Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart¹ Víctor Rotger² Yu Zhao³

¹Universitat Politècnica de Catalunya

²Universitat Politècnica de Catalunya

³McGill University

Adam Mickiewicz University, Poznan 9 November 2011

2 Darmon's ATR points and Gartner's generalization

BSD over totally real fields

- *F* totally real field, E/F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- We assume that E/F is modular:
 - L(E/F, s) = L(f, s) for some Hilbert modular form f over F.
 - L(E/F, s) extends to an entire function.
 - Let $r_{an}(E/F) = \operatorname{ord}_{s=1} L(E/F, s)$.

Conjecture (BSD)

Let r(E/F) denote the rank of E(F). Then $r(E/F) = r_{an}(F)$.

Theorem (Gross-Zagier, Kolyvagin, Zhang)

If $r_{an}(E/F) \leq 1$ and E satisfies the Jacquet–Langlands condition:

• (JL) either
$$[F : \mathbb{Q}]$$
 is odd or $v_{\mathfrak{p}}(\mathcal{N}) = 1$ for some $\mathfrak{p} \subseteq F$

then

$$r_{an}(E/F) = r(E/F).$$

Heegner points

• Condition (JL) is needed to ensure geometric modularity:

 $\pi_E: Jac(X) \longrightarrow E, X/F$ Shimura curve.

- Heegner points: for a quadratic CM extension K/F they belong to Jac(X)(K^{ab}) and can be projected to E(K^{ab})
- They are defined over certain ring class fields *H*/*K*; if sign(*E*/*K*) = −1 they are non-torsion if and only if *L*'(*E*/*H*, 1) ≠ 0.
- When $F = \mathbb{Q}$ they can be explicitly computed:
 - Let *f* be the newform such that $L(E/\mathbb{Q}; s) = L(f; s)$.
 - Let $\omega_f = 2\pi i f(z) dz$, a differential on $X = X_0(N)$.

•
$$\Lambda_f = \{\int_{\gamma} \omega_f \mid \gamma \in H_1(X, \mathbb{Z})\} \subseteq \mathbb{C}$$

- $\mathbb{C}/\Lambda_f \sim E$
- $K = \mathbb{Q}(\tau)$ then the CM point is

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C}/\Lambda_f \sim E,$$

where
$$\Delta_{\tau} = \{\tau \rightarrow \infty\} \in C_1(X, \mathbb{Z}).$$

Some questions

- When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
- What about quadratic extensions which are not CM? If M/F is a quadratic extension (with sign L(E/M, s) = -1): is there a way of analytically constructing points on $E(M^{ab})$?
 - Up to now, nothing about these questions has been proved beyond the result of Gross–Zagier and Zhang.
 - However, a collection of conjectural constructions of points have been proposed by several authors (Darmon, Dasgupta, Greenberg, Rotger, Longo, Vigni, Gartner,...). These points are the so-called Stark–Heegner points (or also Darmon points).
 - ► They belong to $E(H_v)$, where *H* is a class field of *M* and *v* is a place of *H* (either archimedean of finite).
 - It is conjectured that they actually belong to E(H) and that they are non-torsion if and only if L'(E/H, 1) ≠ 0.
 - Darmon's ATR points:
 - Defined when *M*/*F* is a quadratic Almost Totally Real extension (ATR) (i.e. *M* has exactly one complex archimedean place).
 - ► Defined as integrals of the Hilbert modular form attached to *E*.

Review of Hilbert modular forms

- *F* totally real number field of degree *r* and $h^+(F) = 1$.
- $v_1, \ldots, v_r \colon F \hookrightarrow \mathbb{R}$ which give $v_1, \ldots, v_r \colon \mathrm{SL}_2(\mathcal{O}_F) \hookrightarrow SL_2(\mathbb{R})$.
- $\Gamma = SL_2(\mathcal{O}_F)$ acts discretely on \mathcal{H}^r via $v_1 \times \cdots \times v_r$.
- The analytical variety X = H^r/Γ is the Hilbert modular variety attached to Γ.
- A Hilbert modular form of parallel weight 2 on Γ is:

 $f: \mathcal{H}^r \longrightarrow \mathbb{C}$ homomorphic

such that $f(z_1, ..., z_r)dz_1 ... dz_r$ descends to a holomorphic *r*-form on *X*.

• It admits a Fourier expansion at ∞ :

$$f(z_1,\ldots,z_r)=\sum_{n\in\mathcal{O}_F^+}a_{(n)}e^{2\pi i\left(\frac{n_1}{d_1}z_1+\cdots+\frac{n_r}{d_r}z_r\right)},$$

 $x_i = v_i(x), n \in \mathcal{O}_F, (d) = different ideal of F.$

Definition of the ATR points

- E/F an elliptic curve of conductor 1.
- *M*/*F* quadratic Almost Totally Real extension (ATR): *M* has exactly one complex archimedean place.
- Let v₁: F → ℝ the one that extends to a complex place of *M* and think M ⊆ C via v₁.
- Let $f \in S_2(\Gamma)$ be the Hilbert modular form attached to *E*.

$$f(z_0,\ldots,z_r)=\sum_{n>>0}a_{(n)}e^{2\pi i\left(\frac{n_0}{d_0}z_0+\cdots+\frac{n_r}{d_r}z_r\right)},$$

where $\textit{a}_{\mathfrak{p}} = \mathrm{N}\mathfrak{p} + 1 - \#\textit{E}(\mathcal{O}_{\textit{F}}/\mathfrak{p})$ and

$$\prod_{\mathfrak{p}}(1-a_{\mathfrak{p}}\mathrm{N}\mathfrak{p}^{-s}+\mathrm{N}\mathfrak{p}^{1-2s})=\sum_{\mathfrak{n}}a_{\mathfrak{n}}\mathrm{N}\mathfrak{n}^{-s}$$

(observe that $a_{(n)} \in \mathbb{Z}$)

The period lattice and Oda's conjecture

• On $X = \mathcal{H}^r / \Gamma$ we have the holomorphic *r*-form ω_f^{hol}

$$\omega_f^{hol} = (2\pi i)^r f(z_1,\ldots,z_r) dz_1 \cdots dz_r,$$

but one has to consider a certain non-holomorphic *r*-form ω_f .

- For instance, if F is quadratic and $u \in \mathcal{O}_F^{\times}$ with $u_1 > 0$, $u_2 < 0$ then $\omega_f = (2\pi i)^2 f(z_1, z_2) dz_1 dz_2 + (2\pi i)^2 f(u_1 z_1, u_2 \overline{z}_2) d(u_1 z_1) d(u_2 \overline{z}_2)$
- In general ω_f is defined similarly summing over u ∈ O[×]_F/(O⁺_F)[×] with u₁ > 0.

• Let
$$\Lambda_f = \left\{ \int_{\gamma} \omega_f, \ \gamma \in H_r(X(\mathbb{C}), \mathbb{Z}) \right\} \subseteq \mathbb{C}.$$

Conjecture (Oda) \mathbb{C}/Λ_f is isogenous to *E*.

Definition of the ATR points

- Let $M = F(\tau)$.
- Darmon defines *r*-dimensional chain Δ_τ ∈ C_r(X, ℤ) so that the ATR point is defined as

$$J_{\tau} = \int_{\Delta_{\tau}} \omega_f \in \mathbb{C}/\Lambda_f \stackrel{\iota}{\sim} E$$

- Analogous to Heegner points, and it is explicitly computable.
- Definition of the ATR chain Δ_{τ} :
 - τ goes to τ₁ ∈ H₁ under the extension of v₁, and to τ_i, τ'_i ∈ ∂H_i = ℝ
 under the extensions of v_i for i > 1.
 - Let γ_i be the geodesic joining τ_i and τ'_i .
 - Let $\tilde{\Delta}_{\tau}$ be the image in *X* of the region $\{\tau_1\} \times \gamma_2 \cdots \times \gamma_r$.
 - $\tilde{\Delta}_{\tau}$ belongs to $H_{r-1}(X(\mathbb{C}),\mathbb{Z})$.
 - $\tilde{\Delta}_{\tau}$ actually belongs to $H_{r-1}(X(\mathbb{C}),\mathbb{Z})_{\text{tors}}$.
 - There exists $\Delta_{\tau} \in C_r(X(\mathbb{C}),\mathbb{Z})$ with $\partial \Delta_{\tau} = m \tilde{\Delta}_{\tau}$ for some *m*.

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C} / \Lambda_f \stackrel{\iota}{\sim} E$$

• $\mathcal{O}_{\tau} = \{ \gamma \in \mathrm{M}_{2}(\mathcal{O}_{F}) \colon \mathsf{v}_{1}(\gamma) \cdot \tau = \tau \}$

• \mathcal{O}_{τ} is an order in $\mathcal{O}_{\mathcal{K}}$:

$$v_1(\gamma) \begin{pmatrix} \tau \\ 1 \end{pmatrix} = \lambda_\gamma \begin{pmatrix} \tau \\ 1 \end{pmatrix}$$
 with $\lambda_\gamma \in K$.

• Let H_{τ} be the ring class field attached to \mathcal{O}_{τ} (in particular $\operatorname{Gal}(H_{\tau}/K) \simeq \operatorname{Pic}(\mathcal{O}_{\tau})$).

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota(J_{\tau})$ belongs $E(H_{\tau})$.

 It does not assume (JL): it also applies to elliptic curves which are not expected to be geometrically modular in general.

Gartner's generalization

- Recently J. Gartner has generalized this construction to *M*/*F* an arbitrary quadratic extension.
 - This points are defined also with a formula of the type

$$J_{ au} = \int_{\Delta_{ au}} \omega_f \in \mathbb{C} / \Lambda_f \stackrel{\iota}{\sim} E$$

where now f is a modular form on a Shimura variety attached to a quaternion division algebra.

- This construction has the advantage that it is very general.
- However, it is hard to compute in any specific example because of the lack of Fourier expansion for the modular forms used.

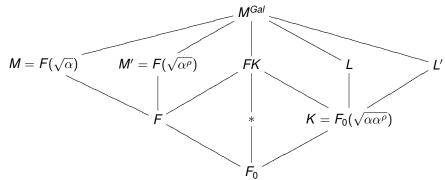
Our Goal

To analytically construct points on $E(M^{ab})$, for a class of fields M which are not ATR. We want the construction to be explicitly computable. In particular, we want to be able to verify the construction in examples.

- We want to define our points in terms of Hilbert modular forms instead of modular forms over quaternion division algebras.
- The price we pay for this is that our construction is not as general as Gartner's. We restrict to the following situation:
 - ► M/F a quadratic Almost Totally Complex extension (ATC) All archimedean places of M are complex except a pair of real places.
 - There exists F₀ ⊆ F with [F: F₀] = 2 such that E is an F₀-curve (i.e. E is F-isogenous to its Gal(F/F₀)-conjugate)

Idea behind the construction

• E/F an F_0 -curve and $M = F(\sqrt{\alpha})$ an ATC extension



- Since *M* is ATC, *K* is an ATR extension of *F*₀
- We consider $A = \operatorname{Res}_{F/F_0} E$, an abelian surface defined over F_0
- Extending Darmon's construction we define ATR points on $A(K^{ab})$.
- We then consider the parametrization $A(K^{ab}) \longrightarrow E(FK^{ab})$
- We take as model the case $F_0 = \mathbb{Q}$ (Darmon–Rotger–Zhao).
- $F_0 = \mathbb{Q}$ is classical: *K* is CM so they really use Heegner points.

• Let $A = \operatorname{Res}_{F/F_0} E$ be the surface obtained by restriction of scalars.

Proposition

If *E* is a F_0 -curve then A/F_0 is a GL_2 -type variety: $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}_{F_0}(A)$ is isomorphic to a quadratic number field.

- The generalization of the Shimura–Taniyama conjecture for HMF implies that A is modular. That is, there exists a HMF f over F₀ such that
 - ▶ Its field of Fourier coefficients \mathbb{Q}_f is isomorphic to $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}_{F_0}(A)$

•
$$L(A/F_0; s) = L(f; s) \cdot L(^{\sigma}f; s)$$

- We also restrict to the case where Q ⊗_Z End_{F0}(A) is imaginary. Then *f* is a HMF over F₀ of level N and character ψ where
 - $N \subseteq F_0$ can be explicitly computed from the conductor of *E*
 - $\psi \colon \mathbb{A}_{F_0}^{\times} \longrightarrow \{\pm 1\}$ is the quadratic character of F/F_0 .
- If $[F_0: \mathbb{Q}] = r$, then *f* is a *r*-differential form on the variety $X_{\psi}(N) = \mathcal{H}^r / \Gamma_{\psi}(N)$

$$\Gamma_{\psi}(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \operatorname{SL}_{2}(\mathcal{O}_{F_{0}}) : N \mid c, \ \psi(a) = 1 \right\}$$

ATR points for abelian varieties

- Let K/F₀ be a quadratic ATR extension (think K ⊆ C via the unique complex place)
- The differential forms ω^{hol}_f, σ(ω^{hol}_f) generate the *f*-isotypical component of H⁰(X_ψ(N), Ω^r)
- We can consider, as before the non-holomorphic forms ω_f, σ(ω_f) and the lattice

$$\Lambda_f = \left\{ \left(\int_{\gamma} \omega_f, \int_{\gamma} \sigma(\omega_f) \right) : \gamma \in H_r(X_{\psi}(N)_{\mathbb{C}}, \mathbb{Z}) \right\} \subseteq \mathbb{C}^2$$

Oda's conjecture \mathbb{C}^2/Λ_f is isogenous to A

ATR points for abelian varieties

• If $K = F_0(\tau)$, then we can define a point J_{τ} as

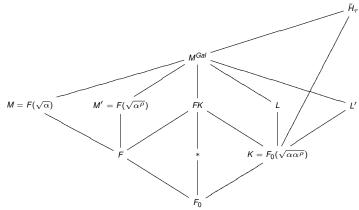
$$J_{\tau} = \left(\int_{\Delta_{\tau}} \omega_{f}, \int_{\Delta_{\tau}} \sigma(\omega_{f})\right) \in \mathbb{C}^{2}/\Lambda_{f} \stackrel{\iota}{\sim} A$$

• Let
$$\mathcal{O}_{\tau} = \{ \gamma \in M_0(N) \colon v_1(\gamma) \cdot \tau = \tau \} \subseteq \mathcal{O}_K$$

- Let H_{τ} be the ring class field of \mathcal{O}_{τ} .
- *J_τ* is not defined over *H_τ*, but over a biquadratic extension *H̃_τ*.
 (because of the caracter ψ)

Extension of Darmon's ATR Conjecture

The isogeny ι can be chosen such that $\iota(J_{\tau})$ belongs to $A(\tilde{H}_{\tau})$.



- E/F an F_0 -curve and $M = F(\sqrt{\alpha})$ an ATC extension
- We can construct points on $A(\tilde{H}_{\tau})$, but are \tilde{H}_{τ} and M^{Gal} related?
- Not always, but at least for some τ they are:

Proposition

 $d(L/K) = \mathcal{N}c$ with $\operatorname{Nm}_{K/F_0}(\mathcal{N}) = N$ and $c \subseteq F_0$. If \mathcal{O}_{τ} is the order of conductor c then $M^{\operatorname{Gal}} \subseteq \widetilde{H}_{\tau}$.

- The projection $A \longrightarrow E$ is given by the Atkin–Lehner involution.
- $(1 + W_N)A \sim_F E$, which means that we can compute this projection using the formula

$$J_{\tau}^{\mathcal{E}} = \int_{\Delta_{\tau}} \omega_{f} + W_{\mathcal{N}}(\omega_{f}) \in \mathbb{C} / \left\langle \int_{\gamma} \omega_{f} + W_{\mathcal{N}}(\omega_{f}) \right\rangle \stackrel{\iota}{\sim} \mathcal{E}$$

Conjecture

The isogeny ι can be chosen such that $\iota(J_{\tau}^{E}) \in E(\tilde{H}_{\tau})$. Moreover, the point $\operatorname{Tr}_{\tilde{H}_{\tau}/M}(\iota(J_{\tau}))$ is non torsion if and only if $L'(E/M, 1) \neq 0$.

Main Theorem

If we assume the extension of Darmon's conjecture on ATR points then the above conjecture holds true.

Concrete example

•
$$F_0 = \mathbb{Q}(\sqrt{2}), F = \mathbb{Q}(\sqrt{2}, \sqrt{5}).$$

•
$$E: y^2 = x^3 - 54(63 + 46\sqrt{2} + 27\sqrt{5} + 18\sqrt{10})x - 116(409 + 287\sqrt{2} + 189\sqrt{5} + 135\sqrt{10})$$

- *E* is an F_0 -curve, but it is also a \mathbb{Q} -curve (computed by J. Quer).
- The HMF *f* is base change to F_0 of a modular form $f_{\mathbb{Q}} \in S_2(40, \varepsilon_{10})$

•
$$M = F(\sqrt{\sqrt{10} + \sqrt{5} + \sqrt{2}})$$
 is ATC and $E(M) \simeq \mathbb{Z} \times \mathbb{Z}/14\mathbb{Z}$.

- We take τ such that $\mathcal{O}_{\tau} = \mathcal{O}_{\mathcal{K}}$. In this case $\tilde{\mathcal{H}}_{\tau} = \mathcal{M}^{\text{Gal}}$
- We computed the ATC point $J^{\mathcal{E}}_{\tau} = \int_{\Delta_{\tau}} \omega_f + W_{\mathcal{N}}(\omega_f) \in \mathbb{C}/\Lambda_f$
- We (Magma) computed $z_{nt} \in \mathbb{C}/\Lambda_E$, a non-torsion point in E(M).
- We numerically find the relation

$$7 \cdot \iota(J_{\tau}^{E}) - 14 \cdot z_{nt} = 0 \mod \Lambda_{E}$$

(checked up to 30 digits of precision), which gives evidence that J_{τ}^{E} belongs to E(M) and it has infinite order.

Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart¹ Víctor Rotger² Yu Zhao³

¹Universitat Politècnica de Catalunya

²Universitat Politècnica de Catalunya

³McGill University

Adam Mickiewicz University, Poznan 9 November 2011