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Abstract. The main purpose of this note is to understand the arithmetic encoded in the special

value of the p-adic L-function Lgp(f ,g,h) associated to a triple of modular forms (f, g, h) of weights

(2, 1, 1), in the case where the classical L-function L(f ⊗ g ⊗ h, s) –which typically has sign +1–
does not vanish at its central critical point s = 1. When f corresponds to an elliptic curve

E/Q and the classical L-function vanishes, the Elliptic Stark Conjecture of Darmon–Lauder–
Rotger predicts that Lgp(f ,g,h)(2, 1, 1) is either 0 (when the order of vanishing of the complex

L-function is > 2) or related to logarithms of global points on E and a certain Gross–Stark unit

associated to g (when the order of vanishing is exactly 2). We complete the picture proposed by
the Elliptic Stark Conjecture by providing a formula for the value Lgp(f ,g,h)(2, 1, 1) in the case

where L(f ⊗ g ⊗ h, 1) 6= 0.
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1. Introduction

Let E be an elliptic curve defined over Q and let f ∈ S2(Nf ) be the newform attached to E. Let

g ∈ S1(Ng, χ)L, h ∈ S1(Nh, χ̄)L

be two cuspforms of weight one, inverse nebentype characters and with Fourier coefficients contained
in a number field L. Let ρg and ρh be the Artin representations attached to g and h. The tensor
product ρg ⊗ ρh is a self-dual Artin representation of dimension 4 of the form

ρ := ρg ⊗ ρh : Gal(H/Q) ↪→ Aut(Vg ⊗ Vh) ∼= GL4(L),

where H/Q is a finite extension.
In this setting, the complex L-function L(E ⊗ ρ, s) attached to the (Tate module Vp(E) of the)

elliptic curve E twisted by the Artin representation ρ coincides with the Garrett–Rankin L-function
L(f ⊗ g⊗ h, s) attached to the triple (f, g, h) of modular forms. By multiplying this L-function by
an appropriate archimedean factor L∞(f ⊗ g ⊗ h, s) one obtains an entire function Λ(f ⊗ g ⊗ h, s)
which satisfies a functional equation of the form

(1.1) Λ(f ⊗ g ⊗ h, s) = ε · Λ(f ⊗ g ⊗ h, 2− s),
where ε ∈ {±1}. Moreover, L∞(f ⊗ g ⊗ h, s) does not have zeros nor poles at s = 1.

Denote Ng and Nh the level of g and h respectively. The sign can be written as a product of
local factors ε =

∏
v εv where v runs over the places of Q, and εv = +1 if v is a finite prime which

does not divide lcm(Nf , Ng, Nh) or if v =∞. We will work under the following assumption

Assumption 1.1. εv = +1 for all v.

Assumption 1.1 holds most of the time: this is the case for instance if the greatest common
divisor of the levels of f, g and h is 1.

Fix an odd prime number p such that

p - NfNgNh,
and denote by αg, βg the eigenvalues for the action of the Frobenius element at p acting on Vg. We
use the analogous notation for h, and we assume

αg 6= βg, and αh 6= βh.

Fix once and for all completions Hp, Lp of the number fields H,L at primes above p.
Choose an ordinary p-stabilisation of g, namely gα(z) := g(z)− βgg(pz) and define analogously

hα. Let
f ∈ Λf [[q]], g ∈ Λg[[q]], h ∈ Λh[[q]]

be Hida families passing through the unique ordinary p-stabilisation of f and gα and hα respectively,
where Λf ,Λg,Λh are finite flat extensions of the Iwasawa algebra Λ := Zp[[T ]]. Consider the Garret–
Hida p-adic L-function

Lgp(f ,g,h)

of [DR14] associated to the specific choice of test vectors (f̆ , ğ, h̆) of [Hsi17, Chap. 3]. This
p-adic L-function interpolates the square-roots of the central values of the classical L-function

L(f̆k ⊗ ğ` ⊗ h̆m, s) attached to the specializations of the Hida families at classical points of weights
k, `,m with k, `,m ≥ 2 and ` ≥ k + m. Notice that the point (2, 1, 1), which corresponds to our
triple of modular forms (f, g, h), lies outside the region of classical interpolation for Lgp(f ,g,h). We
are interested in studying the value

Lgp(f ,g,h)(2, 1, 1)
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under the following assumption:

Assumption 1.2. L(E ⊗ ρ, 1) 6= 0 and Selp(E ⊗ ρ) = 0.

Here Selp(E ⊗ ρ) denotes the Bloch–Kato Selmer group attached to the representation

V := Vp(E)⊗ Vg ⊗ Vh.

Under Assumption 1.1, the sign ε of the functional equation (1.1) is +1, and thus the order
of vanishing of L(E ⊗ ρ, s) at s = 1 is even. One hence expects that L(E ⊗ ρ, 1) is generically
nonzero. If this L-value is nonzero, by [DR17] we know that the ρ-isotypical component E(H)ρ :=
HomGQ(Vg ⊗ Vh, E(H) ⊗ L) of the Mordell–Weil group E(H) is trivial. By the Shafarefich–Tate
conjecture one also expects the Selmer group Selp(E ⊗ ρ) to be trivial, although this conjecture is
widely open. It is also worth noting that the value Lgp(f ,g,h)(2, 1, 1) in the setting in which the
complex L-function L(E⊗ ρ, s) vanishes at s = 1 has been analyzed in [DLR15], where the authors
give a conjectural formula for this p-adic value as a 2 × 2-regulator of p-adic logarithms of global
points.

Under our running assumption 1.2 one can not expect a similar formula for the above p-adic
L-value, as no global points are naturally present in this scenario. The main result of this paper
consists in an explicit formula for the value Lgp(f ,g,h)(2, 1, 1) which involves the algebraic part
of the classical L-value L(E ⊗ ρ, 1) and the logarithm of a canonical non-crystalline class along a
certain crystalline direction.

In §2 we recall the basic definitions on Selmer groups and we give a precise description of the
relaxed p-Selmer group Sel(p)(E ⊗ ρ) under Assumption 1.2. More precisely, the projection to the
singular quotient gives an isomorphism

(1.2) ∂p : Sel(p)(E ⊗ ρ)
∼=−→ H1

s(Qp, V ).

Let V αg , V
β
g , with basis vαg , v

β
g respectively, be the eigenspaces of Vg for the action of Frobp with

eigenvalues αg, βg, and use the analogous notation for Vh. The GQp -representation V decomposes
as a direct sum as

V = V αα ⊕ V αβ ⊕ V βα ⊕ V ββ ,
where V αα := VpE ⊗ V αg ⊗ V αh and similarly for the other pieces. It induces the decomposition

(1.3) H1
s(Qp, V ) = H1

s(Qp, V αα)⊕H1
s(Qp, V αβ)⊕H1

s(Qp, V βα)⊕H1
s(Qp, V ββ),

and the Bloch–Kato dual exponential gives isomorphisms

exp∗αα : H1
s(Qp, V αα)

∼=−→ Lp

and similarly for the other pieces of the decomposition (1.3). Combining it with (1.2), we get a
basis

ξαα, ξαβ , ξβα, ξββ

for Sel(p)(E ⊗ ρ) characterised by the fact that

∂pξ
αα ∈ H1

s(Qp, V αα) and exp∗αα ∂pξ
αα = 1,

and similarly for ξαβ , ξβα, ξββ .
The GQp -cohomology of V and its submodule of crystalline classes H1

f (Qp, V ) ⊆ H1(Qp, V ) also
have decompositions analogous to (1.3). Moreover, if

παβ : H1(Qp, V ) −→ H1(Qp, V αβ)
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denotes the projection, then παβξ
ββ lies in H1

f (Qp, V αβ). Finally, we can write

παβξ
ββ = Rβα ⊗ vαg ⊗ v

β
h ∈ (E(Hp)⊗ V αg ⊗ V

β
h )GQp ∼= H1

f (Qp, V αβ)

where Rβα ∈ E(Hp) is a local point on which Frobp acts as multiplication by βgαh.
We can finally state the main result of the paper.

Theorem (cf Theorem 3.2). Under Assumptions 2.1 and 1.2,

(1.4) Lgp(f ,g,h)(2, 1, 1) =
A · E
π〈f, f〉

×
logp(Rβα)

Lgα
×
√
L(E ⊗ ρ, 1),

where A ∈ Q× is an explicit number, E ∈ Lp is a product of Euler factors, 〈f, f〉 denotes the

Petersson norm of f , Lgα ∈ Hp is an element on which Frobp acts as multiplication by
βg
αg

and

which only depends on gα, and logp : E(Hp)→ Hp denotes the p-adic logarithm.

We refer to Theorem 3.2 for a more precise statement of the result and of the objects appearing
in (1.4). In particular, the element Lgα is expected to be related to a so-called Gross–Stark unit
attached to gα, as conjectured in [DR16, Conjecture 2.1].

Under the additional assumption that g is not the theta series of a Hecke character of a real
quadratic field in which p splits, the value Lgp(f ,g,h)(2, 1, 1) can be recast in a more explicit way
in terms of p-adic iterated integrals, as explained in the introduction of [DLR15]. The numerical
computations we offer in §5 are obtained by calculating such integrals, where a key input are
Lauder’s algorithms [Lau14] for the computation of overconvergent projections.

As an application of the main result, in Section 4 we explore the situation where g and h are
theta series of the same imaginary quadratic field in which p splits. The following theorem is stated
as Theorem 4.1 in the text.

Theorem (cf Theorem 4.1). Let K be an imaginary quadratic field in which p is split, and let ψg
(resp. ψh) be a finite order Hecke character of K of conductor cg (resp. of conductor ch). Denote
by g and h the theta series attached to ψg and ψh, respectively. Suppose that gcd(Nf , cg, ch) = 1
and that the Nebentype characters of g and h are inverses to each other. If L(E, ρg ⊗ ρh, 1) 6= 0
then Lgp(f ,g,h)(2, 1, 1) = 0.

2. The Selmer group of f ⊗ g ⊗ h

We begin this section by collecting some standard facts on Selmer groups of p-adic Galois rep-
resentations that we will use. Then we introduce the Galois representation attached to the triple
of modular forms f , g, and h of weights 2, 1, 1, and we study the corresponding Selmer groups. In
particular, the structure of the relaxed Selmer group will be key in proving the main theorem of
Section 3.

2.1. Selmer groups. Let V be a Qp[GQ]-module and let Bcris be Fontaine’s p-adic crystalline
period ring. For each prime number `, denote

(2.1) H1
f (Q`, V ) :=

{
H1

ur(Q`, V ) := H1(Qur
` /Q`, V I`) ` 6= p

ker
(

H1(Qp, V )→ H1(Qp, V ⊗Qp Bcris)
)

` = p,

and

H1
s(Q`, V ) := H1(Q`, V )/H1

f (Q`, V ).
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The Bloch–Kato Selmer group of V is

Selp(Q, V ) := {x ∈ H1(Q, V ) | res`(x) ∈ H1
f (Q`, V ) for all `},

where res` : H1(Q, V )→ H1(Q`, V ) denotes the restriction map in Galois cohomology.
For each prime `, we denote by ∂` the composition

∂` : H1(Q, V )
res`−→ H1(Q`, V ) −→ H1

s(Q`, V ),

where the second map is the natural quotient map.
The relaxed Selmer group is defined as

Sel(p)(Q, V ) := {x ∈ H1(Q, V ) | res`(x) ∈ H1
f (Q`, V ) for all ` 6= p} ⊇ Selp(Q, V ).

Let V ∗ := HomQp(V,Qp(1)) be the Kummer dual of V . One can define a Selmer group
Selp,∗(Q, V ∗) for V ∗ which is dual to (2.1) with respect to the local Tate pairings

〈 , 〉` : H1(Q`, V )×H1(Q`, V ∗) −→ Qp.(2.2)

For each `, define H1
f,∗(Q`, V ∗) to be the orthogonal complement of H1

f (Q`, V ) with respect to (2.2);
the Selmer group attached to V ∗ is then

Selp,∗(Q, V ∗) := {x ∈ H1(Q, V ∗) | res`(x) ∈ H1
f,∗(Q`, V ∗) for all `}.

Finally, the strict Selmer group of V ∗ is the subspace of Selp,∗(Q, V ∗) defined as

Sel[p],∗(Q, V ∗) := {x ∈ H1(Q, V ∗) | res`(x) ∈ H1
f,∗(Q`, V ∗) for all ` and resp(x) = 0}.

By Poitou–Tate duality (see, for example, [MR04, Theorem 2.3.4]) there is an exact sequence

(2.3) 0→ Selp(Q, V )→ Sel(p)(Q, V )→ H1
s(Qp, V )→ Selp,∗(Q, V ∗)∨ → Sel[p],∗(Q, V ∗)∨,

where ∨ stands for the Qp-dual.

2.2. Representations attached to modular forms. In this section we review the main features
of the representations, both p-adic and Λ-adic, attached to modular forms in the lines of [DR16,
§2], which the reader can consult for more details.

Let f ∈ S2(Nf ) be a weight two normalized eigenform of level Nf , trivial nebentype character
and rational Fourier coefficients an(f). Denote by E the elliptic curve over Q of conductor Nf
associated to f by the Eichler–Shimura construction.

Let also

g ∈ S1(Ng, χ) and h ∈ S1(Nh, χ̄)

be two normalized newforms of weight one, levels Ng and Nh, and nebentype characters χ and χ̄
respectively. Denote by Kg and Kh their fields of Fourier coefficients, and put L := Kg · Kh the
compositum of these fields.

From now on, we fix a rational prime p, and we assume the following hypothesis.

Assumption 2.1. The prime p does not divide NfNgNh.

Since we will be interested in putting f in a Hida family, we assume moreover that f is ordinary
at p; that is to say, that p - ap(f).

We denote the 2-dimensional p-adic representations attached to f by Vf . Since f corresponds
to the curve E, the representation Vf is given by the rational Tate module Vp(E) = Tp(E) ⊗ Qp.
Denote by αf , βf the roots of the Hecke polynomial X2 − ap(f)X + p. Since f is ordinary at p,
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one of these roots, say αf , is a p-adic unit; also, the restriction of Vf to a decomposition group
GQp ⊂ GQ admits a filtration of Qp[GQp ]-modules

0→ V +
f −→ Vf −→ V −f → 0

with the following properties:

(1) dimQp V
+
f = dimQp V

−
f = 1;

(2) the group GQp acts on the quotient V −f via ψf , where ψf : GQp → Z×p is the unramified
character that maps an arithmetic Frobenius Frobp to αf .

(3) the group GQp acts on V +
f via the character χcyclψ

−1
f (here χcycl is the p-adic cyclotomic

character).

There are Artin representations associated to g and h. Without loss of generality we can assume
that they are defined over L, and that they factor through the same finite extension H of Q. That
is to say, they are of the form

ρg : Gal(H/Q) −→ Aut(V
a
g ) ∼= GL2(L), ρh : Gal(H/Q) −→ Aut(V

a
h ) ∼= GL2(L)

for certain 2-dimensional L-vector spaces V
a
g and V

a
h .

Fix once and for all a prime p of H and a prime P of L above p. Denote the corresponding
completions by Hp := Hp and Lp := LP. There are also p-adic Galois representations associated
to g and h, that we will denote by Vg and Vh. There are non-canonical isomorphisms

jg : V
a
g ⊗L Lp

∼=−→ Vg and jh : V
a
h ⊗L Lp

∼=−→ Vh.(2.4)

Since p - NgNh the representations Vg and Vh are unramified at p. We assume from now on that
Frobp acts on Vg and Vh with distinct eigenvalues. Let αg, βg be the eigenvalues for the action of
Frobp on Vg and let V αg , V

β
g be the corresponding eigenspaces. We will use the analogous notations

αh, βh, V αh , and V βh for h.
Denote by gα the p-stabilisation of g such that Up(gα) = αggα. The theory of Hida families

ensures the existence of a Hida family g passing through gα. This can be regarded as a power series
g ∈ Λg[[q]], where Λg is a finite flat extension of the Iwasawa algebra Λ := Zp[[T ]], with the property
that, if we denote by yg : Λg → Lp the weight corresponding to g, then yg(g) = gα. There is a locally
free Λg-module Vg and a Λ-adic representation ρg : GQ → GL(Vg) ∼= GL2(Λg) that interpolates
the p-adic representations associated to the specializations of g. As a GQp -representation, Vg is
equipped with a filtration of Λg[GQp ]-modules

(2.5) 0→ V +
g −→ Vg −→ V −g → 0,

where V +
g and V −g are locally free of rank one and the action of GQp on V −g is unramified, with Frobp

acting as multiplication by the p-th Fourier coefficient of g. There is a perfect Galois equivariant
pairing

〈 , 〉 : V −g × V +
g −→ Λg(det(ρg)).(2.6)

For a crystalline Qp[GQp ]-module W , denote D(W ) := (W ⊗ Bcris)
GQp . Recall that, if W is

unramified, then

D(W ) ∼= (W ⊗ Q̂ur
p )GQp ,

where Q̂ur
p is the p-adic completion of the maximal unramified extension of Qp. Denote by ωg ∈

D(V −g ) the canonical period associated to g constructed by Ohta [Oht95].
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By specializing via yg, we obtain the Lp-vector space yg(Vg) := Vg ⊗Λg,yg Lp, which can be

identified with Vg. Using the functoriality of D and the identification yg(V
+
g ) = V βg , yg(V

−
g ) = V αg

we obtain a pairing

(2.7) 〈 , 〉 : D(V αg )×D(V βg ) −→ D(Lp(χ)) = (Hp ⊗ Lp(χ))GQp .

Define

ωg := yg(ωg) ∈ D(V αg )

and let ηg ∈ D(V βg ) be the element characterized by the equality

(2.8) 〈ωg, ηg〉 = g(χ)⊗ 1 ∈ D(Lp(χ)),

where g(χ) denotes the Gauss sum of χ viewed as an element of Hp. We define similarly ωh ∈ D(V αh )

and ηh ∈ D(V βh ).

Using the isomorphisms (2.4) we can define an L structure on Vg by V Lg := jg(V
a
g ). Let vαg (resp.

vβg ) be an L-basis of V Lg ∩ V αg (resp. of V βg ). Define

Ωg ∈ H1/αg
p , Θg ∈ H1/βg

p

to be the elements such that

(2.9) Ωg ⊗ vαg = ωg ∈ D(V αg ), Θg ⊗ vβg = ηg ∈ D(V βg ).

Let

V := Vf ⊗ Vgh
be the p-adic representation given by the tensor product Vf ⊗ Vg ⊗ Vh. Since the product of the
nebentype characters of f , g, and h is trivial we have that V ∗ ∼= V . We next study the structure
of several Selmer groups associated to V .

2.3. Selmer groups of V . Put V
a
gh := V

a
g ⊗L V

a
h and denote by ρ the representation afforded by

this space:

ρ : Gal(H/Q) −→ Aut(V
a
gh).

Put E(H)L := E(H) ⊗Z L and denote by E(H)ρ the ρ-isotypical component of the Mordell–Weil
group:

E(H)ρ := HomGal(H/Q)(V
a
gh, E(H)L).

Lemma 2.2. There are isomorphisms

H1(Q, V ) ∼= (H1(H,Vf )⊗ Vgh)Gal(H/Q) ∼= HomGal(H/Q)(Vgh,H
1(H,Vf ));(2.10)

H1(Qp, V ) ∼= (H1(Hp, Vf )⊗ Vgh)Gal(Hp/Qp) ∼= HomGal(Hp/Qp)(Vgh,H
1(Hp, Vf )).(2.11)

Proof. We prove only (2.11), and (2.10) is proven similarly. By the inflation-restriction exact
sequence we have the exact sequence

0→ H1(Gal(Hp/Qp), V GHp )→ H1(Qp, V )→ H1(Hp, V )Gal(Hp/Qp) → H2(Gal(Hp/Qp), V GHp ).

Since H1(Gal(Hp/Qp), V GHp ) = H2(Gal(Hp/Qp), V GHp ) = 0, the restriction to GHp gives an iso-
morphism

H1(Qp, V ) −→ H1(Hp, V )Gal(Hp/Qp).

Composing it with the identifications

H1(Hp, V )Gal(Hp/Qp) = H1(Hp, Vf ⊗ Vgh)Gal(Hp/Qp) = (H1(Hp, Vf )⊗ Vgh)Gal(Hp/Qp),
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we get the first isomorphism of (2.11). Finally, the second isomorphism follows from the relation
between Hom and tensor and from the selfduality V ∨gh

∼= Vgh. �

Let E(H)
Vgh
L := HomGal(H/Q)(Vgh, E(H)L). The Kummer homomorphism

E(H)L −→ H1(H,Vf )

induces a homomorphism

δ : E(H)
Vgh
L −→ HomGal(H/Q)(Vgh,H

1(H,Vf )) ∼= H1(Q, V ),

which using (2.10) can be seen as a morphism

δ : E(H)
Vgh
L −→ H1(Q, V ).

For 4,♥ ∈ {α, β}, denote

V 4♥gh := V 4g ⊗ V ♥h and V 4♥ := Vf ⊗ V 4g ⊗ V ♥h .

Specializing (2.5) via yg we obtain

0 −→ V βg −→ Vg −→ V αg −→ 0.

For 4 6= ♥ the pairing (2.6) and its analog for h induce perfect pairings

〈 , 〉 : V 44gh × V ♥♥gh −→ Lp, 〈 , 〉 : V 4♥g × V ♥4g −→ Lp.(2.12)

The identifications

V 44gh
∼= HomLp[GQp ](V

♥♥
gh , Lp) and V 4♥gh

∼= HomLp[GQp ](V
♥4
gh , Lp),(2.13)

together with (2.11) give the following isomorphisms:

H1(Qp, V 44) ∼= (H1(Hp, Vf )⊗ V 44gh )Gal(Hp/Qp) ∼= HomGal(Hp/Qp)(V
♥♥
gh ,H1(Hp, Vf ));(2.14)

H1(Qp, V 4♥) ∼= (H1(Hp, Vf )⊗ V 4♥gh )Gal(Hp/Qp) ∼= HomGal(Hp/Qp)(V
♥4
gh ,H1(Hp, Vf )).(2.15)

It follows from [DR19, Lemma 4.1] that the submodule H1
f (Qp, Vf ⊗ V 4♥gh ) and the singular

quotient H1
s (Qp, Vf ⊗ V 4♥gh ) can be written in terms of the filtration of Vf as follows:

H1
s(Qp, Vf ⊗ V

4♥
gh ) = H1(Qp, V −f ⊗ V

4♥
gh ) ∼= (V ♥4gh ⊗H1

s(Hp, Vf ))Gal(Hp/Qp);(2.16)

H1
f (Qp, Vf ⊗ V 4♥gh ) = ker(H1(Qp, Vf ⊗ V 4♥gh )→ H1(Ip, V

−
f ⊗ V

4♥
gh )) = H1(Qp, V +

f ⊗ V
4♥
gh ).

(2.17)

Lemma 2.3. For 4,♥ ∈ {α, β}, 4 6= ♥, there are isomorphisms

δp : E(Hp)
Vgh
Lp
−→ H1

f (Qp, V );

δ4♥p : E(Hp)
V4♥
gh

Lp
−→ H1

f (Qp, V ♥4);

δ44p : E(Hp)
V44
gh

Lp
−→ H1

f (Qp, V ♥♥).
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Proof. We prove the existence of the isomorphism δ4♥, the others are similar. By Kummer theory,
there is an injective morphism

E(Hp)Lp −→ H1(Hp, Vf ),

which is an isomorphism on its image H1
f (Hp, Vf ) ∼= H1(Hp, V

+
f ). It induces an homomorphism

δ4♥p : E(Hp)
V4♥
gh

Lp
−→ HomGal(Hp/Qp)(V

4♥
gh ,H1(Hp, V

+
f )).

Using the isomorphisms (2.13) we obtain

HomGal(Hp/Qp)(V
4♥
gh ,H1(Hp, V

+
f ))

∼=−→ (H1(Hp, V
+
f )⊗ V ♥4gh )Gal(Hp/Qp).

Arguing as in the proof of Lemma 2.2, we get the isomorphisms

(H1(Hp, V
+
f )⊗ V ♥4gh )Gal(Hp/Qp) ∼= H1(Hp, V

+
f ⊗ V

♥4
gh )Gal(Hp/Qp)

∼= H1(Qp, V +
f ⊗ V

♥4
gh ) ∼= H1

f (Qp, V ♥4).

�

From now on we will make the following assumption on the Selmer group of V .

Assumption 2.4. Selp(Q, V ) = 0.

Under this assumption one can identify the relaxed Selmer group with the singular quotient.

Lemma 2.5. Under Assumptions 2.1 and 2.4 the natural map

∂p : Sel(p)(Q, V )−→H1
s(Qp, V )

is an isomorphism. In particular, there is an isomorphism

Sel(p)(Q, V ) ∼= H1
s(Qp, V αα)⊕H1

s(Qp, V αβ)⊕H1
s(Qp, V βα)⊕H1

s(Qp, V ββ)(2.18)

Proof. Since the representation V is self-dual there is an isomorphism Selp,∗(V
∗) ∼= Selp(V ), (see,

for example, [BK90] and [Bel, Theorem 2.1]). Then the lemma follows immediately from the exact
sequence (2.3). �

In the next subsection we will describe the spaces in the right hand side of (2.18) in terms of
dual exponential maps.

2.4. Bloch–Kato logarithms and exponentials. TheGQp -representations of the form V +
f ⊗ V

4♥
gh

are one dimensional and, therefore, given by characters. Indeed, GQp acts on V +
f as χcyclψ

−1
f , and

it acts as ψg (resp. ψ−1
g ) on V αg (resp. V βg ) and as ψh (resp. ψ−1

h ) on V αh (resp. V βh ). Therefore we
have that

V +
f ⊗ V

αα
gh = Lp(χcyclψ

−1
f ψgψh), V +

f ⊗ V
αβ
gh = Lp(χcyclψ

−1
f ψgψ

−1
h ),

V +
f ⊗ V

βα
gh = Lp(χcyclψ

−1
f ψ−1

g ψh), V +
f ⊗ V

ββ
gh = Lp(χcyclψ

−1
f ψ−1

g ψ−1
h ).

In particular V +
f ⊗ V

4♥
gh is of the form Lp(ψχcycl) for some nontrivial unramified character ψ. By

(2.17) we have that H1
f (Qp, V 4♥) ∼= H1(Qp, V +

f ⊗ V
4♥
gh ), and the Bloch–Kato logarithm gives an

isomorphism (cf. [DR19, Example 1.6 (a)]):

(2.19) log4♥ : H1
f (Qp, V 4♥) −→ D(V +

f ⊗ V
4♥
gh ) = D(Lp(ψχcycl)).
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For (4,♥) = (α, α), the pairings 2.7 and the analogous pairings for f and h give rise to a pairing

(2.20) 〈 , 〉 : V +
f ⊗ V

α
g ⊗ V αh × V −f (−1)⊗ V βg ⊗ V

β
h −→ Lp

which induces

(2.21) 〈 , 〉 : D(V +
f ⊗ V

α
g ⊗ V αh )×D(V −f (−1)⊗ V βg ⊗ V

β
h ) −→ D(Lp) = Lp.

Denote by ω̃f the differential form on X0(Nf ) corresponding to f . It can be naturally viewed as
an element of the de Rham cohomology group H1

dR(X0(Nf )/Qp). The comparison isomorphisms
of p-adic Hodge theory provide a natural map

H1
dR(X0(Nf )/Qp)(1) −→ D(V −f )

and therefore ω̃f gives rise to an element ωf ∈ D(V −f (−1)). In (2.21), pairing with the class
ωf ⊗ ηg ⊗ ηh gives then an isomorphism

(2.22) 〈·, ωf ⊗ ηg ⊗ ηh〉 : D(Lp(ψχcycl)) = D(V +
f ⊗ V

α
g ⊗ V αh ) −→ Lp.

There are similar pairings and isomorphisms for the remaining pairs (4,♥). We still denote

(2.23) log4♥ : H1
f (Qp, Vf ⊗ V 4♥gh ) −→ Lp

the map obtained by composing (2.19) with (2.22).

Remark 2.6. The logarithm maps of (2.23) are related to the usual p-adic logarithm on E as follows.
The differential ωf gives rise to an invariant differential on E, and we denote by

logf,p : E(Hp) −→ Hp

the corresponding formal group logarithm on E. The map logαβ coincides with the inverse of the
isomorphism of Lemma 2.3

E(Hp)
V βαgh
Lp
∼= (E(Hp)

βgαh ⊗ V αβgh )GQp

composed with the maps

(E(Hp)
βgαh ⊗ V αβgh )GQp −→ (H

βgαh
p ⊗ V αβgh )GQp = D(V αβgh ) −→ Lp

x⊗ vαg v
β
h 7−→ logf,p(x)⊗ vαg v

β
h

y 7−→ 〈y, ηgωh〉.
Analogous equalities hold for the other maps log4♥.

A similar discussion can be applied to the representations of the form V −f ⊗ V
4♥
gh . In this case

we have the following isomorphisms of 1-dimensional representations:

V −f ⊗ V
αα
gh = Lp(ψfψgψh), V −f ⊗ V

αβ
gh = Lp(ψfψgψ

−1
h χ̄),

V −f ⊗ V
βα
gh = Lp(ψfψ

−1
g ψhχ), V −f ⊗ V

ββ
gh = Lp(ψfψ

−1
g ψ−1

h ).

Therefore, V −f ⊗V
4♥
gh is isomorphic to a representation of the form Lp(ψ) for some unramified and

nontrivial character ψ. By (2.16) there is an identification

H1
s(Qp, V 4♥) = H1(Qp, Lp(ψ)),

and by [DR17, Example 1.8 (b)] the dual exponential gives isomorphisms

(2.24) exp∗4♥ : H1
s(Qp, V 4♥) −→ D(Lp(ψ)) ∼= Lp,
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where the last isomorphism is induced by pairing with the appropriate class of D(Lp(ψ
−1)) =

D(V +
f (−1)⊗ V ♥g ⊗ V

4
h ) similarly as in (2.22). Arguing as in Remark 2.6, let

exp∗f,p : H1
s(Hp, Vf ) −→ Hp

denote the dual exponential on H1
s(Hp, Vf ). Then exp∗ββ can be identified with the composition

(H1
s(Hp, Vf )αgαh ⊗ V ββgh )GQp −→ (H

αgαh
p ⊗ V ββgh )GQp = D(V ββgh ) −→ Lp

x⊗ vβg v
β
h 7−→ exp∗f,p(x)⊗ vβg v

β
h

y 7−→ 〈y, ωgωh〉,
(2.25)

after taking into account the identification

H1
s(Qp, V ββ) ∼= (H1

s(Hp, Vf )αgαh ⊗ V ββgh )GQp .

Analogous formulas hold for the dual exponentials exp4♥ on the remaining components.
To sum up the discussion of this subsection, we conclude that the relaxed Selmer group of V

admits a basis adapted to decomposition (2.18) with respect to the dual exponential maps.

Proposition 2.7. Under Assumptions 2.4 and 2.1, Sel(p)(V ) has a basis

{ξαα, ξαβ , ξβα, ξββ}(2.26)

characterized by the fact that there exist elements Ψββ ∈ H1
s(Hp, Vf )βgβh , Ψβα ∈ H1

s(Hp, Vf )βgαh , Ψαβ ∈
H1
s(Hp, Vf )αgβh , Ψαα ∈ H1

s(Hp, Vf )αgαh such that

∂pξ
αα = (Ψββ ⊗ vαg vαh , 0, 0, 0), ∂pξ

αβ = (0,Ψβα ⊗ vαg v
β
h , 0, 0)

∂pξ
βα = (0, 0,Ψαβ ⊗ vβg vαh , 0), ∂pξ

ββ = (0, 0, 0,Ψαα ⊗ vβg v
β
h)

and
exp∗f,p(Ψββ) = exp∗f,p(Ψβα) = exp∗f,p(Ψαβ) = exp∗f,p(Ψαα) = 1.

Remark 2.8. Notice that the basis (2.26) depends on the choice of the L-basis vαg , v
β
g of Vg and the

L-basis vαh , v
β
h of Vh. Then each element of the basis {ξαα, ξαβ , ξβα, ξββ} depends on this choice up

to multiplication by an element of L×.

3. Special value formula for the triple product p-adic L-function in rank 0

We continue with the notation and assumptions of the previous section. In particular, V :=
Vf ⊗ Vg ⊗ Vh is the tensor product of the p-adic representations attached to the newforms

f ∈ S2(Nf )Q, g ∈M1(Ng, χ)L, h ∈M1(Nh, χ̄)L,

and we assume from now on that gcd(Nf , Ng, Nh) is square free. Recall that V
a
g (resp. V

a
h ) stands

for the Artin representation attached to g (resp. h) and ρ denotes the tensor product representation

ρ : Gal(H/Q) −→ GL(V
a
g ⊗ V

a
h ) ∼= GL4(L).

The complex L-function
L(E, ρ, s) = L(f ⊗ g ⊗ h, s)

has entire continuation and satisfies a functional equation relating the value at s with the value at
2 − s. Let ε be the sign of this functional equation and denote N := lcm(Nf , Ng, Nh). Then ε is
the product of local signs ε =

∏
v εv, where v runs over the places of Q dividing N or ∞. In this

setting, ε∞ = +1. Assume also that εv = +1 for all v | N . In particular, the global sign is ε = 1
and the order of vanishing of L(E, ρ, s) at the central point s = 1 is even.
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Recall that p stands for a prime that does not divide N , and that g ∈ Λg[[q]] (resp. h ∈ Λh[[q]])
is a Hida family passing through the p-stabilization gα (resp. hα) such that Upgα = αggα (resp.
Uphα = αhhα). Similarly, denote by f ∈ Λf [[q]] a Hida family passing through the p-stabilization
fα of f .

Denote by Lgp(f ,g,h) the triple product p-adic L-function defined in [DR17], attached to the

choice of Λ-adic test vector (f̆ , ğ, h̆) of [Hsi17, Chap. 3]. The values Lgp(f ,g,h)(k, `,m) of this
p-adic L-function at triples of integers (k, `,m) with ` ≥ k + m interpolate the square root of the
algebraic part of

L(f̆k ⊗ ğ` ⊗ h̆m,
k + `+m− 2

2
),(3.1)

where f̆k, ğ`, h̆m denote the specializations of f̆ , ğ, h̆ at weights k, `,m.
There is an analogous triple product p-adic L-function Lfp(f ,g,h) that interpolates (3.1) but for

the range of values (k, `,m) with k ≥ `+m. In particular, Lfp(f ,g,h)(2, 1, 1) is directly related to
L(E, ρ, 1).

The article [DLR15] studies the value Lgp(f ,g,h)(2, 1, 1) when L(E, ρ, 1) = 0. In particular, the
Elliptic Stark Conjecture predicts that when E(H)ρ is 2-dimensional then Lgp(f ,g,h)(2, 1, 1) should
encode the p-adic logarithms of global elements in E(H)ρ.

In the present note, our running Assumption 2.4 is that Selp(Q, V ) = 0. This implies that
E(H)ρ = 0 and, conjecturally, it also implies that L(E, ρ, 1) 6= 0.

The main result of this section is an explicit formula for Lgp(f ,g,h)(2, 1, 1) in this case, and this
can be seen as completing the study of Lgp(f ,g,h)(2, 1, 1) initiated in [DLR15].

3.1. Kato classes. The main tool that we shall use are the generalized Kato classes

κ := κ(f, gα, hα) ∈ Sel(p)(Q, V )(3.2)

introduced in [DR17, §3]. While we refer to loc. cit. for the detailed construction of these classes,
let us describe informally how they are defined. Although the very definition of (3.2) is not strictly
necessary for our purposes below, we include it for the interest of the reader.

The class κ should be regarded as the limit as ` → 1 in weight space of a sequence of global
cohomology classes κ(f,g`,h`) indexed by weights ` ≥ 2. At ` = 2 the class is constructed by means
of the codimension 2 cycle ∆2 in the cube X1(N)3 of the classical modular curve X1(N) given by
the diagonal embedding x 7→ (x, x, x). This diagonal cycle is not trivial in cohomology, but it is
possible to modify it slightly in order to make it null-homologous and κ(f,g2,h2) is defined as the

(f̆ , ğ2, h̆2)-isotypic component of the image of ∆2 under the p-adic étale Abel-Jacobi map.
For higher weights ` > 2, one defines in a similar way a null-homologous cycle ∆` in the product

X1(N) × E`−1
1 (N) × E`−1

1 (N) where E`−1
1 (N) denotes the Kuga-Sato variety over X1(N) whose

generic fiber over a point x is the (`− 1)-th self-product of the marked elliptic curve associated to
x under the moduli interpretation.

The class κ(f,g`,h`) is then again defined as the (f̆ , ğ`, h̆`)-isotypic component of the image of
∆` under the p-adic étale Abel-Jacobi map. In [DR17] it is shown that these classes can be packaged
into a Λ-adic cohomology class κ(f,g,h) and then κ = κ(f, gα, hα) is defined as the specialization
of κ(f,g,h) at ` = 1.

Next proposition pins down the relation between the generalized Kato class κ with the p-adic
L-values Lfp(f ,g,h)(2, 1, 1) and Lgp(f ,g,h)(2, 1, 1). To lighten the notation, let us denote

Lfp := Lfp(f ,g,h)(2, 1, 1), Lgp := Lgp(f ,g,h)(2, 1, 1).
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Let

παβ : H1(Qp, V ) −→ H1(Qp, V αβ)

be the projection map induced by the natural map V → V αβ .

Proposition 3.1 (Darmon–Rotger).

(1) The element ∂pκ lies in the image of the natural map

H1
s(Qp, V ββ) −→ H1

s(Qp, V )

and

(3.3) exp∗ββ(∂pκ) =
2(1− pαfα−1

g α−1
h )

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )
× Lfp .

(2) The element παβ resp κ ∈ H1(Qp, V αβ) belongs to H1
f (Qp, V αβ) and

(3.4) logαβ(παβ resp κ) = 2(1− χ(p)p−1αfap(g)−1ap(h))−1 × Lgp.

Proof. The fact that ∂pκ is the image of an element in H1
s(Qp, V ββ) is [DR17, Proposition 2.8].

The equality (3.3) follows from Proposition 5.2 and Theorem 5.3 of [DR17]. By part (1) of the
proposition πsαβ∂pκ = 0 in the singular quotient H1

s(Qp, V αβ). This means that παβ resp κ belongs

to H1
f (Qp, V αβ). Equality (3.4) follows from Proposition 5.1, Theorem 5.3 of [DR17]. �

3.2. Main formula. Using the class κ introduced above and the basis (2.26) of Sel(p)(V ), we can

give a precise formula for Lgp in the rank 0 setting. Define the local points Rβα ∈ E(Hp)
βα by the

equality

(3.5) παβ resp ξ
ββ = Rβα ⊗ vαg v

β
h ∈ H1

f (Qp, V αβ) = (E(Hp)
βα ⊗ V αβgh )GQp .

Theorem 3.2. The class κ is a multiple of ξββ. More precisely,

κ =
ΘgΘh2(1− pαfα−1

g α−1
h )Lfp

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f ap(g)ap(h)−1)
· ξββ .

Moreover, if we define the quantities

Lgα :=
Ωg
Θg

, E :=
(1− χ(p)p−1α−1

g αh)(1− pαfα−1
g α−1

h )

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )

then we have that

Lgp = E ×
logp(Rβα)

Lgα
× Lfp mod L×.

Proof. By Proposition 3.1, κ is an element of Sel(p)(Q, V ) such that

(3.6) exp∗(∂pκ) = (0, 0, 0,
2(1− pαfα−1

g α−1
h )

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )
× Lfp).

Then κ is a multiple of the element ξββ ; indeed

κ =
exp∗ββ(∂pκ)

exp∗ββ(∂pξββ)
ξββ .
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Observe that (3.6) gives us the expression for the numerator. We now compute the denominator.

exp∗ββ(∂pξ
ββ) = 〈exp∗f,p(Ψαα)⊗ vβg v

β
h , ωgωh〉 =

exp∗f,p(Ψαα)

ΘgΘh

=
1

ΘgΘh
.

Here we used the fact that ηgηh = ΘgΘhv
β
g v

β
h . So we get

κ =
exp∗ββ(∂pκ)

exp∗ββ(∂pξββ)
· ξββ

=
2(1− pαfα−1

g α−1
h )ΘgΘh

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )
× Lfp · ξββ

By (3.4),

Lgp =
1

2
(1− χ(p)p−1α−1

g αh) logαβ(παβ resp κ)

=
ΘgΘh(1− χ(p)p−1α−1

g αh)(1− pαfα−1
g α−1

h )

αgαh(1− α−1
f αgαh)(1− χ−1(p)α−1

f αgα
−1
h )
× Lfp logαβ(παβ resp ξ

ββ)

= EΘgΘhLfp logαβ(παβ resp ξ
ββ) = EΘgΘhLfp〈logp(Rβα)⊗ vαg v

β
h , ηgωh〉

= ELfp
ΘgΘh

ΩgΘh
logp(Rβα) = ELfp

Θg

Ωg
logp(Rβα)

=
ELfp
Lgα

logp(Rβα)

since ωgηh = ΩgΘh ⊗ vαg v
β
h . �

We end this section by noting that Lgα is often expected to be related to the Gross–Stark Unit
ugα attached to the modular form gα as defined in [DLR15, §1]. More precisely, under the additional
assumption that g is not the theta series of a Hecke character of a real quadratic field in which p
splits, [DR16, Conjecture 2.1] predicts that

Lgα
?
= logp(ugα) mod L×.(3.7)

Thus we obtain the following consequence of Theorem 3.2, under the aforementioned hypothesis:

Corollary 3.3. Assuming the equality (3.7), if Selp(Q, V ) = 0 then

Lgp = E ×
logp(Rβα)

logp(ugα)
× Lfp .

4. The case of theta series of an imaginary quadratic field K where p splits

In this section we will consider a particular case where g and h are theta series of the same
imaginary quadratic field in which p splits. We will see that in this setting the representation V
decomposes in a way that forces Lgp to vanish when the complex L-function does not vanish at the
central critical point; that is, the special value of the p-adic L-function vanishes in analytic rank 0.

Let K be an imaginary quadratic field of discriminant DK . Let ψg, ψh : A×K → C× be two
finite order Hecke characters of K of conductors cg, ch and central characters ε, ε̄ respectively. Here
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ε : A×Q → C× is a finite order character of and ε̄ denotes is complex conjugate. Let g and h be the
theta series attached to ψg and ψh. They are modular forms of weight one, and their levels and
nebentype characters are given by

Ng := DK ·NK(cg), Nh := DK ·NK(ch), χ := χK · ε, χ̄ = χK · ε̄,
where NK stands for the norm on ideals of K and we regard ε and ε̄ as Dirichlet characters via
class field theory. That is to say,

g ∈M1(Ng, χ), and h ∈M1(Nh, χ̄).

Let f ∈ S2(Nf ) be a newform with rational coefficients and let E be the associated elliptic curve
over Q. We will particularize some of the results of the previous sections to this choice of forms
f , g, and h, so we will use the same notations as before. In particular, ρ stands for the Artin
representation afforded by Vg ⊗ Vh and p is a prime that does not divide Nf · Ng · Nh. In this
section, we will make the following additional assumptions:

(1) gcd(Nf , cgch) = 1;
(2) p splits in K.

A finite order Hecke character ψ of K can be regarded, via class field theory, as a Galois character
ψ : GK → A×K . Let σ0 be any element in GQ \ GK . We denote by ψ′ the character defined by

ψ′(σ) := ψ(σ0σσ
−1
0 ) (this does not depend on the particular choice of σ0). Also, ψ gives rise to a

1-dimensional representation of GK , and we let Vψ = IndQ
K(ψ) denote the induced representation; it

is a 2-dimensional representation of GQ. Observe that, with this notation, Vg = Vψg and Vh = Vψh .
There is a well-known decomposition of Vg ⊗ Vh as the direct sum of two representations:

(4.1) Vg ⊗ Vh = Vψ1
⊕ Vψ2

,

where the characters ψ1 and ψ2 are

ψ1 := ψgψh, and ψ2 := ψgψ
′
h.

This induces a decomposition of the representation V = Vf ⊗ Vg ⊗ Vh as a direct sum of two
representations:

(4.2) V = V1 ⊕ V2,

where

V1 := Vf ⊗ Vψ1
, and V2 := Vf ⊗ Vψ2

.

This induces a factorization of complex L-functions

L(E, ρ, s) = L(E,ψ1, s) · L(E,ψ2, s).

Under our assumption that gcd(Nf , cgch) = 1 the local signs of L(E,ψ1, s) and L(E,ψ2, s) are
equal, so that the local signs of L(E, ρ, s) are all equal to +1 and therefore the assumption on local
signs of Section 3 is satisfied.

Theorem 4.1. In the setting of this section, if L(E, ρ, 1) 6= 0 then Lgp = 0.

Proof. If L(E, ρ, 1) 6= 0 then L(E,ψi, 1) 6= 0 for i = 1, 2. Note that ψ1 and ψ2 are ring class
characters of the imaginary quadratic field K. Then, by results of Gross–Zagier and Kolyvagin

(4.3) Selp(Q, Vi) = 0 for i = 1, 2.

The decomposition (4.2) induces a decomposition of the Selmer groups

(4.4) Selp(Q, V ) = Selp(Q, V1)⊕ Selp(Q, V2),
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and analogously for the relaxed and the strict Selmer groups of V . In particular, Selp(Q, V ) = 0.
Since p splits in K we can write pOK = pp̄, and from our assumption that p - Nf · Ng · Nh we

see that p - cgch. Without loss of generality we can suppose that

ψg(p) = αg, ψg(p̄) = βg, ψh(p) = αh, ψh(p̄) = βh,

so that
V1 = V αα ⊕ V ββ and V2 = V αβ ⊕ V βα.

By (4.3), the same computations as in §2.1 show that there are isomorphisms

Sel(p)(Q, V1)
∂p−→ H1

s(Qp, V1)
(πsαα,π

s
ββ)

−→ H1
s(Qp, V αα1 )⊕H1

s(Qp, V
ββ
1 ),

where πsαα denotes the natural map in the singular quotient induced by the projection V → V αα,
and analogously for πsββ . Similarly, there are dual exponential maps

exp∗αα : H1
s(Qp, V αα1 ) = H1(Qp, V −f ⊗ V

αα
gh )−→Lp

and

exp∗ββ : H1
s(Q, V

ββ
1 ) = H1(Qp, V −f ⊗ V

ββ
gh )−→Lp

which are in fact isomorphisms.
Then Sel(p)(Q, V1) has dimension 2 over Qp with the canonical basis

ζαα, ζββ ,

where ζαα is characterized (up to scalars in L×) by the fact that

exp∗αα(παα∂p(ζ
αα)) = 1, and exp∗ββ(πββ∂p(ζ

αα)) = 0.

Similarly,
exp∗αα(παα∂p(ζ

ββ)) = 0, and exp∗ββ(πββ∂p(ζ
ββ)) = 1.

Analogously, Sel(p)(Q, V2) has dimension 2 with basis ζαβ , ζβα.

By Theorem 3.2, the value Lgp is a multiple of logαβ(resp ξ
ββ). On the other hand, using the

decomposition
Sel(p)(Q, V ) = Sel(p)(Q, V1)⊕ Sel(p)(Q, V2),

the element ξββ ∈ Sel(p)(Q, V ) corresponds to a multiple of (0, ζββ), and this implies that

πβα resp ξ
ββ = 0.

�

5. Numerical computations

In this section we present a few numerical examples illustrating the phenomena studied in this
note. They have been computed with a Sage ([S+20]) implementation of Lauder’s algorithms
([Lau14]), adapted to work in the current setting. The code is available at github.com/mmasdeu/

ellipticstarkconjecture. The data for the weight-one modular forms can be found in Alan
Lauder’s website.1

The aim of this section is threefold: first of all, we illustrate and numerically verify the vanishing
predicted by Theorem 4.1; we also provide various other examples not covered by Theorem 4.1 where
Lgp(f ,g,h)(2, 1, 1) vanishes, and for which we suspect there should be a systematic explanation;

1See http://people.maths.ox.ac.uk/lauder/weight1/.

github.com/mmasdeu/ellipticstarkconjecture
github.com/mmasdeu/ellipticstarkconjecture
http://people.maths.ox.ac.uk/lauder/weight1/
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finally, we present numerical data where Lgp(f ,g,h)(2, 1, 1) does not vanish, therefore confirming
that these quantities are certainly not always 0.

This raises the natural question about what is the arithmetic meaning encoded by the p-adic
L-value Lgp(f ,g,h)(2, 1, 1). When the analytic rank of the associated classical L-function is 2,
the authors of [DLR15] proposed a conjectural interpretation of these p-adic iterated integrals,
predicting that Lgp(f ,g,h)(2, 1, 1) should encode a 2 × 2-regulator given by the p-adic logarithms
along suitable directions of global points on E, rational over the number field cut out by the tensor
product ρg ⊗ ρh of the Artin representations attached to g and h.

In the setting of this note, where the analytic rank is 0, one can not expect global points on
E appearing in the picture, because according to the Birch and Swinnerton-Dyer conjecture the
eigenspace of the Mordell–Weil group of E cut out by ρg⊗ρh should be trivial (and this is indeed the
case in many instances, as proved in [DR17]). The analogous motivic class that one does expect to
show up in our scenario is a global cohomology class with values in Vp(E)⊗ρg⊗ρh that should fail
to be crystalline at p, and Lgp(f ,g,h)(2, 1, 1) should be interpreted as some sort of p-adic invariant
attached to such class. Our main Theorem 3.2 claims precisely a statement along these lines: there
exists a specific global cohomology class (namely, the generalized Kato class constructed in [DR17])
which fails to be crystalline along the direction in Vg⊗Vh on which Frobp acts with eigenvalue βgβh
(and therefore is not crystalline at p), but remains crystalline along a different direction, namely the
line in Vg⊗Vh on which Frobp acts with eigenvalue βgαh. It thus makes sense to compute the Bloch-
Kato logarithm of this class along the latter direction, and Lgp(f ,g,h)(2, 1, 1) essentially encodes
the output of that operation, together with other global invariants. This is how the numerical data
below should be understood.

In some instances one can go further and understand better these p-adic iterated integrals by
relating them to well-known constructions in the literature. Namely, in [GR20] the first and last
authors focus on the case where E has multiplicative reduction at p, while g and h are theta series
associated to characters of the same imaginary quadratic field K, in which p is assumed to remain
inert. Under these hypotheses, they prove a formula relating Lgp(f ,g,h)(2, 1, 1) to the Kolyvagin
classes constructed by Bertolini and Darmon in [BD97] by means of the tower of Heegner points of
conductor pr with r ≥ 1.

5.1. Dihedral case.

(a) We computed Lgp(f ,g,g)(2, 1, 1) with f the Hida family passing through the modular form fE
of weight 2 attached to an elliptic curve E/Q of conductor Nf and g attached to the weight-one
modular form g = θ(1K) for some imaginary quadratic field K. The modular form g belongs
then to M1(Ng, χK)Q. For each of the entries in the table we give the Cremona label for
the elliptic curve Ef , its conductor Nf , the field K, the level Ng of g, the level N such that
pαN = lcm(Nf , Ng) with α ≥ 0 and p - N . In all of these cases, we obtained Lgp(f ,g,g) = 0

up to the working precision of p10. Due to computational restrictions, only in the ramified case
we have been able to compute examples where p divides the conductor of the elliptic curve.

Note that all the elliptic curves arising in Table 1 below have rank 0 over K, and thus the
zeros obtained in this table are accounted for by Theorem 4.1.

In tables 2 and 3 below, we see instances of zeros which we expect are explained by the sign
of the action of the level N Atkin-Lehner operator although we have not verified this in detail.

In what follows we illustrate with examples the fact that the quantity Lgp(f ,g,g) is not
always zero.



TRIPLE PRODUCT p-ADIC L-FUNCTIONS AND NON-CRYSTALLINE CLASSES 18

Ef K Ng p N Lgp(f ,g,g)

11a Q(
√
−5) 20 7 220 0

11a Q(
√
−11) 11 5 11 0

19a Q(
√
−19) 19 5 19 0

19a Q(
√
−19) 19 7 19 0

39a Q(
√
−39) 39 5 39 0

51a Q(
√
−51) 51 5 51 0

55a Q(
√
−55) 55 7 55 0

187a Q(
√
−187) 187 7 187 0

Table 1. Cases with p split in K.

Ef K Ng p N Lgp(f ,g,g)

11a Q(
√
−3) 3 5 33 0

11a Q(
√
−11) 11 7 11 0

15a Q(
√
−15) 15 7 15 0

39a Q(
√
−39) 39 7 39 0

51a Q(
√
−51) 51 7 51 0

67a Q(
√
−67) 67 5 67 0

67a Q(
√
−67) 67 7 67 0

187a Q(
√
−187) 187 5 187 0

Table 2. Cases with p inert in K.

Ef K Ng p N Lgp(f ,g,g)

15a Q(
√
−15) 15 5 3 0

35a Q(
√
−35) 35 5 7 0

35a Q(
√
−35) 35 7 5 0

55a Q(
√
−55) 55 5 11 0

Table 3. Cases with p ramified in K.

(b) In this example we fix f to be attached to the elliptic curve Ef : y2 = x3 + x2 − 15x + 18, of
conductor Nf = 120. The weight-one form g we consider has level Ng = 120 also, and has
q-expansion

g(q) = q + iq2 + iq3 − q4 − iq5 − q6 − iq8 − q9 + q10 − iq12 + q15 + q16 − iq18

+ iq20 + q24 − q25 − iq27 + iq30 − 2q31 + iq32 +O(q34),
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where i2 = −1. It is the theta series attached to the Dirichlet character ε modulo 120 defined
by

ε(97) = −1, ε(31) = 1, ε(41) = −1, ε(61) = −1.

The field cut out by ε is K = Q(
√
−6), and we take p = 5 which is split in both L = Q(

√
−1)

and K. Note that p divides Nf and Ng. We compute to precision 10 the quantity

Lg5(f ,g,g)(2, 1, 1) = 4 · 5 + 3 · 52 + 4 · 53 + 3 · 55 + 4 · 56 + 3 · 57 + 58 + 2 · 59 +O(510).

With the same setting, we take p = 13 (now p is split in L but inert in K). We obtain

Lg13(f ,g,g)(2, 1, 1) = 7 + 3 · 13 + 10 · 132 + 134 + 11 · 135 + 136 + 6 · 137 + 4 · 138 + 5 · 139 +O(1310)

(c) Let Ef be the elliptic curve y2 + y = x3 + x2 + 42x − 131 with label 175c1. It has conductor
Nf = 175 and rank 0. Let g = h be the theta series of the character ε1 of K = Q(α) with α
satisfying α2 − α + 2 = 0, of discriminant DK = −7 and conductor 5OK (which is inert, of
norm 25), satisfying

ε1(127) = −1, ε1(101) = −1.

The modular form g has q-expansion

g(q) = q + iq2 − iq7 + iq8 − q9 − q11 + q14 − q16 − iq18 − iq22 − iq23 + q29 +O(q30),

where again i2 = 1. For p = 13 (which is inert in K and split in L), we obtain

Lg13(f ,g,g)(2, 1, 1) = 1 + 3 · 13 + 2 · 132 + 133 + 12 · 134 + 9 · 135 + 3 · 138 + 5 · 139 +O(1310).

(d) Finally, consider the elliptic curve Ef of conductor 175 from the previous example, and for
g = h consider the theta series of another character ε2 of K = Q(α), α2 − α + 2 = 0, of
discriminant DK = −7 and conductor 5OK (inert, of norm 25), now taking the values

ε2(127) = 1, ε2(101) = −1.

This yields a modular form g with q-expansion

g(q) = q + q2 − q7 − q8 + q9 − q11 − q14 − q16 + q18 − q22 + q23 − q29 +O(q30).

We numerically obtain for p = 13 that

Lg13(f ,g,g)(2, 1, 1) = 0.

Again, we do not have a way to prove that Lg13(f ,g,g)(2, 1, 1) is actually zero.

5.2. Exotic image case. In the non-CM setting, we have been able to compute the following
example. Consider Ef : y2 = x3 − 17x− 27, which has conductor Nf = 124. Let g be the modular
form of level Ng = 124 and projective image A4, defined as the theta series of the character ε of
conductor 124 having values

ε(65) = α2 − 1, ε(63) = −1,

where α satisfies α4 − α2 + 1 = 0. The modular form g has q-expansion

g(q) = q − α3q2 +
(
−α3 + α

)
q3 − q4 +

(
α2 − 1

)
q5 − α2q6 +

(
α3 − α

)
q7 + α3q8 + αq10 − αq11

+
(
α3 − α

)
q12 +

(
−α2 + 1

)
q13 + α2q14 + α3q15 + q16 − α2q17 +

(
−α3 + α

)
q19 +

(
−α2 + 1

)
q20

+
(
α2 − 1

)
q21 +

(
α2 − 1

)
q22 + α2q24 − αq26 + α3q27 +O(q28).

We let h = g∗ its complex conjugate, and compute with p = 13, obtaining

Lg13(f ,g,h)(2, 1, 1) = 1+5·13+5·132+4·133+6·134+6·135+6·136+137+3·138+9·139+9·1310+O(1311).
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