Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart ${ }^{1} \quad$ Víctor Rotger ${ }^{2} \quad$ Yu Zhao ${ }^{3}$
${ }^{1}$ Universitat Politècnica de Catalunya
${ }^{2}$ Universitat Politècnica de Catalunya
${ }^{3}$ McGill University

Adam Mickiewicz University, Poznan 9 November 2011

Outline

(1) BSD conjecture over totally real number fields and Heegner points
(2) Darmon's ATR points and Gartner's generalization
(3) ATC points

BSD over totally real fields

- F totally real field, E / F elliptic curve of conductor $\mathcal{N} \subseteq F$.
- We assume that E / F is modular:
- $L(E / F, s)=L(f, s)$ for some Hilbert modular form f over F.
- $L(E / F, s)$ extends to an entire function.
- Let $r_{a n}(E / F)=\operatorname{ord}_{s=1} L(E / F, s)$.

Conjecture (BSD)

Let $r(E / F)$ denote the rank of $E(F)$. Then

$$
r(E / F)=r_{a n}(F)
$$

Theorem (Gross-Zagier, Kolyvagin, Zhang)
If $r_{a n}(E / F) \leq 1$ and E satisfies the Jacquet-Langlands condition:

- (JL) either $[F: \mathbb{Q}]$ is odd or $v_{\mathfrak{p}}(\mathcal{N})=1$ for some $\mathfrak{p} \subseteq F$ then

$$
r_{a n}(E / F)=r(E / F)
$$

Heegner points

- Condition (JL) is needed to ensure geometric modularity:
$\pi_{E}: \operatorname{Jac}(X) \longrightarrow E, \quad X / F$ Shimura curve.
- Heegner points: for a quadratic CM extension K / F they belong to $\operatorname{Jac}(X)\left(K^{a b}\right)$ and can be projected to $E\left(K^{a b}\right)$
- They are defined over certain ring class fields H / K; if $\operatorname{sign}(E / K)=-1$ they are non-torsion if and only if $L^{\prime}(E / H, 1) \neq 0$.
- When $F=\mathbb{Q}$ they can be explicitly computed:
- Let f be the newform such that $L(E / \mathbb{Q} ; s)=L(f ; s)$.
- Let $\omega_{f}=2 \pi i f(z) d z$, a differential on $X=X_{0}(N)$.
- $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f} \mid \gamma \in H_{1}(X, \mathbb{Z})\right\} \subseteq \mathbb{C}$
- $\mathbb{C} / \Lambda_{f} \sim E$
- $K=\mathbb{Q}(\tau)$ then the CM point is

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \sim E,
$$

where $\Delta_{\tau}=\{\tau \rightarrow \infty\} \in C_{1}(X, \mathbb{Z})$.

Some questions

(1) When $F \neq \mathbb{Q}$, what if (JL) is not satisfied?
(2) What about quadratic extensions which are not CM ?

If M / F is a quadratic extension (with sign $L(E / M, s)=-1$): is there a way of analytically constructing points on $E\left(M^{a b}\right)$?

- Up to now, nothing about these questions has been proved beyond the result of Gross-Zagier and Zhang.
- However, a collection of conjectural constructions of points have been proposed by several authors (Darmon, Dasgupta, Greenberg, Rotger, Longo, Vigni, Gartner,...). These points are the so-called Stark-Heegner points (or also Darmon points).
- They belong to $E\left(H_{v}\right)$, where H is a class field of M and v is a place of H (either archimedean of finite).
- It is conjectured that they actually belong to $E(H)$ and that they are non-torsion if and only if $L^{\prime}(E / H, 1) \neq 0$.
- Darmon's ATR points:
- Defined when M / F is a quadratic Almost Totally Real extension (ATR) (i.e. M has exactly one complex archimedean place).
- Defined as integrals of the Hilbert modular form attached to E.

Review of Hilbert modular forms

- F totally real number field of degree r and $h^{+}(F)=1$.
- $v_{1}, \ldots, v_{r}: F \hookrightarrow \mathbb{R}$ which give $v_{1}, \ldots, v_{r}: \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right) \hookrightarrow S L_{2}(\mathbb{R})$.
- $\Gamma=\operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$ acts discretely on \mathcal{H}^{r} via $v_{1} \times \cdots \times v_{r}$.
- The analytical variety $X=\mathcal{H}^{r} / \Gamma$ is the Hilbert modular variety attached to Γ.
- A Hilbert modular form of parallel weight 2 on Γ is:

$$
f: \mathcal{H}^{r} \longrightarrow \mathbb{C} \text { homomorphic }
$$

such that $f\left(z_{1}, \ldots, z_{r}\right) d z_{1} \ldots d z_{r}$ descends to a holomorphic r-form on X.

- It admits a Fourier expansion at ∞ :

$$
\begin{gathered}
f\left(z_{1}, \ldots, z_{r}\right)=\sum_{n \in \mathcal{O}_{F}^{+}} a_{(n)} e^{2 \pi i\left(\frac{n_{1}}{d_{1}} z_{1}+\cdots+\frac{n_{r}}{d_{r}} z_{r}\right)}, \\
x_{i}=v_{i}(x), n \in \mathcal{O}_{F},(d)=\text { different ideal of } F
\end{gathered}
$$

Definition of the ATR points

- E / F an elliptic curve of conductor 1.
- M / F quadratic Almost Totally Real extension (ATR): M has exactly one complex archimedean place.
- Let $v_{1}: F \hookrightarrow \mathbb{R}$ the one that extends to a complex place of M and think $M \subseteq \mathbb{C}$ via v_{1}.
- Let $f \in S_{2}(\Gamma)$ be the Hilbert modular form attached to E.

$$
f\left(z_{0}, \ldots, z_{r}\right)=\sum_{n \gg 0} a_{(n)} e^{2 \pi i\left(\frac{n_{0}}{d_{0}} z_{0}+\cdots+\frac{n_{r}}{d_{r}} z_{r}\right)}
$$

where $a_{\mathfrak{p}}=\mathrm{Np}+1-\# E\left(\mathcal{O}_{F} / \mathfrak{p}\right)$ and

$$
\prod_{\mathfrak{p}}\left(1-a_{\mathfrak{p}} \mathrm{Np}^{-s}+\mathrm{Np}^{1-2 s}\right)=\sum_{\mathfrak{n}} a_{\mathfrak{n}} \mathrm{Nn}^{-s}
$$

(observe that $a_{(n)} \in \mathbb{Z}$)

The period lattice and Oda's conjecture

- On $X=\mathcal{H}^{r} / \Gamma$ we have the holomorphic r-form $\omega_{f}^{\text {hol }}$

$$
\omega_{f}^{h o l}=(2 \pi i)^{r} f\left(z_{1}, \ldots, z_{r}\right) d z_{1} \cdots d z_{r}
$$

but one has to consider a certain non-holomorphic r-form ω_{f}.

- For instance, if F is quadratic and $u \in \mathcal{O}_{F}^{\times}$with $u_{1}>0, u_{2}<0$ then

$$
\omega_{f}=(2 \pi i)^{2} f\left(z_{1}, z_{2}\right) d z_{1} d z_{2}+(2 \pi i)^{2} f\left(u_{1} z_{1}, u_{2} \bar{z}_{2}\right) d\left(u_{1} z_{1}\right) d\left(u_{2} \bar{z}_{2}\right)
$$

- In general ω_{f} is defined similarly summing over $u \in \mathcal{O}_{F}^{\times} /\left(\mathcal{O}_{F}^{+}\right)^{\times}$ with $u_{1}>0$.
- Let $\Lambda_{f}=\left\{\int_{\gamma} \omega_{f}, \quad \gamma \in H_{r}(X(\mathbb{C}), \mathbb{Z})\right\} \subseteq \mathbb{C}$.

Conjecture (Oda)

\mathbb{C} / Λ_{f} is isogenous to E.

Definition of the ATR points

- Let $M=F(\tau)$.
- Darmon defines r-dimensional chain $\Delta_{\tau} \in C_{r}(X, \mathbb{Z})$ so that the ATR point is defined as

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

- Analogous to Heegner points, and it is explicitly computable.
- Definition of the ATR chain Δ_{τ} :
- τ goes to $\tau_{1} \in \mathcal{H}_{1}$ under the extension of v_{1}, and to $\tau_{i}, \tau_{i}^{\prime} \in \partial \mathcal{H}_{i}=\mathbb{R}$ under the extensions of v_{i} for $i>1$.
- Let γ_{i} be the geodesic joining τ_{i} and τ_{i}^{\prime}.
- Let $\tilde{\Delta}_{\tau}$ be the image in X of the region $\left\{\tau_{1}\right\} \times \gamma_{2} \cdots \times \gamma_{r}$.
- $\tilde{\Delta}_{\tau}$ belongs to $H_{r-1}(X(\mathbb{C}), \mathbb{Z})$.
- $\tilde{\Delta}_{\tau}$ actually belongs to $H_{r-1}(X(\mathbb{C}), \mathbb{Z})_{\text {tors }}$.
- There exists $\Delta_{\tau} \in C_{r}(X(\mathbb{C}), \mathbb{Z})$ with $\partial \Delta_{\tau}=m \tilde{\Delta}_{\tau}$ for some m.

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\imath}{\sim} E
$$

- $\mathcal{O}_{\tau}=\left\{\gamma \in \mathrm{M}_{2}\left(\mathcal{O}_{F}\right): v_{1}(\gamma) \cdot \tau=\tau\right\}$
- \mathcal{O}_{τ} is an order in \mathcal{O}_{K} :

$$
v_{1}(\gamma)\binom{\tau}{1}=\lambda_{\gamma}\binom{\tau}{1} \text { with } \lambda_{\gamma} \in K \text {. }
$$

- Let H_{τ} be the ring class field attached to \mathcal{O}_{τ} (in particular $\left.\operatorname{Gal}\left(H_{\tau} / K\right) \simeq \operatorname{Pic}\left(\mathcal{O}_{\tau}\right)\right)$.

Conjecture (Darmon)

The isogeny ι can be chosen such that $\iota\left(J_{\tau}\right)$ belongs $E\left(H_{\tau}\right)$.

- It does not assume (JL): it also applies to elliptic curves which are not expected to be geometrically modular in general.

Gartner's generalization

- Recently J. Gartner has generalized this construction to M / F an arbitrary quadratic extension.
- This points are defined also with a formula of the type

$$
J_{\tau}=\int_{\Delta_{\tau}} \omega_{f} \in \mathbb{C} / \Lambda_{f} \stackrel{\iota}{\sim} E
$$

where now f is a modular form on a Shimura variety attached to a quaternion division algebra.

- This construction has the advantage that it is very general.
- However, it is hard to compute in any specific example because of the lack of Fourier expansion for the modular forms used.

Our Goal

To analytically construct points on $E\left(M^{a b}\right)$, for a class of fields M which are not ATR. We want the construction to be explicitly computable. In particular, we want to be able to verify the construction in examples.

- We want to define our points in terms of Hilbert modular forms instead of modular forms over quaternion division algebras.
- The price we pay for this is that our construction is not as general as Gartner's. We restrict to the following situation:
- M / F a quadratic Almost Totally Complex extension (ATC) All archimedean places of M are complex except a pair of real places.
- There exists $F_{0} \subseteq F$ with $\left[F: F_{0}\right]=2$ such that E is an F_{0}-curve (i.e. E is F-isogenous to its $\operatorname{Gal}\left(F / F_{0}\right)$-conjugate)

Idea behind the construction

- E / F an F_{0}-curve and $M=F(\sqrt{\alpha})$ an ATC extension

- Since M is ATC, K is an ATR extension of F_{0}
- We consider $A=\operatorname{Res}_{F / F_{0}} E$, an abelian surface defined over F_{0}
- Extending Darmon's construction we define ATR points on $A\left(K^{a b}\right)$.
- We then consider the parametrization $A\left(K^{a b}\right) \longrightarrow E\left(F K^{a b}\right)$
- We take as model the case $F_{0}=\mathbb{Q}$ (Darmon-Rotger-Zhao).
- $F_{0}=\mathbb{Q}$ is classical: K is CM so they really use Heegner points.
- Let $A=\operatorname{Res}_{F / F_{0}} E$ be the surface obtained by restriction of scalars.

Proposition

If E is a F_{0}-curve then A / F_{0} is a GL_{2}-type variety: $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}_{F_{0}}(A)$ is isomorphic to a quadratic number field.

- The generalization of the Shimura-Taniyama conjecture for HMF implies that A is modular. That is, there exists a HMF f over F_{0} such that
- Its field of Fourier coefficients \mathbb{Q}_{f} is isomorphic to $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}_{F_{0}}(A)$
- $L\left(A / F_{0} ; s\right)=L(f ; s) \cdot L\left({ }^{\sigma} ; s\right)$
- We also restrict to the case where $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}_{F_{0}}(A)$ is imaginary. Then f is a HMF over F_{0} of level N and character ψ where
- $N \subseteq F_{0}$ can be explicitly computed from the conductor of E
- $\psi: \mathbb{A}_{F_{0}}^{\times} \longrightarrow\{ \pm 1\}$ is the quadratic character of F / F_{0}.
- If $\left[F_{0}: \mathbb{Q}\right]=r$, then f is a r-differential form on the variety $X_{\psi}(N)=\mathcal{H}^{r} / \Gamma_{\psi}(N)$

$$
\Gamma_{\psi}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F_{0}}\right): N \mid c, \psi(a)=1\right\}
$$

ATR points for abelian varieties

- Let K / F_{0} be a quadratic ATR extension (think $K \subseteq \mathbb{C}$ via the unique complex place)
- The differential forms $\omega_{f}^{h o l}, \sigma\left(\omega_{f}^{h o l}\right)$ generate the f-isotypical component of $H^{0}\left(X_{\psi}(N), \Omega^{r}\right)$
- We can consider, as before the non-holomorphic forms $\omega_{f}, \sigma\left(\omega_{f}\right)$ and the lattice

$$
\Lambda_{f}=\left\{\left(\int_{\gamma} \omega_{f}, \int_{\gamma} \sigma\left(\omega_{f}\right)\right): \gamma \in H_{r}\left(X_{\psi}(N)_{\mathbb{C}}, \mathbb{Z}\right)\right\} \subseteq \mathbb{C}^{2}
$$

Oda's conjecture

$\mathbb{C}^{2} / \Lambda_{f}$ is isogenous to A

ATR points for abelian varieties

- If $K=F_{0}(\tau)$, then we can define a point J_{τ} as

$$
J_{\tau}=\left(\int_{\Delta_{\tau}} \omega_{f}, \int_{\Delta_{\tau}} \sigma\left(\omega_{f}\right)\right) \in \mathbb{C}^{2} / \Lambda_{f} \stackrel{\iota}{\sim} A
$$

- Let $\mathcal{O}_{\tau}=\left\{\gamma \in M_{0}(N): v_{1}(\gamma) \cdot \tau=\tau\right\} \subseteq \mathcal{O}_{K}$
- Let H_{τ} be the ring class field of \mathcal{O}_{τ}.
- J_{τ} is not defined over H_{τ}, but over a biquadratic extension \tilde{H}_{τ}. (because of the caracter ψ)

Extension of Darmon's ATR Conjecture

The isogeny ι can be chosen such that $\iota\left(J_{\tau}\right)$ belongs to $A\left(\tilde{H}_{\tau}\right)$.

- E / F an F_{0}-curve and $M=F(\sqrt{\alpha})$ an ATC extension
- We can construct points on $A\left(\tilde{H}_{\tau}\right)$, but are \tilde{H}_{τ} and $M^{\text {Gal }}$ related?
- Not always, but at least for some τ they are:

Proposition

$d(L / K)=\mathcal{N} c$ with $\operatorname{Nm}_{K / F_{0}}(\mathcal{N})=N$ and $c \subseteq F_{0}$. If \mathcal{O}_{τ} is the order of conductor c then $M^{\mathrm{Gal}} \subseteq \tilde{H}_{\tau}$.

- The projection $A \longrightarrow E$ is given by the Atkin-Lehner involution.
- $\left(1+W_{N}\right) A \sim_{F} E$, which means that we can compute this projection using the formula

$$
J_{\tau}^{E}=\int_{\Delta_{\tau}} \omega_{f}+W_{N}\left(\omega_{f}\right) \in \mathbb{C} /\left\langle\int_{\gamma} \omega_{f}+W_{N}\left(\omega_{f}\right)\right\rangle \stackrel{\iota}{\sim} E
$$

Conjecture

The isogeny ι can be chosen such that $\iota\left(J_{\tau}^{E}\right) \in E\left(\tilde{H}_{\tau}\right)$. Moreover, the point $\operatorname{Tr}_{\tilde{H}_{\tau} / M}\left(\iota\left(J_{\tau}\right)\right)$ is non torsion if and only if $L^{\prime}(E / M, 1) \neq 0$.

Main Theorem

If we assume the extension of Darmon's conjecture on ATR points then the above conjecture holds true.

Concrete example

- $F_{0}=\mathbb{Q}(\sqrt{2}), F=\mathbb{Q}(\sqrt{2}, \sqrt{5})$.
- $E: y^{2}=x^{3}-54(63+46 \sqrt{2}+27 \sqrt{5}+18 \sqrt{10}) x-116(409+$ $287 \sqrt{2}+189 \sqrt{5}+135 \sqrt{10})$
- E is an F_{0}-curve, but it is also a \mathbb{Q}-curve (computed by J. Quer).
- The HMF f is base change to F_{0} of a modular form $f_{\mathbb{Q}} \in S_{2}\left(40, \varepsilon_{10}\right)$
- $M=F(\sqrt{\sqrt{10}+\sqrt{5}+\sqrt{2}})$ is ATC and $E(M) \simeq \mathbb{Z} \times \mathbb{Z} / 14 \mathbb{Z}$.
- We take τ such that $\mathcal{O}_{\tau}=\mathcal{O}_{K}$. In this case $\tilde{H}_{\tau}=M^{\text {Gal }}$
- We computed the ATC point $J_{\tau}^{E}=\int_{\Delta_{\tau}} \omega_{f}+W_{N}\left(\omega_{f}\right) \in \mathbb{C} / \Lambda_{f}$
- We (Magma) computed $z_{n t} \in \mathbb{C} / \Lambda_{E}$, a non-torsion point in $E(M)$.
- We numerically find the relation

$$
7 \cdot \iota\left(J_{\tau}^{E}\right)-14 \cdot z_{n t}=0 \quad \bmod \Lambda_{E}
$$

(checked up to 30 digits of precision), which gives evidence that J_{τ}^{E} belongs to $E(M)$ and it has infinite order.

Rational points on elliptic curves over almost totally complex quadratic extensions

Xevi Guitart ${ }^{1} \quad$ Víctor Rotger ${ }^{2} \quad$ Yu Zhao ${ }^{3}$
${ }^{1}$ Universitat Politècnica de Catalunya
${ }^{2}$ Universitat Politècnica de Catalunya
${ }^{3}$ McGill University

Adam Mickiewicz University, Poznan 9 November 2011

