On the modularity level of modular abelian varieties over number fields

Xavier Guitart, Enrique González-Jiménez

Universitat Politècnica de Catalunya Universidad Autónoma de Madrid

Conférence de théorie des nombres Québec-Maine 2010

lacksim Modular abelian varieties and their simple factors over $ar{\mathbb{Q}}$

2 Conductors of building blocks

3 Strategy of the proof

Modular abelian varieties over Q

• Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

Properties

• A_f is modular: it is a quotient of $J_1(N) = \text{Jac}(X_1(N))$.

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

Properties

- A_f is modular: it is a quotient of $J_1(N) = \text{Jac}(X_1(N))$.
- $\mathcal{N}_{\mathbb{Q}}(A_f) = N^{\dim A_f}$ (theorem of Carayol).

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

Properties

- A_f is modular: it is a quotient of $J_1(N) = \text{Jac}(X_1(N))$.
- $\mathcal{N}_{\mathbb{Q}}(A_f) = N^{\dim A_f}$ (theorem of Carayol).
- A_f is of GL₂-type: End⁰_Q(A_f) = End_Q(A_f) ⊗_Z Q ≃ E number field with [E : Q] = dim A_f. In fact E ≃ Q(..., a_n,...).

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

Properties

- A_f is modular: it is a quotient of $J_1(N) = \text{Jac}(X_1(N))$.
- $\mathcal{N}_{\mathbb{Q}}(A_f) = N^{\dim A_f}$ (theorem of Carayol).
- A_f is of GL₂-type: End⁰_Q(A_f) = End_Q(A_f) ⊗_Z Q ≃ E number field with [E : Q] = dim A_f. In fact E ≃ Q(..., a_n,...).

Theorem (Ribet + Serre's Conjecture)

Every A/\mathbb{Q} of GL_2 -type is isogenous to some A_f .

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

Properties

- A_f is modular: it is a quotient of $J_1(N) = \text{Jac}(X_1(N))$.
- $\mathcal{N}_{\mathbb{Q}}(A_f) = N^{\dim A_f}$ (theorem of Carayol).
- A_f is of GL₂-type: End⁰_Q(A_f) = End_Q(A_f) ⊗_Z Q ≃ E number field with [E : Q] = dim A_f. In fact E ≃ Q(..., a_n,...).

Theorem (Ribet + Serre's Conjecture)

Every A/\mathbb{Q} of GL_2 -type is isogenous to some A_f .

• Every A of GL_2 -type is modular: is a quotient of $J_1(N)$ for some N.

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

Properties

- A_f is modular: it is a quotient of $J_1(N) = \text{Jac}(X_1(N))$.
- $\mathcal{N}_{\mathbb{Q}}(A_f) = N^{\dim A_f}$ (theorem of Carayol).
- A_f is of GL₂-type: End⁰_Q(A_f) = End_Q(A_f) ⊗_Z Q ≃ E number field with [E : Q] = dim A_f. In fact E ≃ Q(..., a_n,...).

Theorem (Ribet + Serre's Conjecture)

Every A/\mathbb{Q} of GL_2 -type is isogenous to some A_f .

• Every A of GL_2 -type is modular: is a quotient of $J_1(N)$ for some N.

• By Carayol's formula: $N^{\dim A} = \mathcal{N}_{\mathbb{Q}}(A)$.

- Let $f = \sum a_n q^n \in S_2(\Gamma_1(N))$ be a normalized newform.
- Eichler-Shimura construction: $f \rightsquigarrow A_f/\mathbb{Q}$ abelian variety.

Properties

- A_f is modular: it is a quotient of $J_1(N) = \text{Jac}(X_1(N))$.
- $\mathcal{N}_{\mathbb{Q}}(A_f) = N^{\dim A_f}$ (theorem of Carayol).
- A_f is of GL₂-type: End⁰_Q(A_f) = End_Q(A_f) ⊗_Z Q ≃ E number field with [E : Q] = dim A_f. In fact E ≃ Q(..., a_n,...).

Theorem (Ribet + Serre's Conjecture)

Every A/\mathbb{Q} of GL_2 -type is isogenous to some A_f .

- Every A of GL_2 -type is modular: is a quotient of $J_1(N)$ for some N.
- By Carayol's formula: $N^{\dim A} = \mathcal{N}_{\mathbb{Q}}(A)$.
- GL_2 -type varieties are simple over \mathbb{Q} , but they may factor over $\overline{\mathbb{Q}}$.
- Ribet determined their simple factors over Q

Definition

A building block is an abelian variety $B/\overline{\mathbb{Q}}$ such that

- ${}^{\sigma}B \sim B$ for all $\sigma \in G_{\mathbb{Q}}$ (equivariant with respect to $\operatorname{End}_{\bar{\mathbb{Q}}}(B)$).
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B)$ is a central division algebra over a field *F* of Schur index t = 1 or t = 2 and $t[F : \mathbb{Q}] = \dim B$.

Definition

A building block is an abelian variety $B/\overline{\mathbb{Q}}$ such that

• ${}^{\sigma}B \sim B$ for all $\sigma \in G_{\mathbb{Q}}$ (equivariant with respect to $\operatorname{End}_{\bar{\mathbb{Q}}}(B)$).

• $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B)$ is a central division algebra over a field *F* of Schur index t = 1 or t = 2 and $t[F : \mathbb{Q}] = \dim B$.

Theorem (Ribet and Pyle)

Let A/\mathbb{Q} be a GL₂-type variety. Suppose that $A_{\overline{\mathbb{Q}}}$ does not have CM.

- $A \sim_{\bar{\mathbb{Q}}} B^n$, where $B/\bar{\mathbb{Q}}$ is a building block.
- If B/Q
 is a building block then there exists an A/Q of GL₂-type such that A ~_Q Bⁿ.

Definition

A building block is an abelian variety $B/\bar{\mathbb{Q}}$ such that

• ${}^{\sigma}B \sim B$ for all $\sigma \in G_{\mathbb{Q}}$ (equivariant with respect to $\operatorname{End}_{\bar{\mathbb{Q}}}(B)$).

• $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B)$ is a central division algebra over a field *F* of Schur index t = 1 or t = 2 and $t[F : \mathbb{Q}] = \dim B$.

Theorem (Ribet and Pyle)

Let A/\mathbb{Q} be a GL₂-type variety. Suppose that $A_{\bar{\mathbb{Q}}}$ does not have CM.

- $A \sim_{\bar{\mathbb{Q}}} B^n$, where $B/\bar{\mathbb{Q}}$ is a building block.
- If B/Q
 is a building block then there exists an A/Q of GL₂-type such that A ~_Q Bⁿ.
- Building blocks are modular over $\overline{\mathbb{Q}}$: $B/\overline{\mathbb{Q}}$ building block then it is a quotient of $J_1(N)_{\overline{\mathbb{Q}}}$ for some N.

Definition

A building block is an abelian variety $B/\bar{\mathbb{Q}}$ such that

• ${}^{\sigma}B \sim B$ for all $\sigma \in G_{\mathbb{Q}}$ (equivariant with respect to $\operatorname{End}_{\bar{\mathbb{Q}}}(B)$).

• $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B)$ is a central division algebra over a field *F* of Schur index t = 1 or t = 2 and $t[F : \mathbb{Q}] = \dim B$.

Theorem (Ribet and Pyle)

Let A/\mathbb{Q} be a GL₂-type variety. Suppose that $A_{\bar{\mathbb{Q}}}$ does not have CM.

- $A \sim_{\bar{\mathbb{Q}}} B^n$, where $B/\bar{\mathbb{Q}}$ is a building block.
- If B/Q
 is a building block then there exists an A/Q of GL₂-type such that A ~_Q Bⁿ.
- Building blocks are modular over $\overline{\mathbb{Q}}$: $B/\overline{\mathbb{Q}}$ building block then it is a quotient of $J_1(N)_{\overline{\mathbb{Q}}}$ for some N.
- We aim to give an analogous of Carayol's formula: a formula relating the conductor of *B* and its level of modularity *N*.

Xevi Guitart (UPC)

) Modular abelian varieties and their simple factors over $ar{\mathbb{Q}}$

• Let $f \in S_2(\Gamma_0(N), \varepsilon)$ newform without CM.

- Let $f \in S_2(\Gamma_0(N), \varepsilon)$ newform without CM.
- Let *L* be the smallest field such that $\operatorname{End}_{\overline{\mathbb{O}}}(A_f) = \operatorname{End}_L(A_f)$.

• Let $f \in S_2(\Gamma_0(N), \varepsilon)$ newform without CM.

• Let *L* be the smallest field such that $\operatorname{End}_{\overline{\mathbb{O}}}(A_f) = \operatorname{End}_L(A_f)$.

- Let $f \in S_2(\Gamma_0(N), \varepsilon)$ newform without CM.
- Let *L* be the smallest field such that $\operatorname{End}_{\overline{\mathbb{Q}}}(A_f) = \operatorname{End}_L(A_f)$.

Inner Twists

- Let $F = \mathbb{Q}(\{a_p^2/\varepsilon(p)\}_{p \nmid N}) \subseteq E$.
- The extension E/F is Galois abelian.
- For each s ∈ Gal(E/F) there exists a single Dirichlet character χ_s such that

$${}^{s}f = f \otimes \chi_{s}.$$

- Let $f \in S_2(\Gamma_0(N), \varepsilon)$ newform without CM.
- Let *L* be the smallest field such that $\operatorname{End}_{\overline{\mathbb{Q}}}(A_f) = \operatorname{End}_L(A_f)$.

Inner Twists

- Let $F = \mathbb{Q}(\{a_p^2/\varepsilon(p)\}_{p \nmid N}) \subseteq E$.
- The extension E/F is Galois abelian.
- For each s ∈ Gal(E/F) there exists a single Dirichlet character χ_s such that

$${}^{s}f = f \otimes \chi_{s}.$$

Theorem (González-Lario)

 $L = \overline{\mathbb{Q}}^{\bigcap \ker \chi_s}$ (identifying χ_s with a Galois character).

$$A_f \sim_L B^n$$
,

where *B* is a building block defined over *L*.

$$A_f \sim_L B^n$$
,

where *B* is a building block defined over *L*.

Main Theorem

$$A_f \sim_L B^n$$
,

where B is a building block defined over L.

Main Theorem

- If one of the following conditions is satisfied
 - N is odd and $\operatorname{ord}(\varepsilon) \leq 2$
 - N is squarefree

$$A_f \sim_L B^n$$
,

where B is a building block defined over L.

Main Theorem

If one of the following conditions is satisfied
 N is odd and ord(ε) ≤ 2
 N is squarefree
 then N_L(B) belongs to Z and
 N_L(B) ⋅ f_L^{dim B} = N^{dim B}.

$$A_f \sim_L B^n$$
,

where B is a building block defined over L.

Main Theorem

If one of the following conditions is satisfied *N* is odd and ord(ε) ≤ 2 *N* is squarefree then N_L(B) belongs to Z and
N_L(B) ⋅ f_L^{dim B} = N^{dim B}.

• Examples of \mathbb{Q} -curves where $\mathcal{N}_L(B)$ does not belong to \mathbb{Z} .

$$A_f \sim_L B^n$$
,

where B is a building block defined over L.

Main Theorem

If one of the following conditions is satisfied

N is odd and ord(ε) ≤ 2
N is squarefree
then N_L(B) belongs to Z and

N_L(B) ⋅ f^{dim B}_L = N^{dim B}.

If ε = 1 then N_L(B) belongs to Z and

N_L(B) ⋅ f^{dim B} = N^{dim B},

• Examples of \mathbb{Q} -curves where $\mathcal{N}_L(B)$ does not belong to \mathbb{Z} .

$$A_f \sim_L B^n$$
,

where B is a building block defined over L.

Main Theorem

- If one of the following conditions is satisfied
 - N is odd and $\operatorname{ord}(\varepsilon) \leq 2$
 - N is squarefree

then $\mathcal{N}_L(B)$ belongs to \mathbb{Z} and

$$\mathcal{N}_L(B) \cdot \mathfrak{f}_L^{\dim B} = N^{\dim B}$$

If ε = 1 then N_L(B) belongs to Z and
a) N_L(B) ⋅ f^{dim B} = N^{dim B}, except that the formula is
b) 2 ⋅ N_L(B) ⋅ f^{dim B} = N^{dim B}, if v₂(f_L) = 3 and there exists K ⊆ L with v₂(f_K) = 2.

• Examples of \mathbb{Q} -curves where $\mathcal{N}_L(B)$ does not belong to \mathbb{Z} .

$$A_f \sim_L B^n$$
,

where B is a building block defined over L.

Main Theorem

- If one of the following conditions is satisfied
 - *N* is odd and $\operatorname{ord}(\varepsilon) \leq 2$
 - N is squarefree

then $\mathcal{N}_L(B)$ belongs to \mathbb{Z} and

$$\mathcal{N}_L(B) \cdot \mathfrak{f}_L^{\dim B} = N^{\dim B}$$

If ε = 1 then N_L(B) belongs to Z and
a) N_L(B) ⋅ f^{dim B} = N^{dim B}, except that the formula is
b) 2 ⋅ N_L(B) ⋅ f^{dim B} = N^{dim B}, if v₂(f_L) = 3 and there exists K ⊆ L with v₂(f_K) = 2.

- Examples of ℚ-curves where N_L(B) does not belong to ℤ.
- Examples where b) does occur.

Xevi Guitart (UPC)

2 Conductors of building blocks

Example

- dim $(A_f) = 2$, $A_f \sim_L C^2$ and $[L : \mathbb{Q}] = 2$.
- $\operatorname{Res}_{L/\mathbb{Q}} C \sim_{\mathbb{Q}} A_f$.
- $\mathcal{N}_{\mathbb{Q}}(\operatorname{Res}_{L/\mathbb{Q}}C) = \mathcal{N}_{\mathbb{Q}}(A_f) = N^2.$

• Milne's formula for the conductor of the restriction of scalars:

$$\mathsf{N}_{L/\mathbb{Q}}(\mathcal{N}_L(\mathcal{C}))\mathsf{d}^2_{L/\mathbb{Q}}=\mathsf{N}^2$$

•
$$\mathcal{N}_L(C) \cdot \mathfrak{f}_L = N$$

Example

- dim $(A_f) = 2$, $A_f \sim_L C^2$ and $[L : \mathbb{Q}] = 2$.
- $\operatorname{Res}_{L/\mathbb{Q}} C \sim_{\mathbb{Q}} A_f$.
- $\mathcal{N}_{\mathbb{Q}}(\operatorname{Res}_{L/\mathbb{Q}}C) = \mathcal{N}_{\mathbb{Q}}(A_f) = N^2.$

• Milne's formula for the conductor of the restriction of scalars:

$$N_{L/\mathbb{Q}}(\mathcal{N}_L(C))d_{L/\mathbb{Q}}^2=N^2$$

•
$$\mathcal{N}_L(C) \cdot \mathfrak{f}_L = N$$

Strategy

- Compute $\operatorname{Res}_{L/\mathbb{Q}} B$ as a product of A_g 's
- Apply Milne and Carayol's formulas
- Do the computations to check the formula.

$\operatorname{Res}_{L/\mathbb{Q}} B \sim_{\mathbb{Q}} A_{f_1}^t \times \cdots A_{f_r}^t$, with A_{f_i}, A_{f_j} non-isogenous.

$\operatorname{Res}_{L/\mathbb{Q}} B \sim_{\mathbb{Q}} A_{f_1}^t \times \cdots A_{f_r}^t$, with A_{f_i}, A_{f_i} non-isogenous.

• $\operatorname{End}^{0}_{\mathbb{Q}}(\operatorname{Res}_{L/\mathbb{Q}}B) \simeq \operatorname{End}^{0}_{\overline{\mathbb{Q}}}(B) \otimes F^{c}[\operatorname{Gal}(L/\mathbb{Q})] \simeq \operatorname{End}^{0}_{\overline{\mathbb{Q}}}(B) \otimes \prod E_{i} \simeq \prod M_{t}(E_{i})$

$\operatorname{Res}_{L/\mathbb{Q}} B \sim_{\mathbb{Q}} A_{f_1}^t \times \cdots A_{f_r}^t$, with A_{f_i}, A_{f_i} non-isogenous.

• $\operatorname{End}_{\mathbb{Q}}^{0}(\operatorname{Res}_{L/\mathbb{Q}}B) \simeq \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B) \otimes F^{c}[\operatorname{Gal}(L/\mathbb{Q})] \simeq \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B) \otimes \prod E_{i} \simeq \prod M_{t}(E_{i})$ We need to identify f_{1}, \ldots, f_{r} : they are twists of f.

$\operatorname{Res}_{L/\mathbb{Q}} B \sim_{\mathbb{Q}} A_{f_1}^t \times \cdots A_{f_r}^t$, with A_{f_i}, A_{f_i} non-isogenous.

• $\operatorname{End}_{\mathbb{Q}}^{0}(\operatorname{Res}_{L/\mathbb{Q}}B) \simeq \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B) \otimes F^{c}[\operatorname{Gal}(L/\mathbb{Q})] \simeq \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(B) \otimes \prod E_{i} \simeq \prod M_{t}(E_{i})$

We need to identify f_1, \ldots, f_r : they are twists of f. Let $G = \langle \chi_s | s \in \text{Gal}(E/F) \rangle$ and define an action

$$\begin{array}{ccc} \operatorname{Gal}(E/F) \times G & \longrightarrow & G \\ (s, \chi) & \longmapsto & s \cdot \chi = \chi_s {}^s \chi \end{array}$$

$\operatorname{Res}_{L/\mathbb{Q}} B \sim_{\mathbb{Q}} A_{f_1}^t \times \cdots A_{f_r}^t$, with A_{f_i}, A_{f_i} non-isogenous.

• $\operatorname{End}_{\mathbb{Q}}^{0}(\operatorname{Res}_{L/\mathbb{Q}}B) \simeq \operatorname{End}_{\bar{\mathbb{Q}}}^{0}(B) \otimes F^{c}[\operatorname{Gal}(L/\mathbb{Q})] \simeq \operatorname{End}_{\bar{\mathbb{Q}}}^{0}(B) \otimes \prod E_{i} \simeq \prod M_{t}(E_{i})$

We need to identify f_1, \ldots, f_r : they are twists of f. Let $G = \langle \chi_s | s \in \text{Gal}(E/F) \rangle$ and define an action

$$\begin{array}{ccc} \operatorname{Gal}({\boldsymbol{E}}/{\boldsymbol{F}})\times{\boldsymbol{G}} &\longrightarrow & {\boldsymbol{G}} \\ ({\boldsymbol{s}},\chi) &\longmapsto & {\boldsymbol{s}}\cdot\chi=\chi_{{\boldsymbol{s}}}{}^{{\boldsymbol{s}}}\chi \end{array}$$

Proposition

•
$$\operatorname{Res}_{L/\mathbb{Q}} B \sim_{\mathbb{Q}} \prod_{\chi \in \hat{G}} (A_{f \otimes \chi})^t$$

• $\operatorname{dim}(A_{f \otimes \chi}) = [\operatorname{Gal}(E/F) : I_{\chi}][F : \mathbb{Q}]$

$\operatorname{Res}_{L/\mathbb{Q}} B \sim_{\mathbb{Q}} A_{f_1}^t \times \cdots A_{f_r}^t$, with A_{f_i}, A_{f_i} non-isogenous.

• $\operatorname{End}_{\mathbb{Q}}^{0}(\operatorname{Res}_{L/\mathbb{Q}}B) \simeq \operatorname{End}_{\bar{\mathbb{Q}}}^{0}(B) \otimes F^{c}[\operatorname{Gal}(L/\mathbb{Q})] \simeq \operatorname{End}_{\bar{\mathbb{Q}}}^{0}(B) \otimes \prod E_{i} \simeq \prod M_{t}(E_{i})$

We need to identify f_1, \ldots, f_r : they are twists of f. Let $G = \langle \chi_s | s \in \text{Gal}(E/F) \rangle$ and define an action

$$\begin{array}{ccc} \operatorname{Gal}({\boldsymbol{E}}/{\boldsymbol{F}})\times{\boldsymbol{G}} &\longrightarrow & {\boldsymbol{G}} \\ ({\boldsymbol{s}},\chi) &\longmapsto & {\boldsymbol{s}}\cdot\chi=\chi_{{\boldsymbol{s}}}{}^{{\boldsymbol{s}}}\chi \end{array}$$

Proposition

•
$$\operatorname{Res}_{L/\mathbb{Q}}B \sim_{\mathbb{Q}} \prod_{\chi \in \widehat{G}} (A_{f \otimes \chi})^{t}$$

• $\operatorname{dim}(A_{f \otimes \chi}) = [\operatorname{Gal}(E/F) \colon I_{\chi}][F : \mathbb{Q}]$

• If $A_g \sim_L B^m$ and $A_f \sim_L B^n$ then $g = f \otimes \chi$ for some character of L.

Dimension argument.

Xevi Guitart (UPC)

• $N_{L/\mathbb{Q}}(\mathcal{N}_{L}(B))d_{L/\mathbb{Q}}^{2\dim B} = \prod_{\chi \in G} N_{\chi}^{\dim B}, N_{\chi} = \text{level of } f \otimes \chi.$

*N*_{L/Q}(*N*_L(*B*))*d*^{2 dim B}_{L/Q} = ∏_{χ∈G} *N*^{dim B}_χ, *N*_χ = level of *f* ⊗ χ.
 *N*_{L/Q}(*N*_L(*B*)) ∏_{χ∈G} *f*^{2 dim B}_χ = ∏_{χ∈G} *N*^{dim B}_χ

- $N_{L/\mathbb{Q}}(\mathcal{N}_{L}(B))d_{L/\mathbb{Q}}^{2\dim B} = \prod_{\chi \in G} N_{\chi}^{\dim B}, N_{\chi} = \text{level of } f \otimes \chi.$
- $N_{L/\mathbb{Q}}(\mathcal{N}_{L}(B))\prod_{\chi\in G}\mathfrak{f}_{\chi}^{2\dim B}=\prod_{\chi\in G}N_{\chi}^{\dim B}$
- This gives a formula for $\mathcal{N}_L(B)$.

- $N_{L/\mathbb{Q}}(\mathcal{N}_{L}(B))d_{L/\mathbb{Q}}^{2\dim B} = \prod_{\chi \in G} N_{\chi}^{\dim B}, N_{\chi} = \text{level of } f \otimes \chi.$
- $N_{L/\mathbb{Q}}(\mathcal{N}_L(B)) \prod_{\chi \in G} \mathfrak{f}_{\chi}^{2\dim B} = \prod_{\chi \in G} N_{\chi}^{\dim B}$
- This gives a formula for $\mathcal{N}_L(B)$.
- Results of Atkin-Li give formulas for N_{χ} in terms of N and $f_{\chi}, f_{\varepsilon}$.

- $N_{L/\mathbb{Q}}(\mathcal{N}_{L}(B))d_{L/\mathbb{Q}}^{2\dim B} = \prod_{\chi \in G} N_{\chi}^{\dim B}, N_{\chi} = \text{level of } f \otimes \chi.$
- $N_{L/\mathbb{Q}}(\mathcal{N}_L(B)) \prod_{\chi \in G} \mathfrak{f}_{\chi}^{2\dim B} = \prod_{\chi \in G} N_{\chi}^{\dim B}$
- This gives a formula for $\mathcal{N}_L(B)$.
- Results of Atkin-Li give formulas for N_{χ} in terms of N and $f_{\chi}, f_{\varepsilon}$.
- Under the assumptions of the theorem we have a control of the N_χ and this formula simplifies to N_L(B)

$$\mathcal{N}_L(B) \cdot \mathfrak{f}_L^{\dim B} = N^{\dim B}$$

On the modularity level of modular abelian varieties over number fields

Xavier Guitart, Enrique González-Jiménez

Universitat Politècnica de Catalunya Universidad Autónoma de Madrid

Conférence de théorie des nombres Québec-Maine 2010