heegner points completely
control the Mordell–Weil group of elliptic curves of rank one.

During the last decade, Nekovář and Scholl have been promoting the idea of using CM points
on Hilbert modular varieties to control the Mordell–Weil group of elliptic curves of higher rank
([NS16], [Nek16]). Inspired by their vision, we propose a generalization of the p-adic construction
of Stark–Heegner points giving a conjectural answer to Problem 1.1 for arbitrary r ⩾ 2, under
some assumptions on the elliptic curve A/F and the quadratic extension E/F . Throughout the
text we enforce some simplifying hypotheses to tailor the exposition to numerical verication: we
only consider non-CM quadratic extensions E/F where both fields have narrow class number
one. We refer to [FG21] for the construction of plectic invariants in the general case, and for the
definition of certain refined invariants that may be called plectic Stark–Heegner points.

We continue the introduction by outlining the construction of plectic p-adic invariants and by
formulating precise conjectures regarding their significance for the arithmetic of higher rank
elliptic curves. Finally, we describe our numerical experiments.

1.1 Overview

Let F be a number field with t real places, s complex places, and narrow class number one. We
consider A/F a modular elliptic curve of conductor fA, and E/F a non-CM quadratic extension
of narrow class number one where fA is unramified. We aim to define an invariant whose non-
triviality implies that the Mordell–Weil group A(E) has rank r. To this end, we fix a rational
prime p unramified in F , and a set S = {p1, . . . , pr} of r distinct p-adic OF -prime ideals all
inert in E. Denote by Ê×p the maximal torsion-free quotient of the p-adic completion of E×p . The
plectic p-adic invariant associated to a triple (A/F , E, S), satisfying certain hypotheses described

below, is an element in the tensor product Ê×S,⊗ := ⊗p∈SÊ
×
p of Zp-modules

QA ∈ Ê×S,⊗.

The construction follows closely the strategy of [Gre09], [GMS15]. However, while those ap-
proaches are modeled on the p-adic uniformization of Shimura curves, ours is inspired by the
p-adic uniformization of higher dimensional quaternionic Hilbert modular varieties by products
of p-adic upper-half planes [Var98]. This new point of view naturally suggests the main technical
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innovations of our manuscript: we consider more than one p-adic prime, measures on products
of P1’s, and functions valued in tensor products.

We continue by explaining the conditions that we need to impose on the triple (A/F , E, S).
Suppose that every p ∈ S divides exactly the conductor fA, and that we can write

fA = pS · n+ · n−,

where pS =
∏

p∈S p and n+ is the product of all prime divisors of fA that split in E. Further, we
require n− to be square-free and denote by ω(n−) the number of its prime factors. If we denote
by ∞1, . . . ,∞t the real places of F ordered such that the first n are precisely those that split in
E, then the root number of A/E is conjecturally computed by

ε(A/E) = (−1)r+ω(n
−)+(t−n).

The parity conjecture suggests us to impose the congruence condition ω(n−) ≡ (t− n) (mod 2).
Under these hypotheses there is a unique quaternion algebra B/F ramified precisely at

{q | n−} ∪ {∞n+1, . . . ,∞t}

and admitting an embedding E ↪→ B. Moreover, B/F is not totally definite because the quadratic
extension E/F is not CM. The construction of the invariants is naturally divided into three steps.

1.1.1 Construction. Let FS and BS denote the S-adic completions of F and B respectively.
The choice of an isomorphism ι : B×S

∼→ GL2(FS) and the Jacquet–Langlands correspondence
allow us to transform the cohomological eigenform of weight 2 associated to A/F by modularity
into a measure-valued eigenclass

cA ∈ Hn+s
(
Γ,Mm(P1(FS),Z)

)
π
.

The cohomology is computed with respect to the S-arithmetic subgroup Γ := R×1 /{±1} of
B×/F× arising from an OF [S−1]-Eichler order R of level n+, while the coefficients Mm(P1(FS),Z)
are Z-valued measures µ on P1(FS) =

∏
p∈S P1(Fp) satisfying the following property: the value

µ(U) equals zero if the open compact subset U ⊆ P1(FS) can be written as

U = P1(Fp)× V for V ⊆ P1(FS\{p}) compact open.

The second step comprises an extension of the theory of p-adic multiplicative integrals. The
characterizing property of the measures in Mm(P1(FS),Z) suggests that it should be possible to
define a meaningful integration pairing with a certain subgroup of zero-cycles on HS =

∏
p∈S Hp

where Hp = P1(Ep) \ P1(Fp). Indeed, any measure µ ∈ Mm(P1(FS),Z) can be integrated against
a zero-cycle of the form C = ⊗p∈S([xp]− [yp]) by computing a limit of Riemann products

×
∫
P1(FS)

⊗
p∈S

(
tp − xp
tp − yp

)
dµ(t) ∈ Ê×S,⊗.

Therefore, it makes sense to define the group Zm[HS ] of plectic zero-cycles on HS as the tensor
product ⊗p∈SZ[Hp]

0 of zero-cycles of degree zero. We obtain a PGL2(FS)-equivariant pairing

×
∫

: Mm
(
P1(FS),Z

)
× Zm[HS ] −→ Ê×S,⊗

giving rise to a cap product pairing ∩ : Hn+s
(
Γ,Mm(P1(FS),Z)

)
×Hn+s

(
Γ,Zm[HS ]

)
−→ Ê×S,⊗.

The final step consists in defining a homology class ∆E ∈ Hn+s
(
Γ,Zm[HS ]

)
associated to the

quadratic extension E/F for which we refer to Section 5.
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Definition 1.2. The plectic p-adic invariant associated to the triple (A/F , E, S) is given by

QA := cA ∩∆E ∈ Ê×S,⊗.

Plectic invariants encode interesting arithmetic information: they appear as values of higher
derivatives of anticyclotomic p-adic L-functions ([FG21], Theorem A) and they can be uncondi-
tionally defined in great generality. Furthermore, we can use Tate’s uniformizations E×p → A(Ep)
at every prime p ∈ S to conjecturally relate them to global points of the elliptic curve. Let
Â(Ep) represent the maximal torsion-free quotient of the p-adic completion of A(Ep) and let

Â(ES) :=
⊗

p∈S Â(Ep) denote the tensor product of Zp-modules. Then, the uniformization

ϕTate : Ê
×
S,⊗ → Â(ES) allows us to consider the plectic point

ϕTate(QA) ∈ Â(ES)

whose expected algebraicity and relevance for the Mordell–Weil group A(E) are presented next.

1.2 Conjectures

Recall that both fields, F and E, have narrow class number one, that we fixed a rational prime
p and a set S = {p1, . . . , pr} of p-adic OF -prime ideals inert in E. We also made assumptions
on the conductor fA of the modular elliptic curve A/F so that we can expect the congruence
ralg(A/E) ≡2 r to be satisfied. Now, for every p ∈ S we fix ιp : E ↪→ Ep an embedding of E in

its completion Ep, and define a homomorphism det : ∧r A(E) → Â(ES) by setting

det
(
P1 ∧ · · · ∧ Pr

)
= det

ιp1(P1) . . . ιpr(P1)
. . .

ιp1(Pr) . . . ιpr(Pr)

 ,

where we take tensor products whenever the formula computing the determinant would require
multiplication of entries of the matrix. Interestingly, we can further pin down the position of
ϕTate(QA) inside Â(ES): partition S = S+ ∪S− by declaring that the subset S+ ⊆ S contains all
the primes in S of split multiplicative reduction for A/F . Further, consider the map

πS : Â(ES) −→ Â(ES), πS(R) =

( ∏
p∈S+

(1− σ∗p)
∏
p∈S−

(1 + σ∗p)

)
R,

where the “partial Frobenius” σp ∈ Gal(Ep/Fp) acts on Â(ES) through its natural action on the
p-th component. Then, after defining

detS := πS ◦ det,

the meaning of algebraicity for the element ϕTate(QA) takes the following form.

Conjecture 1.3. (Algebraicity) If ralg(A/E) ⩾ r, there exists an element wA ∈ ∧rA(E) s.t.

ϕTate(QA) = detS(wA).

Remark 1.4. The homomorphism detS may have a non-trivial kernel even when ralg(A/E) = r.

On its own, Conjecture 1.3 does not reveal enough about the intimate relation between the
plectic point ϕTate(QA) and the global arithmetic of the elliptic curve A/E . Thus, we couple it
with another conjecture of Kolyvagin-type described below. Let A+ = A, denote by A− the
quadratic twist of A/F with respect to the quadratic extension E/F , and define

ϱA(S) := max
{
ralg(A

±/F ) + |S±|
}
.
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The anticyclotomic p-adic L-function LS(A/E) attached to the triple (A/F , E, S) in [FG21]
vanishes to order at least r at the trivial character, and the value of its r-th derivative computes
the plectic p-adic invariant QA. Moreover, when ralg(A/E) ⩾ r, the theory of derived p-adic
heights [BD95] suggests that ϱA(S) ⩾ r is a lower bound for the exact order of vanishing of the
p-adic L-function. It is then natural to formulate the following conjecture.

Conjecture 1.5. Suppose that ralg(A/E) ⩾ r, then

ϕTate(QA) ̸= 0 =⇒ ralg(A/E) = r & ϱA(S) = r.

If the L-function L(A/F, s) is primitive, then the converse implication also holds.

When the algebraic rank ralg(A/E) is strictly smaller than r we cannot yet guess what arithmetic
information is contained in the plectic p-adic invariant. Nevertheless, we expect that – assuming
ralg(A/E) < r – the plectic point should be non-zero whenever the parity of r = |S| matches the
parity of the order of vanishing of LS(A/E) (see [BG18], Corollary 5.7).

Conjecture 1.6. Suppose ralg(A/E) < r, then

ϕTate(QA) ̸= 0 ⇐⇒ (−1)r = ε(A/F ) · εS ,

where εS is the product of local root numbers of A/F at the primes in S.

1.3 Numerical evidence

We are most excited in supporting our conjectures with computational experiments. We choose
to perform our calculation in the setting of F a real quadratic number field and E/F an almost
totally real (ATR) extension in order to work in cohomological degree one, and to have a supply of
elliptic curves of positive rank and relatively small conductor. We consider the two real quadratic
fields with smallest discriminant whose narrow class number is one, and where the prime 3 splits:

Q(
√
13), Q(

√
37).

For each base field we then test our conjectures on a few isogeny classes of elliptic curves,
whose conductor satisfies the requirement for the definition of plectic 3-adic invariants over ATR
extensions. The code is implemented in Sage [Sag20] (using some Magma functions [BCP97] at
certain steps), and is available at this link.3 Moreover, it makes use of some functionalities of
the Darmon Points package, previously developed by Masdeu and available at the same Github
repository. The main difficulty in computing plectic invariants consists in explicitly describing
the class

cA ∈ H1(Γ,Mm(P1(FS),Z))π.
In Section 6 we present an algorithm that computes approximations cmA of cA, for integers m ⩾ 0,
requiring the solution of a linear system of O(pm|S|−1) equations in O(pm|S|) unknowns. Luckily,
in practice the approximation cmA can be computed once, and used for several field extensions
E/F . We also note that we do not compute directly the plectic invariant, but rather its image
under a logarithm map: let qp ∈ F×p denote the period of the Tate curve A/Fp

for p ∈ S, and
let ES,⊗ denote the tensor product ⊗p∈SEp of Qp-vector spaces; then there is a homomorphism

logS : Ê
×
S,⊗ → ES,⊗ – factoring through Tate’s uniformization logS = logA ◦ ϕTate – such that

logS(QA) =

∫
P1(FS)

⊗
p∈S

logqp

(
tp − τp
tp − τ̄p

)
dµA(t).

3https://github.com/mmasdeu/darmonpoints/blob/master/darmonpoints/plectic.py
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As the induced morphism logA : Â(ES) → ES,⊗ is injective, we do not lose information about
ϕTate(QA) in computing the additive p-adic integral for logS(QA). Concretely, we numerically
calculate Riemann sums of the form∑

Ue∈Um

⊗
p∈S

logqp

(
te,p − τp
te,p − τ̄p

)
· cmA (e), (2)

where Um is certain covering of P1(FS) and te ∈ Ue. We conclude the introduction with an
example of our results, and refer to Section 7 for the rest of our data.

Remark 1.7. The time to evaluate (2) is exponential in the desired precision, which explains the
limited number of digits we can compute. To obtain m digits of p-adic precision, we need to
consider a covering Um consisting of (pm+1 + pm)|S| opens. In future work, we plan to obtain a
polynomial time algorithm by adapting the methods of [GM14] to the setting of this paper.

Consider the elliptic curve with LMFDB [LMF21] label 63.2-d1 defined over F = Q(
√
37) whose

conductor fA = p1 · p2 · q has norm 63 = 3 · 3 · 7. It has a Weierstrass model

A/F : y2 + xy + y = x3 + wx2 + (w + 1)x+ 2, w =
1 +

√
37

2
.

The elliptic curve has rank 2 over the ATR extension E = F
(√
β
)
, for β = 62− 21w, where all

prime divisors of fA are inert. Moreover, by setting S = {p1, p2} we find that ϱA(S) = 2 because
A/F has rank 1 over F , and it has both a 3-adic prime of split and non-split multiplicative reduc-
tion. Therefore, Conjectures 1.3 and 1.5 imply that the plectic point is non-zero and explicitly
related to a generator of ∧2A(E). We use Magma to compute the generators for A(E)

P1 =
(
3− w, 4− w

)
, P2 =

(
8− 25

9
w,

(
−23

27
w +

17

6

)√
β +

25

18
w − 9

2

)
.

Let Q9 = Q3(
√
−1) denote the unramified quadratic extension of Q3 and set PS = detS(P1∧P2).

Using Sage, we compute the following approximation

logA(PS) =
(
2 · 32 + 36 + 2 · 37 + 39 +O(310)

)
·
(√

−1⊗
√
−1
)

as an element of Q9 ⊗Q3 Q9. For the computation of the plectic invariant we used a 72-CPU
cluster with 500GB RAM at the University of Warwick. To approximate the cohomology class
cA modulo 37 we solve a linear system of 12, 740, 008 equations in 19, 114, 384 unknowns. It takes
∼60 hours, using 16 CPUs, to build the system, and ∼2 hours (non-parallel) to solve it. Finally,
the integration step takes ∼10 hours with 64 CPUs. In total, the computation used ∼300GB of
RAM memory. Our algorithms compute the quantity

logS(QA) =
(
2 · 32 + 36 +O(37)

)
·
(√

−1⊗
√
−1
)
,

which matches logA(PS) modulo 37.
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2. Review of group cohomology

We keep the hypotheses of the introduction: F is a number field with t real places, s complex
places, and narrow class number one. We let n ⩽ t be a non-negative integer and consider a
square-free OF -ideal n

− whose number of prime factors ω(n−) satisfies ω(n−) ≡2 (t− n).

Let B/F be a quaternion algebra of discriminant n− and whose ramified archimedean places
are the real places ∞n+1, . . . ,∞t of F . For each OF -ideal c prime to n− we choose an Eichler
OF -order Rc in B of level c such that c1 | c2 implies Rc2 ⊆ Rc1 . For a subgroup G of B× we set

G1 := {α ∈ G : nrd(α) = 1},
G+ := {α ∈ G : ∞i(nrd(α)) > 0 ∀ i = 1, . . . , n}

where nrd : B× → F× is the reduced norm, and define the arithmetic subgroups of B×/F× by

Γc := (R×c )1/{±1}.

As we will describe in the next section, the cohomology of these arithmetic subgroups is endowed
with an action of certain global units. A first indication of this fact is that the quotient of

UB = {u ∈ O×F : ∞i(u) > 0 ∀ i = n+ 1, . . . , t},

by the group U+ of totally positive units of F , fits in a short exact sequence ([Gre09], Section 2)

1 // Γc
// R×c /O×F

nrd // UB/U+
// 1. (3)

Analogous statements hold for the corresponding S-arithmetic sugroups: we fix a rational prime
p, a set S = {p1, . . . , pr} of r distinct p-adic OF -prime ideals, and an ideal n+ prime to n−. If we
denote by OF [S−1] the ring of S-integers, then we can consider the OF [S−1]-Eichler order of B

R := Rn+ ⊗OF
OF [S−1]

of level n+ whose associated S-arithmetic group is Γ = R×1 /{±1}. Moreover, the reduced norm
induces a short exact sequence

1 // Γ // R×ev/OF [S−1]×
nrd // UB/U+

// 1 (4)

where R×ev = {α ∈ R× : ordp ◦ nrd(α) ≡2 0 ∀ p ∈ S} is the group of invertible elements of R
whose reduced norm has even valuation at all the primes in S.

2.1 Hecke operators

In this subsection we let G be either Γ or Γc for some OF -ideal c prime to n−. For any OF -prime
ideal q ∤ pS · n− we choose a totally positive generator ϖq, then there is an element γq ∈ B× of
reduced norm ϖq such that the intersection of G with Gγq = γqGγ

−1
q has finite index in both

groups. For any G-module M , the Hecke operator Tq is the linear endomorphism on cohomology
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defined by the composition

Hi(G,M)
Tq //

res

��

Hi(G,M)

Hi
(
G ∩Gγq ,M

) conj // Hi
(
Gγ

−1
q ∩G,M

)
.

cores

OO

Furthermore, when M is either an (R×c /O×F )-module or an (R×ev/OF [S−1]×)-module the short
exact sequences (3), (4) endow the cohomology H•(Γ,M) and H•(Γc,M) with an action of UB/U+.

Definition 2.1. Let δi,j be Kronecker’s delta function. For every index i = 1, . . . , n, we fix a
global unit εi ∈ UB satisfying

(−1)δi,j · ∞j(εi) > 0 ∀ j = 1, . . . , n.

We denote by Ti the involution determined by the coset εiU+ acting via (3), (4) on cohomology.

2.2 Cohomology of arithmetic subgroups

We denote by H the Poincaré upper half-plane endowed with the action of PSL2(R) by Moebius
transformations, and we consider the half-space model of the real hyperbolic 3-space

H = {(x, y) ∈ C× R| y > 0}
endowed with the PSL2(C)-action explicitly given by(

a b
c d

)
· (x, y) =

(
(ax+ b)(cx+ d) + ac̄y2

|cx+ d|2 + |cy|2
,

|ad− bc|y
|cx+ d|2 + |cy|2

)
.

By fixing isomorphisms for the archimedean completions

ιi : B ⊗F,∞i R
∼−→ M2(R) for i = 1, . . . , n,

ιj : B ⊗F,∞j C
∼−→ M2(C) for j = t+ 1, . . . , t+ s,

the arithmetic subgroup Γc act on the manifold Hn×Hs. The quotient is a Riemannian orbifold

Xc := Γc\
(
Hn ×Hs

)
whose rational cohomology computes group cohomology H•(Xc,Q) ∼= H•(Γc,Q). We recall some
useful facts about the C-valued cohomology of Xc taken from ([GMS15], Section 2). The coho-
mology H•(Xc,C) contains three subspaces that are preserved by the action of Hecke operators:

• the universal subspace H•
uni(Xc,C) is the image of Γc-invariant differential forms onHn×Hs;

• the infinity subspace H•
inf(Xc,C) is the image of the cohomology of the boundary of the

Borel-Serre compactification of Xc;

• the cuspidal subspace H•
cusp(Xc,C) is generated by cohomological cuspforms of weight 2 and

their translates by the archimedean involutions.

The Hecke operators act on the non-cuspidal parts H•
uni(Xc,C), H•

inf(Xc,C) through multiplica-
tion by their degree, i.e.

deg(Ti) = +1, deg(Tq) =

{
NF/Q(q) + 1 if q ∤ c
NF/Q(q) if q | c

.

Furthermore, the cohomology of Xc admits a Hecke equivariant direct sum decomposition

Hi(Xc,C) ∼= Hiuni(Xc,C)⊕Hiinf(Xc,C)⊕Hicusp(Xc,C) ∀ i. (5)
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Consider A/F a modular elliptic curve of conductor fA = pS ·n+ ·n− with associated automorphic
representation π of B×. For any subset Σ ⊆ S we write pΣ =

∏
p∈Σ p and, for notational

convenience, we denote by ΓΣ the arithmetic subgroup of B× of level pΣ · n+.

Corollary 2.2. The π-isotypic component of the group cohomology of ΓΣ satisfies

dimQ H•(ΓΣ,Q)π = 0 if Σ ̸= S, dimQ Hn+s(ΓS ,Q)π = 1 if Σ = S.

Proof. For any OF -ideal c, the Hecke equivariant decomposition (5), and the Weil bounds for
the Hecke eigenvalues of A/F imply that that the π-isotypic component H•(Xc,C)π is all con-
tained in the cuspidal subspace. Then, the claims follow from a combination of the Jacquet–
Langlands correspondence, the generalized Eichler–Shimura isomorphism ([GMS15], Section 2.5)
and multiplicity-one for GL2,F .

3. Bruhat-Tits buildings and harmonic cochains

For every prime p ∈ S we consider the Bruhat-Tits tree Tp of PGL2(Fp). It is a homogeneous tree
whose set of vertices, Vp, consists of homothety classes of OF,p-lattices of Fp ⊕ Fp. Two vertices
v1, v2 ∈ Vp are connected by an oriented edge e ∈ Ep with source s(e) = v1 and target t(e) = v2
if there are representatives Λ1, Λ2 such that

pΛ2 ⊊ Λ1 ⊊ Λ2.

If e ∈ Ep, then we denote by e the opposite edge, i.e., s(e) = t(e) and t(e) = s(e). The tree
Tp is endowed with a natural left action of PGL2(Fp), therefore if we denote by vp the vertex
associated to the lattice OF,p⊕OF,p and by ep the edge going from vp to the vertex v̂p associated
with OF,p ⊕ pOF,p we can make the identifications

Vp = PGL2(Fp)/PGL2(OF,p), Ep = PGL2(Fp)/Iw(p).

We let PGL2(Fp)
0 be the group defined by the short exact sequence

1 // PGL2(Fp)
0 // PGL2(Fp)

ordp◦det // Z/2Z // 1,

and define the sets of even vertices and even edges by

V 0
p := PGL2(Fp)

0/GL2(OF,p), E 0
p := PGL2(Fp)

0/Iw(p).

Definition 3.1. The Bruhat-Tits building for PGL2(FS) is the product of trees TS :=
∏

p∈S Tp.
For any subset Σ ⊆ S we define the set of (even) multivertices, (even) oriented multiedges by

V ⋆
Σ :=

∏
p∈Σ

V ⋆
p , E ⋆

Σ :=
∏
p∈Σ

E ⋆
p for ⋆ ∈ {∅, 0}.

The inversion p : EΣ → EΣ at p ∈ Σ is described by (ep)q = eq if q ̸= p and (ep)q = ep if q = p.

We fix once and for all an isomorphism ι : BS
∼→ M2(FS) such that ι : ROF

⊗OF
OF,S

∼→ M2(OF,S)
and ι : RpS ⊗OF

OF,S
∼→ M2(pSOF,S).

Proposition 3.2. For any subset Σ ⊆ S, the group Γ acts transitively on V 0
S\Σ × E 0

Σ.

Proof. LetRΣ denote the Eichler order of level pΣ·n+ andR = RΣ[S−1]. By strong approximation,
the inclusion B×S ↪→ B̂×, of the units of the S-adic completion of B into the units of the profinite
completion, induces a bijection

R×\B×S /(RΣ)
×
S

1:1 // B×\B̂×/R̂×Σ .

9
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As B is not totally definite and RΣ is locally norm maximal, being an Eichler order, the reduced
norm induces a bijection between B×\B̂×/R̂×Σ and a quotient of the narrow class group of F .
Therefore, under our narrow class number one assumption, the set

R×\B×S /(RΣ)
×
S

ι
∼
// R×\GL2(FS)/GL2(OF,S\Σ)Iw(pΣ)

consists of a single element. We deduce that also

(R×ev/OF [S−1]×)\PGL2(FS)
0/GL2(OF,S\Σ)Iw(pΣ)

consists of a single element. To conclude we just need to show that the natural map

Γ\PGL2(FS)
0/GL2(OF,S\Σ)Iw(pΣ) −→ (R×ev/OF [S−1]×)\PGL2(FS)

0/GL2(OF,S\Σ)Iw(pΣ)

is injective. This follows from the fact that the target consists of a single element and that, using
(3) and (4), any element g ∈ R×ev can be written as g = γ · α for some γ ∈ Γ and α ∈ R×Σ .

For any set X and abelian group A we write F(X,A) for the set of functions from X to A. If X
is a left PGL2(FS)-set, we define a left action of PGL2(FS) on F(X,A) by the rule

γ ⋆ c(x) := c(γ−1x).

Corollary 3.3. For any subset Σ ⊆ S there are isomorphisms of Γ-modules

V 0
S\Σ × E 0

Σ
∼= Γ/ΓΣ & F

(
V 0
S\Σ × E 0

Σ, A
) ∼= CoIndΓΓΣ

A.

3.1 Harmonic cochain-valued cohomology classes

For p ∈ S and m ∈ N∪{∞} we denote by V ⩽m
p the set of vertices of the Bruhat–Tits tree Tp at

distance less than or equal to m from the base vertex vp. Moreover, we let E ⩽m
p denote the set

of oriented edges whose farthest vertex has distance at most m from the base vertex vp.

Definition 3.4. For any abelian group A we consider

F0

(
E ⩽m
p , A

)
:=
{
c ∈ F

(
E ⩽m
p , A

)
| c(e) + c(e) = 0 ∀ e ∈ E ⩽m

p

}
.

Observe that if A[E 0,⩽m
p ] denotes the free A-module on the set of even vertices E 0,⩽m

p , then

F0

(
E ⩽m
p , A

) ∼= HomA-mod

(
A[E 0,⩽m

p ], A
)
.

We define the complex

C•
p,m(A) : 0 // F0

(
E ⩽m+1
p , A

) φp // F
(
V ⩽m
p , A

)
// 0 (6)

where the degeneracy map is given by

φp : F0(E
⩽m+1
p , A) −→ F(V ⩽m

p , A), φp(c)(v) =
∑

s(e′)=v

c(e′). (7)

Definition 3.5. For an abelian group A, an index m ∈ N∪ {∞} and a subset Σ ⊆ S, we define

F0

(
V ⩽m
S\Σ × E ⩽m+1

Σ , A
)
⊆ F

(
V ⩽m
S\Σ × E ⩽m+1

Σ , A
)

to be the subset consisting of those functions c satisfying

c(v, e) + c(v, ep) = 0 ∀ p ∈ Σ ∀ (v, e) ∈ VS\Σ × EΣ.

10
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For any m ∈ N we denote by C•
S,m(Q) the tensor product

⊗
p∈S C

•
p,m(Q) of chain complexes of

Q-vector spaces. As the sets V ⩽m
p , E ⩽m+1

p are finite and Q is a field we can fix isomorphisms

CiS,m(Q) ∼=
⊕

Σ⊆S,|Σ|=i

F0

(
V ⩽m
S\Σ × E ⩽m+1

Σ ,Q
)

∀ i = 0, . . . , |S|.

Definition 3.6. We consider the projective limit of chain complexes C•
S,∞(Q) := lim

←,m
C•
S,m(Q)

where the transition maps are given by the natural restriction of functions. We define C•
S,∞(Z)

as the subcomplex of C•
S,∞(Q) satisfying

CiS,∞(Z) =
⊕

Σ⊆S,|Σ|=i

F0

(
VS\Σ × EΣ,Z

)
∀ i = 0, . . . , |S|.

Proposition 3.7. The cohomology of the complex C•
S,∞(Q) is concentrated in the top degree,

i.e., Hi
(
C•
S,∞(Q)

)
= 0 when i < |S|.

Proof. First, note that for every m ∈ N the cohomology of the complex C•
S,m(Q) is concentrated

in the top degree because of Kunneth’s formula and the fact that H0
(
C•
p,m(Q)

)
= 0 for every

p ∈ S and every m ∈ N ([Gre09], Lemma 24). As projective limits are exact on exact sequences
of finite dimensional vector spaces, the claim follows.

Definition 3.8. Let A be either Z or Q. The space of A-valued S-harmonic cochains on the
Bruhat-Tits building TS is the subspace of F0(ES , A) given by

HCS(A) := H|S|
(
C•
S,∞(A)

)
.

Corollary 3.9. The inclusion HCS(Q) ↪→ F0(ES ,Q) induces an isomorphism

Hn+s
(
Γ,HCS(Q)

)
π

∼−→ Hn+s
(
ΓS ,Q

)
π

of one dimensional eigenspaces.

Proof. We extract the short exact sequence

0 // HCS(Q) // F0(ES ,Q) // coker(Q) // 0

from the complex C•
S,∞(Q) of Γ-modules. By Corollary 3.3 and Shapiro’s lemma

H•(Γ,F0(VS\Σ × EΣ,Q)
)
π
∼= H•(Γ,F(VS\Σ × E 0

Σ,Q)
)
π

∼=
[
H•(ΓΣ,Q

)
π

]⊕2|S\Σ|
.

In particular, the cohomology groups are trivial whenever Σ ̸= S by Corollary 2.2. Therefore,
one sees that H•(Γ, coker(Q))π = 0 using an inductive argument on the terms of the complex
C•
S,∞(Q). The claim follows because

Hn+s
(
Γ,F0(ES ,Q)

)
π
∼= Hn+s

(
ΓS ,Q

)
π

has dimension one by Corollary 2.2.

Lemma 3.10. We have H•
(
Γ,HCS(Q)

) ∼= H•
(
Γ,HCS(Z)

)
⊗Q. Hence, there is a non-torsion class

cA ∈ Hn+s(Γ,HCS(Z))π

well-defined up to torsion and up to sign.

11
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Proof. For every Σ ⊆ S the diagram

H•
(
Γ,F0(VS\Σ × EΣ,Z)

)
⊗Q ∼ //

��

H•
(
ΓΣ,Z

)⊕2|S\Σ|
⊗Q

∼
��

H•
(
Γ,F0(VS\Σ × EΣ,Q)

) ∼ // H•
(
ΓΣ,Q

)⊕2|S\Σ|

commutes by Shapiro’s lemma and the universal coefficient theorem. Therefore, the leftmost
vertical map induces the isomorphism H•

(
Γ,F0(VS\Σ × EΣ,Z)

)
⊗Q ∼= H•

(
Γ,F0(VS\Σ × EΣ,Q)

)
.

As in the proof of Corollary 3.9, we can extract from the complex C•
S,∞(Z) a short exact sequence

0 // HCS(Z) // F0(ES ,Z) // coker(Z) // 0.

By an inductive argument on the terms of the complex C•
S,∞(Z), we have H•(Γ, coker(Z))⊗Q ∼=

H•(Γ, coker(Q)). The claim follows.

4. The integration pairing

Consider the natural GL2(FS)-equivariant projection

pr :
∏
p∈S

(
F 2
p \ {0}

)
−→ P1(FS), (x, y) 7→ [x : y].

For a multiedge e = (s, t) ∈ ES , choose lattices Λs = (Λsp)p and Λt = (Λtp)p such that

pΛtp ⊊ Λsp ⊊ Λtp ∀ p | p.

For any lattice Λ ⊂ FS ⊕ FS we let Λ′ = (Λ′p)p be given by Λ′p = Λp \ pΛp for all p | p. Then

Ue := pr(Λ′s ∩ Λ′t)

is an open compact subset of P1(FS) depending only on the multiedge e ∈ ES . Moreover, the
collection {Ue}e, indexed by ES , forms a basis of the p-adic topology of P1(FS).

Remark 4.1. For any γ ∈ PGL2(FS) and any multiedge e ∈ ES we have

Uγ·e = pr
(
γΛ′s ∩ γΛ′t

)
= γ · pr

(
Λ′s ∩ Λ′t

)
= γ · Ue.

Definition 4.2. We denote by Mm(P1(FS),Z) the set of finitely additive Z-valued functions µ
on compact open subsets of P1(FS) satisfying the following property: the value µ(U) equals zero
if there exists p ∈ S such that

U = P1(Fp)× V, for V ⊆ P1(FS\{p}) compact open. (8)

Lemma 4.3. There is a PGL2(FS)-equivariant isomorphism

HCS(Z)
∼−→ Mm(P1(FS),Z), c 7→ µc

where the measure µc is characterized by µc(Ue) = c(e) for any multiedge e ∈ ES .

Proof. This is standard when |S| = 1, the general case is a straightforward modification.

12



Plectic p-adic invariants

4.1 Multiplicative integrals

Definition 4.4. Let Ê×p denote the maximal torsion-free quotient of the p-adic completion of
E×p and consider the following tensor product of finite free Zp-modules

Ê×S,⊗ :=
⊗
p∈S

Ê×p .

The multiplicative integral of a continuous function f : P1(FS) → Ê×S,⊗ with respect to a measure

µ ∈ Mm(P1(FS),Z) is defined as

×
∫
P1(FS)

f(t) dµ(t) := lim
U

∏
U∈U

f(tU )
µ(U) (9)

where the limit is taken over increasingly finer coverings U of P1(FS) by disjoint compact open
subsets, and tU ∈ U . The definition is well-posed because the target Ê×S,⊗ is p-adically complete.

Lemma 4.5. Suppose there are continuous functions fp : P1(Fp) → Ê×p such that f = ⊗pfp. If at
least one of the functions is constant, then

×
∫
P1(FS)

f(t) dµ(t) = 1.

Proof. Suppose that the p-th component fp is constant. Any covering of P1(FS) by disjoint
compact open subsets can be refined to one of the form U = Up×U p, where Up is a covering by
disjoint compact opens of P1(Fp) and U p is a covering by disjoint compact opens of P1(FS\{p}).
Then (8) gives the result because∏

U∈U p

∏
V ∈Up

f(tU , tV )
µ(U×V ) =

∏
U∈U p

f(tU , tV )
µ(U×P1(Fp)) = 1.

We obtain PGL2(FS)-equivariant integration pairing

×
∫

: Mm(P1(FS),Z)×
⊗
p∈S

(
C (P1(Fp), Ê

×
p )
×/Ê×p

)
−→ Ê×S,⊗,

which points to the following definition of zero-cycles: we consider the S-adic upper half plane
HS =

∏
p∈S Hp where Hp = P1(Ep) \ P1(Fp). We define the group of plectic zero-cycles of HS as

the subgroup of Z[HS ] given by

Zm[HS ] :=
⊗
p∈S

Z[Hp]
0, (10)

the tensor product of zero-cycles of degree zero for each component. The natural inclusions
Z[Hp]

0 ↪→ C (P1(Fp), Ê
×
p )
×/Ê×p can be combined to give a PGL2(FS)-equivariant homomorphism

Zm[HS ]
� � //

⊗
p∈S

(
C (P1(Fp), Ê

×
p )
×/Ê×p

)
.

Thus, the integration map ×
∫
: Mm(P1(FS),Z)× Zm[HS ] → Ê×S,⊗ produces a cap product pairing

∩ : Hn+s
(
Γ,Mm(P1(FS),Z)

)
×Hn+s

(
Γ,Zm[HS ]

)
−→ Ê×S,⊗. (11)

13
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5. Homology class

Under our running assumptions, there is an an optimal embedding ψ of level n+, i.e. an F -algebra
homomorphism ψ : E → B satisfying ψ(E) ∩ Rn+ = ψ(OE). We denote by O×1 the free part of
the subgroup of units u ∈ O×E of norm NE/F (u) = 1. By Dirichlet’s unit theorem

rankZ O×1 = n+ s,

and we can choose a generator θ of the homology group Hn+s(O×1 ,Z) ∼= Z. The units R×
n+

of the
Eichler order act on the embedding ψ by conjugation, they induce an action of Γn+ such that

StabΓn+
(ψ) ∼= O×1 . (12)

We denote by θψ the generator of Hn+s(StabΓn+
(ψ),Z) corresponding to θ under (12). Recall

that the quaternion algebra B/F is split at all the primes in S, therefore it acts on the S-adic
upper half plane HS through the fixed isomorphism ι : B×S

∼→ GL2(FS). The induced action of
ψ(E)× on HS has two fixed points τψ, τ̄ψ ∈ HS which we can use to define the plectic zero-cycle

Cψ := ⊗p∈S([τψ,p]− [τ̄ψ,p]) ∈ Zm[HS ].

The isomorphism Hn+s
(
StabΓn+

(ψ),Z
) ∼→ Hn+s

(
Γn+ ,Z[Γn+ · Cψ]

)
induced by Shapiro’s lemma

can be used use to define a map

ιψ : Hn+s
(
StabΓn+

(ψ),Z
)
−→ Hn+s

(
Γn+ ,Zm[HS ]

)
.

By a small abuse of notation, we denote by ∆E the homology class

∆E := res ◦ ιψ(θψ) ∈ Hn+s
(
Γ,Zm[HS ]

)
. (13)

We suppress the choice of the optimal embedding from the notation because we do not expect
it to have significant influence on the arithmetic properties of plectic p-adic invariants under our
narrow class number one assumptions.

Definition 5.1. The plectic p-adic invariant associated to the triple (A/F , E, S) is given by

QA := cA ∩∆E ∈ Ê×S,⊗.

We refer to Section 1.2 of the Introduction for a discussion of the conjectural properties of plectic
invariants and their significance for the arithmetic of higher rank elliptic curves.

6. The algorithm

For simplicity, we describe the algorithm used to compute numerical approximations of plectic
p-adic invariants in the setting relevant for the computations. We consider F a real quadratic
field, p = p1 · p2 a split prime, and A/F a modular elliptic curve of conductor fA = p1 · p2 · q for
some other prime ideal q. We consider an ATR extension E/F where all primes dividing fA are
inert, and where one archimedean place ∞1 of F splits, while the other ∞2 does not. Following
the recipy, we let B/F denote the quaternion algebra over F ramified at {q,∞2}. We continue
to use the notations ΓS ,Γp1 ,Γp2 for the arithmetic subgroups of B× of respective levels p, p1, p2
and Γ for the S-arithmetic subgroup.

The computation of the homology class ∆E is straightforward using the Magma routines that
compute optimal embeddings ψ of OE into a maximal order of B: we compute a non-torsion
element u ∈ O×E of relative norm one, and find a fixed point τ ∈ Hp for the action of ψ(u). Then

∆E = ([τp1 ]− [τ̄p1 ])⊗ ([τp2 ]− [τ̄p2 ])⊗ ψ(u).
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The main difficulty in computing plectic invariants consists in explicitly describing the class

cA ∈ H1(Γ,HCS(Z))π
in terms of the cohomology class κA ∈ H1(ΓS ,Z)π associated to the elliptic curve A/F by mod-
ularity. Assuming momentarily the we can compute an approximation cmA of cA for an integer
m ⩾ 0 we explain how to compute some logarithm of the plectic invariant. We let qp ∈ F×p denote
the period of the Tate curve A/Fp

for p ∈ S, and let ES,⊗ denote the tensor product ⊗p∈SEp of

Qp-vector spaces; then there is a homomorphism logS : Ê
×
S,⊗ → ES,⊗ – factoring through Tate’s

uniformization logS = logA ◦ ϕTate – such that

logS(QA) =

∫
P1(FS)

⊗
p∈S

logqp

(
tp − τp
tp − τ̄p

)
dµA(t).

As the induced morphism logA : Â(ES) → ES,⊗ is injective, we do not loose information about
ϕTate(QA) in computing the additive p-adic integral for logS(QA). Concretely, we numerically
calculate the Riemann sum ∑

Ue∈Um

⊗
p∈S

logqp

(
te,p − τp
te,p − τ̄p

)
· cmA (e),

where Um denotes the covering of P1(FS) given by the compact opens {Ue}e∈E ⩽m
S

, and te ∈ Ue.

In the rest of the section we explain how to make Corollary 3.9 explicit.

Step 1. We begin by computing the cohomology class κA ∈ H1(ΓS ,Z)π. We use Magma to
calculate a presentation of ΓS in terms of generators and relations, then the algorithmic solution
to the word problem provided by a Magma routine allows us to compute some Hecke operators
and diagonalize H1(ΓS ,Z) with respect to their action. We do this iteratively until we find the
1-dimensional subspace onto which the Hecke operators have the correct eigenvalues associated
with A/F . A generator of this subspace is κA. Furthermore, we can identify this class with a
1-cocycle κA ∈ Z1(ΓS ,Z) because there are no non-trivial 1-coboundaries, then κA is stored in
memory in terms of its values on the set of generators of ΓS .

Step 2. Shapiro’s lemma gives an explicit Hecke-equivariant isomorphism

H1(ΓS ,Z)
∼−→ H1(Γ,F0(ES ,Z))

which associates to κA a 1-cocycle cA ∈ Z1(Γ,F0(ES ,Z)). Even though the group Γ is also finitely
presented – with generators obtained easily from the presentations of arithmetic groups – it is
not possible to store the 1-cocycle cA in a computer because ES is infinite. Nevertheless, it suffices
to compute an approximation of cA, i.e. its restriction to E ⩽m

S = E ⩽m
p1 × E ⩽m

p2 for some m ⩾ 0

cmA ∈ Z1(Γ,F0(E
⩽m
S ,Z)).

This computation relies on the algorithms of [GM14, Section 4]. From a system of coset repre-
sentatives for Γp1\Γ1, we construct a collection of elements in Γ as in [GM14, Definition 2.3]

{γe1}e1∈E 0,⩽m
p1

& {γv1}v1∈V ⩽m−1
p1

.

We do the same for coset representatives of ΓS\Γp1 obtaining {γe2}e2∈E 0,⩽m
p2

and {γv2}v2∈V ⩽m−1
p2

.

We are now ready to compute the 1-cocycle cmA : given an element g ∈ Γ and an even multiedge

e = (e1, e2) ∈ E 0,⩽m
S , we first compute an element b ∈ Γp1 such that γe1 · g = b · γg−1(e1) – using

15



Michele Fornea, Xavier Guitart and Marc Masdeu

the algorithm of [GM14, Theorem 4.1]. Applying the same algorithm a second time, we compute
h ∈ ΓS such that γe2 · b = h · γb−1(e2), then the 1-cocycle cmA is explicitly given by the formula

cmA (g)(e) = κA(h).

Remark 6.1. Corollary 3.9 ensures that cA ∈ Z1(Γ,F0(ES ,Z)) represents a cohomology class
valued in harmonic cochains. However, the 1-cocycle cA might not belong to Z1(Γ,HCS(Z)) in
general. To better understand the failure of harmonicity, recall the homomorphism

F0

(
ES ,Z

) φ1⊕φ2 // F0

(
Vp1 × Ep2 ,Z

)
⊕F0

(
Ep1 × Vp2 ,Z

)
given by

φ1(c)(v1, e2) =
∑

s(e1)=v1

c(e1, e2), φ2(c)(e1, v2) =
∑

s(e2)=v2

c(e1, e2).

The collection {γe1}e1 is a radial system [GM14, Definition 2.3], hence φ1(c
m
A ) = 0. However, we

might have φ2(c
m
A ) ̸= 0 (even if the second collection {γe2}e2 is radial for the tree in the second

variable) when elements of the two collections do not commute. Fortunately, as we do know that
cmA is cohomologous to a 1-cocycle with values in harmonic cochains, we just need to find some
D ∈ F0(E

⩽m
S ,Z) such that the modification

cmA := cmA − ∂D

is harmonic. Here ∂D denotes the 1-coboundary arising from D.

Step 3. The final step consists in the computation of a function D ∈ F0(E
⩽m
S ,Z) such that

cmA = cmA −∂D is harmonic. Since cA represents a cohomology class valued in harmonic cochains,
there are two elements D1 ∈ F0(V

⩽m−1
p1 × E ⩽m

p2 ,Z) and D2 ∈ F0(E
⩽m
p1 × V ⩽m−1

p2 ,Z) satisfying

φ1(c
m
A )(g) = (g − 1) ⋆ D1 & φ2(c

m
A )(g) = (g − 1) ⋆ D2.

Moreover, the function D has to satisfy φi(D) = Di for i = 1, 2. First, we explain how to
compute D1 and D2. By Definition 3.5 it suffices to calculate their values at even edges. Since
Γ acts transitively on V 0

p1 × E 0
p2 , any pair (v1, e2) ∈ Vp1 × E 0

p2 is of the form g−1(vp1 , ep2) or
g−1(v̂p1 , ep2) for some g ∈ Γ. Similarly, any pair (e1, v2) ∈ E 0

p1 × Vp2 is of the form g−1(ep1 ,vp2)
or g−1(ep1 , v̂p2) for some g ∈ Γ. Therefore, the values of D1 are computed by either

D1(v1, e2) = [φ1(c
m
A )(g) +D1](vp1 , ep2) or D1(v1, e2) = [φ1(c

m
A )(g) +D1](v̂p1 , ep2),

and the values of D2 by either

D2(e1, v2) = [φ2(c
m
A )(g) +D2](ep1 ,vp2) or D2(e1, v2) = [φ2(c

m
A )(g) +D2](ep1 , v̂p2).

In other words, D1 and D2 are completely determined by the degenerations φ1(c
m
A ), φ2(c

m
A ) –

which can be effectively computed – and by the four quantities

D1(vp1 , ep2), D1(v̂p1 , ep2), D2(ep1 ,vp2), D2(ep1 , v̂p2).

These four quantities are then pinned down by the fact that the pair (D1, D2) is in the kernel of

F0

(
Vp1 × Ep2 ,Z

)
⊕F0

(
Ep1 × Vp2 ,Z

)
−→ F

(
Vp1 × Vp2 ,Z

)
(c1, c2) 7−→ ν2(c1)− ν1(c2)

given by

ν1(c2)(v1, v2) =
∑

s(e1)=v1

c2(e1, v2), ν2(c1)(v1, v2) =
∑

s(e2)=v2

c1(v1, e2).
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More precisely, for every (v1, v2) ∈ {(vp1 , ep2), (v̂p1 , ep2), (ep1 ,vp2), (ep1 , v̂p2)} the values satisfy

[ν2(D1)− ν1(D2)](v1, v2) = 0.

We are left to explain the computation of a function D ∈ F0(E
⩽m
S ,Z) lifting (D1, D2). We

determine D by solving the system of linear equations given by

• (φ1D)(v1, e2) = D1(v1, e2) for every (v1, e2) ∈ V 0,⩽m−1
p1 × E 0,⩽m

p2 ,

• (φ2D)(e1, v2) = D2(e1, v2) for every (e1, v2) ∈ E 0,⩽m
p1 × V 0,⩽m−1

p2 .

The coefficient matrix of this system quickly becomes very sparse: the number of columns is
O(p2m) and there are only p + 1 non-zero coefficients in each of the O(p2m−1) row. In order to
solve the system efficiently, we crucially use an algorithm exploiting the sparsity of the matrix
to both speed up the computation and reduce the memory usage.

7. Numerical experiments

Let F be either Q(
√
13) or Q(

√
37), i.e. one of the two real quadratic fields with smallest dis-

criminant whose narrow class number is one, and where the prime 3 splits as (3) = p1 · p2. We
write DF for the discriminant and set w = (1 +

√
DF )/2. We consider A/F semistable elliptic

curves of conductor fA = p1 · p2 · q, and denote by εq the root number at q. Moreover, we choose
quadratic ATR extensions E = F (

√
β) where all primes divisors of fA are inert. In particular,

ralg(A/E) will always be even, and by choosing S = {p1, p2} we compute the quantity logS(QA)
associated to the plectic 3-adic invariant “for rank two”. We test Conjectures 1.3, 1.5 and 1.6 by
carrying out experiments on two classes of examples.

7.1 Case 1

Suppose the elliptic curve A/F has rank zero over F . Under our assumptions, we expect to
generically have ralg(A/E) = 0 as well, and we can numerically check it for a given quadratic
extension E/F by adding the F -rank of A and that of its twist A− with respect to E/F . When
that is the case, Conjecture 1.6 implies that the local root number εq determines whether the
plectic point ϕTate(QA) is trivial or not. Our computations are collected in Table 1 and support
the conjecture.

7.2 Case 2

Suppose the elliptic curve A/F has rank one over F . Under our assumptions, we expect to often
have ralg(A/E) = 2. When that is the case, Conjecture 1.5 implies that the quantity ϱA(S)
determines whether the plectic point ϕTate(QA) is trivial or not. When A/F has both a 3-adic
prime of split and non-split multiplicative reduction, ϱA(S) = 2 and the plectic point should
be non-zero. Otherwise, ϱA(S) = 3 and we should have ϕTate(QA) = 0. Our computations are
collected in Table 2 and support the expectations.

7.3 Tables

Let Q9 = Q3(
√
−1) be the unramified quadratic extension of Q3. The quantity logS(QA), defined

in Section 1.3, belongs to Q9⊗Q3 Q9 and it is a multiple of the elementary tensor
√
−1⊗

√
−1. In

the last column of each table we report the scaling factor. The column labeled “ATR extension” in
the tables reports the quantities β such that E = F (

√
β). Finally, the column labeled “Difference”

in Table 2 reports the difference ϱA(S)− ralg(A/E).
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DF Curve εq ATR extension logS(QA)

13 36.1-a2 +1 −9w + 8 2 · 32 + 2 · 33 + 2 · 34 +O(35)
+1 −12w + 17 2 · 32 + 2 · 33 + 34 +O(35)

37 36.1-a2 +1 −4w + 9 2 · 32 + 34 +O(35)

37 36.1-b1 −4w + 9, −12w + 29, −12w − 7
−1 −35w + 17, −21w + 62, −47w + 29 0 +O(35)

−39w + 125

37 36.1-c1 −4w + 9, −12w − 19, −12w + 29
−1 −12w − 7, −35w + 17, −21w + 62 0 +O(35)

−47w + 29, −39w + 125

Table 1

The evidence for Conjecture 1.3 is weaker when plectic points are non-zero, given the low precision
of our calculations. We plan to extend the methods of [GM14] to the setting of this paper to
improve our results. Nevertheless, we computed the quantity logS(QA) to seven 3-adic digits of
precision for two examples with encouraging results: one example is reported in Section 1.3 of
the Introduction, and the other is described next. We consider again the elliptic curve 63.2-d1
defined over F = Q(

√
37) of Weierstrass model

A/F : y2 + xy + y = x3 + wx2 + (w + 1)x+ 2, w =
1 +

√
37

2
.

The elliptic curve has rank 2 over the ATR extension E = F
(√
β
)
, for β = −32w+41, where all

prime divisors of fA are inert. Since ϱA(S) = 2, Conjectures 1.3 and 1.5 imply that the plectic
point should be non-zero and explicitly related to a generator of ∧2A(E). We use Magma to
compute the generators of A(E): P1 =

(
2 + w, −6− 2w

)
and

P2 =

(
44074 + 33068w

118943
,
13134267− 83850648w

2572261318

√
β − 163017 + 33068w

237886

)
.

Then, by setting PS = detS(P1 ∧ P2), we compute that

logS(QA) ≡ 8 · logA(PS) (mod 37).
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