Computing equations of elliptic curves over number fields via p-adic methods

Xevi Guitart ${ }^{1}$ Marc Masdeu ${ }^{2}$ Haluk Sengun ${ }^{3}$
${ }^{1}$ Universitat de Barcelona
${ }^{2}$ University of Warwick
${ }^{3}$ University of Sheffield

Seminari de teoria de nombres, Barcelona Jan 2015

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Problem
 Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Problem

Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

- For $K=\mathbb{Q}$ we have the ANTWERP or Cremona tables

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Problem

Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

- For $K=\mathbb{Q}$ we have the ANTWERP or Cremona tables
- Other number fields: not many systematic tables yet

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Problem

Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

- For $K=\mathbb{Q}$ we have the ANTWERP or Cremona tables
- Other number fields: not many systematic tables yet
- Naive enumeration algorithm:
- list tuples [c_{4}, c_{6}]
- compute the conductor (Tate's algorithm)
- keep those of small conductor

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Problem

Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

- For $K=\mathbb{Q}$ we have the ANTWERP or Cremona tables
- Other number fields: not many systematic tables yet
- Naive enumeration algorithm:
- list tuples [c_{4}, c_{6}]
- compute the conductor (Tate's algorithm)
- keep those of small conductor
- Curves of small conductor might have c_{i} 's of large height

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Problem

Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

- For $K=\mathbb{Q}$ we have the ANTWERP or Cremona tables
- Other number fields: not many systematic tables yet
- Naive enumeration algorithm:
- list tuples $\left[c_{4}, c_{6}\right.$]
- compute the conductor (Tate's algorithm)
- keep those of small conductor
- Curves of small conductor might have c_{i} 's of large height
- How do we know if the list is complete?

Computing equations of elliptic curves

- K a number field

$$
E / K: y^{2}=x^{3}+c_{4} x+c_{6}, \text { with } c_{i} \in K
$$

- Conductor $\mathcal{N} \subset \mathcal{O}_{K}$
- There are finitely many curves with a given conductor

Problem

Compute equations of "the first" elliptic curves over K (ordered by the norm of the conductor)

- For $K=\mathbb{Q}$ we have the ANTWERP or Cremona tables
- Other number fields: not many systematic tables yet
- Naive enumeration algorithm:
- list tuples [c_{4}, c_{6}]
- compute the conductor (Tate's algorithm)
- keep those of small conductor
- Curves of small conductor might have c_{i} 's of large height
- How do we know if the list is complete?
- Modularity: elliptic curves (should) correspond to modular forms

Outline

(1) Modularity of elliptic curves over number fields
(2) $K=\mathbb{Q}$ (and K totally real)
(3) K non-totally real: A p-adic construction
(4) Explicit computations and tables

Outline

(1) Modularity of elliptic curves over number fields
(2) $K=\mathbb{Q}$ (and K totally real)
(3) K non-totally real: A p-adic construction
4. Explicit computations and tables

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3-space)

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3-space)
- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3 -space)
- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$
- e.g. $K=\mathbb{Q}$: it is the (open) modular curve

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3 -space)
- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$
- e.g. $K=\mathbb{Q}$: it is the (open) modular curve
- $H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ finite dimensional vector space

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3 -space)
- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$
- e.g. $K=\mathbb{Q}$: it is the (open) modular curve
- $H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ finite dimensional vector space
- Admits a description in terms of modular forms for $\Gamma_{0}(\mathcal{N})$

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3 -space)
- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$
- e.g. $K=\mathbb{Q}$: it is the (open) modular curve
- $H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ finite dimensional vector space
- Admits a description in terms of modular forms for $\Gamma_{0}(\mathcal{N})$
- Hecke operators T_{f} for primes $\mathfrak{I} \dagger \mathcal{N}$

Modularity over number fields

- K number field. Let us assume that $h_{K}^{+}=1$.
- K of signature $(n, s): K \hookrightarrow \mathbb{R}^{n} \times \mathbb{C}^{s}$
- Fix an ideal $\mathcal{N} \subset \mathcal{O}_{K}$

$$
\Gamma_{0}(\mathcal{N})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \mathcal{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R})^{n} \times \mathrm{SL}_{2}(\mathbb{C})^{s}
$$

- $\mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H}=\{z=x+i y: y>0\}$ (upper half plane)
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$ (hyperbolic 3-space)
- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$
- e.g. $K=\mathbb{Q}$: it is the (open) modular curve
- $H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ finite dimensional vector space
- Admits a description in terms of modular forms for $\Gamma_{0}(\mathcal{N})$
- Hecke operators $T_{\mathfrak{l}}$ for primes $\mathfrak{l} \nmid \mathcal{N}$
- Rational eigenclass $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ such that

$$
T_{\mathfrak{l}} f=a_{\mathfrak{l}} f \text { with } a_{\mathfrak{l}} \in \mathbb{Z} \text { for all } \mathfrak{l}
$$

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

$$
\# E_{f}\left(\mathcal{O}_{K} / \mathfrak{l}\right)=|\mathfrak{l}|+1-a_{\mathfrak{l}} \text { for all } \mathfrak{l} \nmid \mathcal{N}
$$

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

$$
\# E_{f}\left(\mathcal{O}_{K} / \mathfrak{l}\right)=|\mathfrak{l}|+1-a_{\mathfrak{l}} \text { for all } \mathfrak{l} \nmid \mathcal{N}
$$

Conversely: any (non-CM) curve E / K is isogenous to E_{f} for some f.

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

$$
\# E_{f}\left(\mathcal{O}_{K} / \mathfrak{l}\right)=|\mathfrak{l}|+1-a_{\mathfrak{l}} \text { for all } \mathfrak{l} \nmid \mathcal{N}
$$

Conversely: any (non-CM) curve E / K is isogenous to E_{f} for some f.

- It's known for $K=\mathbb{Q}$ (Eichler-Shimura + Modularity Theorem) and in many cases for K totally real.

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

$$
\# E_{f}\left(\mathcal{O}_{K} / \mathfrak{l}\right)=|\mathfrak{l}|+1-a_{\mathfrak{l}} \text { for all } \mathfrak{l} \nmid \mathcal{N}
$$

Conversely: any (non-CM) curve E / K is isogenous to E_{f} for some f.

- It's known for $K=\mathbb{Q}$ (Eichler-Shimura + Modularity Theorem) and in many cases for K totally real.
- Much less is known if K has a complex place

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

$$
\# E_{f}\left(\mathcal{O}_{K} / \mathfrak{l}\right)=|\mathfrak{l}|+1-a_{\mathfrak{l}} \text { for all } \mathfrak{l} \nmid \mathcal{N}
$$

Conversely: any (non-CM) curve E / K is isogenous to E_{f} for some f.

- It's known for $K=\mathbb{Q}$ (Eichler-Shimura + Modularity Theorem) and in many cases for K totally real.
- Much less is known if K has a complex place
- $H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$: very concrete and (let's say) can be computed

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

$$
\# E_{f}\left(\mathcal{O}_{K} / \mathfrak{l}\right)=|\mathfrak{l}|+1-a_{\mathfrak{l}} \text { for all } \mathfrak{l} \nmid \mathcal{N}
$$

Conversely: any (non-CM) curve E / K is isogenous to E_{f} for some f.

- It's known for $K=\mathbb{Q}$ (Eichler-Shimura + Modularity Theorem) and in many cases for K totally real.
- Much less is known if K has a complex place
- $H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$: very concrete and (let's say) can be computed

Problem

Given a rational eigenclass $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$, construct E_{f}.

Modularity over number fields

- $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$ a (non-trivial) rational eigenclass

Conjecture

There is an elliptic curve E_{f} / K of conductor \mathcal{N} corresponding to f :

$$
\# E_{f}\left(\mathcal{O}_{K} / \mathfrak{l}\right)=|\mathfrak{l}|+1-a_{\mathfrak{l}} \text { for all } \mathfrak{l} \nmid \mathcal{N}
$$

Conversely: any (non-CM) curve E / K is isogenous to E_{f} for some f.

- It's known for $K=\mathbb{Q}$ (Eichler-Shimura + Modularity Theorem) and in many cases for K totally real.
- Much less is known if K has a complex place
- $H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$: very concrete and (let's say) can be computed

Problem

Given a rational eigenclass $f \in H^{n+s}\left(Y_{0}(\mathcal{N}), \mathbb{C}\right)$, construct E_{f}.

- For $K=\mathbb{Q}$ this is the classical Eichler-Shimura construction

Outline

(1) Modularity of elliptic curves over number fields

(2) $K=\mathbb{Q}$ (and K totally real)

(3) K non-totally real: A p-adic construction

4. Explicit computations and tables

The Eichler-Shimura construction

- If $K=\mathbb{Q}$ then $H^{1}\left(Y_{0}(N), \mathbb{C}\right) \longleftrightarrow$ classical modular forms

The Eichler-Shimura construction

- If $K=\mathbb{Q}$ then $H^{1}\left(Y_{0}(N), \mathbb{C}\right) \longleftrightarrow$ classical modular forms
- $f(z)=\sum_{j \geq 1} a_{j} e^{2 \pi i j z}$ with $a_{j} \in \mathbb{Z}$

The Eichler-Shimura construction

- If $K=\mathbb{Q}$ then $H^{1}\left(Y_{0}(N), \mathbb{C}\right) \longleftrightarrow$ classical modular forms
- $f(z)=\sum_{j \geq 1} a_{j} e^{2 \pi i j z}$ with $a_{j} \in \mathbb{Z}$
- Lattice $\Lambda_{f}=\left\{\int_{\tau}^{\gamma \tau} 2 \pi i f(z) d z: \gamma \in \Gamma_{0}(N)\right\} \subset \mathbb{C}$

The Eichler-Shimura construction

- If $K=\mathbb{Q}$ then $H^{1}\left(Y_{0}(N), \mathbb{C}\right) \longleftrightarrow$ classical modular forms
- $f(z)=\sum_{j \geq 1} a_{j} e^{2 \pi i j z}$ with $a_{j} \in \mathbb{Z}$
- Lattice $\Lambda_{f}=\left\{\int_{\tau}^{\gamma \tau} 2 \pi i f(z) d z: \gamma \in \Gamma_{0}(N)\right\} \subset \mathbb{C}$

Theorem (Manin)

Λ_{f} is the period lattice of E_{f}. That is, $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$

The Eichler-Shimura construction

- If $K=\mathbb{Q}$ then $H^{1}\left(Y_{0}(N), \mathbb{C}\right) \longleftrightarrow$ classical modular forms
- $f(z)=\sum_{j \geq 1} a_{j} e^{2 \pi i z}$ with $a_{j} \in \mathbb{Z}$
- Lattice $\Lambda_{f}=\left\{\int_{\tau}^{\gamma \tau} 2 \pi i f(z) d z: \gamma \in \Gamma_{0}(N)\right\} \subset \mathbb{C}$

Theorem (Manin)

Λ_{f} is the period lattice of E_{f}. That is, $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$

- Explicit formulas for $c_{4}\left(\Lambda_{f}\right)$ and $c_{6}\left(\Lambda_{f}\right)$, hence an equation of E_{f}
- Cremona's tables: curves up to $N=350,000$ (and increasing)

The Eichler-Shimura construction

- If $K=\mathbb{Q}$ then $H^{1}\left(Y_{0}(N), \mathbb{C}\right) \longleftrightarrow$ classical modular forms
- $f(z)=\sum_{j \geq 1} a_{j} e^{2 \pi i z}$ with $a_{j} \in \mathbb{Z}$
- Lattice $\Lambda_{f}=\left\{\int_{\tau}^{\gamma \tau} 2 \pi i f(z) d z: \gamma \in \Gamma_{0}(N)\right\} \subset \mathbb{C}$

Theorem (Manin)

Λ_{f} is the period lattice of E_{f}. That is, $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$

- Explicit formulas for $c_{4}\left(\Lambda_{f}\right)$ and $c_{6}\left(\Lambda_{f}\right)$, hence an equation of E_{f}
- Cremona's tables: curves up to $N=350,000$ (and increasing)
- Why does this work?
- There is some geometry behind: $\operatorname{Jac}\left(X_{0}(N)\right) \longrightarrow E_{f}$

The Eichler-Shimura construction

- If $K=\mathbb{Q}$ then $H^{1}\left(Y_{0}(N), \mathbb{C}\right) \longleftrightarrow$ classical modular forms
- $f(z)=\sum_{j \geq 1} a_{j} e^{2 \pi i z}$ with $a_{j} \in \mathbb{Z}$
- Lattice $\Lambda_{f}=\left\{\int_{\tau}^{\gamma \tau} 2 \pi i f(z) d z: \gamma \in \Gamma_{0}(N)\right\} \subset \mathbb{C}$

Theorem (Manin)

Λ_{f} is the period lattice of E_{f}. That is, $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$

- Explicit formulas for $c_{4}\left(\Lambda_{f}\right)$ and $c_{6}\left(\Lambda_{f}\right)$, hence an equation of E_{f}
- Cremona's tables: curves up to $N=350,000$ (and increasing)
- Why does this work?
- There is some geometry behind: $\operatorname{Jac}\left(X_{0}(N)\right) \longrightarrow E_{f}$
- K totally real: Eicher-Shimura generalizes (at least in some cases). The geometric object is a Shimura curve.

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
- $\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}_{3}, \mathbb{Z}\right)\right\}$ is a lattice in \mathbb{R} : doesn't give E_{f}

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
- $\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}_{3}, \mathbb{Z}\right)\right\}$ is a lattice in \mathbb{R} : doesn't give E_{f}
- Apparently: no geometric construction of E_{f} for non-totally real K

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
- $\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}_{3}, \mathbb{Z}\right)\right\}$ is a lattice in \mathbb{R} : doesn't give E_{f}
- Apparently: no geometric construction of E_{f} for non-totally real K

Our goal

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
- $\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}_{3}, \mathbb{Z}\right)\right\}$ is a lattice in \mathbb{R} : doesn't give E_{f}
- Apparently: no geometric construction of E_{f} for non-totally real K

Our goal

- Propose a conjectural analytic construction of E_{f}, under the additional assumption that there exists a prime $\mathfrak{p} \| \mathcal{N}$

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
- $\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}_{3}, \mathbb{Z}\right)\right\}$ is a lattice in \mathbb{R} : doesn't give E_{f}
- Apparently: no geometric construction of E_{f} for non-totally real K

Our goal

- Propose a conjectural analytic construction of E_{f}, under the additional assumption that there exists a prime $\mathfrak{p} \| \mathcal{N}$
- Provide numerical evidence for the conjecture

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
- $\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}_{3}, \mathbb{Z}\right)\right\}$ is a lattice in \mathbb{R} : doesn't give E_{f}
- Apparently: no geometric construction of E_{f} for non-totally real K

Our goal

- Propose a conjectural analytic construction of E_{f}, under the additional assumption that there exists a prime $\mathfrak{p} \| \mathcal{N}$
- Provide numerical evidence for the conjecture
- The construction is a (rather straightforward) generalization of the p-adic uniformizations arising in the theory of Stark-Heegner points (Bertolini-Darmon, Dasgupta, M. Greenberg, Trifkovic,...)

What if K has a complex place?

- $Y_{0}(\mathcal{N})=\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}^{n} \times \mathcal{H}_{3}^{s}$ is not an algebraic variety anymore
- Simplest case: K imaginary quadratic
- $\left\{\int_{\gamma} \omega_{f}: \gamma \in H_{1}\left(\Gamma_{0}(\mathcal{N}) \backslash \mathcal{H}_{3}, \mathbb{Z}\right)\right\}$ is a lattice in \mathbb{R} : doesn't give E_{f}
- Apparently: no geometric construction of E_{f} for non-totally real K

Our goal

- Propose a conjectural analytic construction of E_{f}, under the additional assumption that there exists a prime $\mathfrak{p} \| \mathcal{N}$
- Provide numerical evidence for the conjecture
- The construction is a (rather straightforward) generalization of the p-adic uniformizations arising in the theory of Stark-Heegner points (Bertolini-Darmon, Dasgupta, M. Greenberg, Trifkovic,...)
- Compute the \mathfrak{p}-adic lattice: replace \mathbb{C} by $\mathbb{C}_{p}=\widehat{\mathbb{Q}}_{p}$
- Tate's uniformization: $E\left(\mathbb{C}_{p}\right) \simeq \mathbb{C}_{p}^{\times} / \Lambda_{E}$ for some $\Lambda_{E} \subset \mathbb{C}_{p}^{\times}$

Outline

(9) Modularity of elliptic curves over number fields

(2) $K=\mathbb{Q}$ (and K totally real)
(3) K non-totally real: A p-adic construction

4. Explicit computations and tables

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{array}{ccc}
\Omega_{\mathcal{H}}^{1} \times \operatorname{Div}^{0}(\mathcal{H}) & \longrightarrow & \mathbb{C} \\
\left(f(z) d z, \tau_{2}-\tau_{1}\right) & \longmapsto & \int_{\tau_{1}}^{\tau_{2}} f(z) d z
\end{array}
$$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{array}{ccc}
\Omega_{\mathcal{H}}^{1} \times \operatorname{Div}^{0}(\mathcal{H}) & \longrightarrow & \mathbb{C} \\
\left(f(z) d z, \tau_{2}-\tau_{1}\right) & \longmapsto & \int_{\tau_{1}}^{\tau_{2}} f(z) d z
\end{array}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{aligned}
& H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) \longrightarrow \underset{\left.(z) d z, \tau_{2}-\tau_{1}\right)}{\mathbb{C}} \\
& \longmapsto \int_{\tau_{1}}^{\tau_{2}} f(z) d z
\end{aligned}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{array}{rll}
H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) & \longrightarrow & \mathbb{C} \\
\left(f(z) d z, \tau_{2}-\tau_{1}\right) & \longmapsto & \int_{\tau_{1}}^{\tau_{2}} f(z) d z
\end{array}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{array}{rll}
H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) & \longrightarrow & \mathbb{C} \\
\left(f(z) d z, \tau_{2}-\tau_{1}\right) & \longmapsto & \int_{\tau_{1}}^{\tau_{2}} f(z) d z
\end{array}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$
- $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}=$ rigid analytic differentials on $\mathcal{H}_{\mathfrak{p}}$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{array}{rlc}
H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) & \longrightarrow & \mathbb{C} \\
\left(f(z) d z, \tau_{2}-\tau_{1}\right) & \longmapsto & \int_{\tau_{1}}^{\tau_{2}} f(z) d z
\end{array}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$
- $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}=$ rigid analytic differentials on $\mathcal{H}_{\mathfrak{p}}$
- Coleman integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}, \tau_{1}, \tau_{2} \in \mathcal{H}_{\mathfrak{p}} \rightsquigarrow \int_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{aligned}
& H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) \longrightarrow \\
& \mathbb{C} \\
&\left(f(z) d z, \tau_{2}-\tau_{1}\right) \longmapsto
\end{aligned}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$
- $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}=$ rigid analytic differentials on $\mathcal{H}_{\mathfrak{p}}$
- Coleman integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}, \tau_{1}, \tau_{2} \in \mathcal{H}_{\mathfrak{p}} \rightsquigarrow \int_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}$
- Multiplicative integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \rightsquigarrow f_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}^{\times}$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{aligned}
& H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) \longrightarrow \\
& \mathbb{C} \\
&\left(f(z) d z, \tau_{2}-\tau_{1}\right) \longmapsto
\end{aligned}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$
- $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}=$ rigid analytic differentials on $\mathcal{H}_{\mathfrak{p}}$
- Coleman integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}, \tau_{1}, \tau_{2} \in \mathcal{H}_{\mathfrak{p}} \rightsquigarrow \int_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}$
- Multiplicative integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \rightsquigarrow f_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}^{\times}$
- $f: \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z}) \times \operatorname{Div}^{0}\left(\mathcal{H}_{p}\right) \longrightarrow \mathbb{C}_{\mathfrak{p}}^{\times}$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{aligned}
& H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) \longrightarrow \\
& \mathbb{C} \\
&\left(f(z) d z, \tau_{2}-\tau_{1}\right) \longmapsto
\end{aligned}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$
- $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}=$ rigid analytic differentials on $\mathcal{H}_{\mathfrak{p}}$
- Coleman integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}, \tau_{1}, \tau_{2} \in \mathcal{H}_{\mathfrak{p}} \rightsquigarrow \int_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}$
- Multiplicative integral: $\omega \in \Omega_{\mathcal{H}_{\mathrm{p}}}^{1}(\mathbb{Z}) \rightsquigarrow f_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}^{\times}$
- $f: \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \times \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right) \longrightarrow \mathbb{C}_{\mathfrak{p}}^{\times}$
- Multiplicative integration pairing:

$$
f: H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}
$$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{aligned}
& H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) \longrightarrow \\
& \mathbb{C} \\
&\left(f(z) d z, \tau_{2}-\tau_{1}\right) \longmapsto
\end{aligned}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$
- $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}=$ rigid analytic differentials on $\mathcal{H}_{\mathfrak{p}}$
- Coleman integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}, \tau_{1}, \tau_{2} \in \mathcal{H}_{\mathfrak{p}} \rightsquigarrow \int_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}$
- Multiplicative integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \rightsquigarrow f_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}^{\times}$
- $f: \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \times \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right) \longrightarrow \mathbb{C}_{\mathfrak{p}}^{\times}$
- Multiplicative integration pairing:

$$
f: H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}
$$

- S-arithmetic group: $\Gamma=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{K}\left[\frac{1}{\mathfrak{p}}\right]\right): \mathcal{N} \mid c\right\}$

The \mathfrak{p}-adic integration pairing

- Recall the integration pairing in the Eichler-Shimura construction

$$
\begin{aligned}
& H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right) \times H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right) \longrightarrow \\
& \mathbb{C} \\
&\left(f(z) d z, \tau_{2}-\tau_{1}\right) \longmapsto
\end{aligned}
$$

- In fact: $f(z) d z \in H^{0}\left(\Gamma_{0}(N), \Omega_{\mathcal{H}}^{1}\right)$ and $\tau_{2}-\tau_{1} \in H_{0}\left(\Gamma_{0}(N), \operatorname{Div}^{0}(\mathcal{H})\right)$
- Replace \mathcal{H} by the \mathfrak{p}-adic upper half plane $\mathcal{H}_{\mathfrak{p}}=\mathbb{C}_{p} \backslash K_{\mathfrak{p}}$
- $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}=$ rigid analytic differentials on $\mathcal{H}_{\mathfrak{p}}$
- Coleman integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}, \tau_{1}, \tau_{2} \in \mathcal{H}_{\mathfrak{p}} \rightsquigarrow \int_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}$
- Multiplicative integral: $\omega \in \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \rightsquigarrow f_{\tau_{2}}^{\tau_{1}} \omega \in \mathbb{C}_{p}^{\times}$
- $f: \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \times \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right) \longrightarrow \mathbb{C}_{\mathfrak{p}}^{\times}$
- Multiplicative integration pairing:

$$
f: H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}
$$

- S-arithmetic group: $\Gamma=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{K}\left[\frac{1}{\mathfrak{p}}\right]\right): \mathcal{N} \mid c\right\}$
- More generally: $\Gamma \subset B^{\times}$non-split quaternion algebras
$-n+s \rightsquigarrow$ number of infinite places of K at which B splits

The \mathfrak{p}-adic lattice

- $f^{:} H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass

The \mathfrak{p}-adic lattice

- $f^{\prime} H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ is a Hecke module

The \mathfrak{p}-adic lattice

- $f^{:} H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right)$ is a Hecke module
- There exists $\omega_{f} \in H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ with the same eigenvalues as f

The \mathfrak{p}-adic lattice

- $f^{\prime} H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right)$ is a Hecke module
- There exists $\omega_{f} \in H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ with the same eigenvalues as f
- $0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \longrightarrow \mathbb{Z} \longrightarrow 0$

The \mathfrak{p}-adic lattice

- $\quad:^{\prime} H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathrm{p}}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right)$ is a Hecke module
- There exists $\omega_{f} \in H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ with the same eigenvalues as f
- $0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \longrightarrow \mathbb{Z} \longrightarrow 0$
- induces a connecting map $H_{n+s+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_{n+s}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}}\right)$

The \mathfrak{p}-adic lattice

- $f: H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ is a Hecke module
- There exists $\omega_{f} \in H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ with the same eigenvalues as f
- $0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \longrightarrow \mathbb{Z} \longrightarrow 0$
- induces a connecting map $H_{n+s+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_{n+s}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}}\right)$
- Define $\Lambda_{f}=\left\{f_{\delta \Delta} \omega_{f}: \Delta \in H_{n+s+1}(\Gamma, \mathbb{Z})\right\} \subset \mathbb{C}_{p}^{\times}$

The \mathfrak{p}-adic lattice

- $f: H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ is a Hecke module
- There exists $\omega_{f} \in H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ with the same eigenvalues as f
- $0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \longrightarrow \mathbb{Z} \longrightarrow 0$
- induces a connecting map $H_{n+s+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_{n+s}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Define $\Lambda_{f}=\left\{f_{\delta \Delta} \omega_{f}: \Delta \in H_{n+s+1}(\Gamma, \mathbb{Z})\right\} \subset \mathbb{C}_{p}^{\times}$

Conjecture

$\mathbb{C}_{p}^{\times} / \Lambda_{f}$ is isogenous to E_{f} / \mathbb{C}_{p}

The \mathfrak{p}-adic lattice

- \quad : $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{\mathfrak{p}}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ is a Hecke module
- There exists $\omega_{f} \in H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ with the same eigenvalues as f
- $0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \longrightarrow \mathbb{Z} \longrightarrow 0$
- induces a connecting map $H_{n+s+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_{n+s}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Define $\Lambda_{f}=\left\{f_{\delta \Delta} \omega_{f}: \Delta \in H_{n+s+1}(\Gamma, \mathbb{Z})\right\} \subset \mathbb{C}_{p}^{\times}$

Conjecture

$\mathbb{C}_{p}^{\times} / \Lambda_{f}$ is isogenous to E_{f} / \mathbb{C}_{p}

- For $K=\mathbb{Q}$ this is proven (Darmon, Dasgupta-Greenberg, Longo-Rotger-Vigni)

The \mathfrak{p}-adic lattice

- $f: H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{p}}^{1}(\mathbb{Z})\right) \times H_{n+s}\left(\Gamma, \operatorname{Div}^{0}\left(\mathcal{H}_{p}\right)\right) \longrightarrow \mathbb{C}_{p}^{\times}$
- Our data: $f \in H^{n+s}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$ rational eigenclass
- $H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ is a Hecke module
- There exists $\omega_{f} \in H^{n+s}\left(\Gamma, \Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z})\right)$ with the same eigenvalues as f
- $0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \longrightarrow \mathbb{Z} \longrightarrow 0$
- induces a connecting map $H_{n+s+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_{n+s}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}}\right)$
- Define $\Lambda_{f}=\left\{f_{\delta \Delta} \omega_{f}: \Delta \in H_{n+s+1}(\Gamma, \mathbb{Z})\right\} \subset \mathbb{C}_{p}^{\times}$

Conjecture

$\mathbb{C}_{p}^{\times} / \Lambda_{f}$ is isogenous to E_{f} / \mathbb{C}_{p}

- For $K=\mathbb{Q}$ this is proven (Darmon, Dasgupta-Greenberg, Longo-Rotger-Vigni)
- For $K \neq \mathbb{Q}$ it is open
- Λ_{f} is explicitly computable in some cases
- extensive numerical evidence for the conjecture
- in practice, this can be used to compute E_{f}

Outline

(9) Modularity of elliptic curves over number fields
(2) $K=\mathbb{Q}$ (and K totally real)
(3) K non-totally real: A p-adic construction
(4) Explicit computations and tables

Algorithms and computations

- Computational restriction: only work with H_{1} and H^{1}

Algorithms and computations

- Computational restriction: only work with H_{1} and H^{1}
- This translates into: K must have at most one complex place

Algorithms and computations

- Computational restriction: only work with H_{1} and H^{1}
- This translates into: K must have at most one complex place
- Homology and cohomology computations:
- Compute $\Gamma_{0}(\mathcal{N})$ and Γ (algorithms of J. Voight and A. Page)
- Compute the Hecke action, diagonalize and find rational lines

Algorithms and computations

- Computational restriction: only work with H_{1} and H^{1}
- This translates into: K must have at most one complex place
- Homology and cohomology computations:
- Compute $\Gamma_{0}(\mathcal{N})$ and Γ (algorithms of J. Voight and A. Page)
- Compute the Hecke action, diagonalize and find rational lines
- Integration
- Teitelbaum: $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \simeq \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(K_{\mathfrak{p}}\right), \mathbb{Z}\right)$

Algorithms and computations

- Computational restriction: only work with H_{1} and H^{1}
- This translates into: K must have at most one complex place
- Homology and cohomology computations:
- Compute $\Gamma_{0}(\mathcal{N})$ and Γ (algorithms of J. Voight and A. Page)
- Compute the Hecke action, diagonalize and find rational lines
- Integration
- Teitelbaum: $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \simeq \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(K_{\mathfrak{p}}\right), \mathbb{Z}\right)$
- Need integrals of the form $\psi_{\mathbb{P}^{1}\left(K_{\mathfrak{p}}\right)}\left(\frac{t-\tau_{1}}{t-\tau_{2}}\right) d \mu_{f}(t)$

Algorithms and computations

- Computational restriction: only work with H_{1} and H^{1}
- This translates into: K must have at most one complex place
- Homology and cohomology computations:
- Compute $\Gamma_{0}(\mathcal{N})$ and Γ (algorithms of J. Voight and A. Page)
- Compute the Hecke action, diagonalize and find rational lines
- Integration
- Teitelbaum: $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \simeq \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(K_{\mathfrak{p}}\right), \mathbb{Z}\right)$
- Need integrals of the form $\mathcal{f}_{\mathbb{P}^{1}\left(K_{\mathbf{p}}\right)}\left(\frac{t-\tau_{1}}{t-\tau_{2}}\right) d \mu_{f}(t)$
- Riemann products \rightsquigarrow exponential algorithm

Algorithms and computations

- Computational restriction: only work with H_{1} and H^{1}
- This translates into: K must have at most one complex place
- Homology and cohomology computations:
- Compute $\Gamma_{0}(\mathcal{N})$ and Γ (algorithms of J. Voight and A. Page)
- Compute the Hecke action, diagonalize and find rational lines
- Integration
- Teitelbaum: $\Omega_{\mathcal{H}_{\mathfrak{p}}}^{1}(\mathbb{Z}) \simeq \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(K_{\mathfrak{p}}\right), \mathbb{Z}\right)$
- Need integrals of the form $\int_{\mathbb{P}^{1}\left(K_{\mathrm{p}}\right)}\left(\frac{t-\tau_{1}}{t-\tau_{2}}\right) d \mu_{f}(t)$
- Riemann products \rightsquigarrow exponential algorithm
- use overconvergent cohomology instead \rightsquigarrow polynomial algorithm (generalization of Steven's overconvergent modular symbols)

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17
- $\Gamma_{0}(\mathcal{N}) \subset B^{\times}(\operatorname{disc}(B / K)=(1)$ and ramifies at the real places $)$

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17
- $\Gamma_{0}(\mathcal{N}) \subset B^{\times}(\operatorname{disc}(B / K)=(1)$ and ramifies at the real places)
- There is a rational eigenclass in $f \in H^{1}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$
- $\omega_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{17}, \mathbb{Z}\right)\right)\right.$ and $\gamma \in H_{2}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Z}\right)$

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17
- $\Gamma_{0}(\mathcal{N}) \subset B^{\times}(\operatorname{disc}(B / K)=(1)$ and ramifies at the real places $)$
- There is a rational eigenclass in $f \in H^{1}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$
- $\omega_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{17}, \mathbb{Z}\right)\right)\right)$ and $\gamma \in H_{2}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Z}\right)$
$q_{E}=\gamma_{\delta \gamma} \omega_{f}=10 \cdot 17^{-1}+11+13 \cdot 17+7 \cdot 17^{2}+7 \cdot 17^{3}+13 \cdot 17^{4}+9 \cdot 17^{5}+\cdots+O\left(17^{100}\right)$

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17
- $\Gamma_{0}(\mathcal{N}) \subset B^{\times}(\operatorname{disc}(B / K)=(1)$ and ramifies at the real places $)$
- There is a rational eigenclass in $f \in H^{1}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$
- $\omega_{f} \in H^{1}\left(\Gamma\right.$, Meas $\left._{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{17}, \mathbb{Z}\right)\right)\right)$ and $\gamma \in H_{2}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Z}\right)$
$q_{E}=火_{\delta \gamma} \omega_{f}=10 \cdot 17^{-1}+11+13 \cdot 17+7 \cdot 17^{2}+7 \cdot 17^{3}+13 \cdot 17^{4}+9 \cdot 17^{5}+\cdots+O\left(17^{100}\right)$
- We get 17-adic approximations to $c_{4}, c_{6} \in \mathbb{Q}_{17}$

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17
- $\Gamma_{0}(\mathcal{N}) \subset B^{\times}(\operatorname{disc}(B / K)=(1)$ and ramifies at the real places $)$
- There is a rational eigenclass in $f \in H^{1}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$
- $\omega_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{17}, \mathbb{Z}\right)\right)\right)$ and $\gamma \in H_{2}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Z}\right)$
$q_{E}=\int_{\delta \gamma} \omega_{f}=10 \cdot 17^{-1}+11+13 \cdot 17+7 \cdot 17^{2}+7 \cdot 17^{3}+13 \cdot 17^{4}+9 \cdot 17^{5}+\cdots+O\left(17^{100}\right)$
- We get 17-adic approximations to $c_{4}, c_{6} \in \mathbb{Q}_{17}$
- They are close to these elements in K :

$$
\begin{aligned}
c_{4}= & -1325859270120180 r^{3}-2460982567523193 r^{2}-3242072888399232 r \\
& -714309328055430 \\
c_{6}= & 78543185680947745285236 r^{3}+145787275553784015951756 r^{2} \\
& +192058643480032231752528 r+42315298049698090866126
\end{aligned}
$$

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17
- $\Gamma_{0}(\mathcal{N}) \subset B^{\times}(\operatorname{disc}(B / K)=(1)$ and ramifies at the real places)
- There is a rational eigenclass in $f \in H^{1}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$
- $\omega_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{17}, \mathbb{Z}\right)\right)\right)$ and $\gamma \in H_{2}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Z}\right)$

$$
q_{E}=火_{\delta \gamma} \omega_{f}=10 \cdot 17^{-1}+11+13 \cdot 17+7 \cdot 17^{2}+7 \cdot 17^{3}+13 \cdot 17^{4}+9 \cdot 17^{5}+\cdots+O\left(17^{100}\right)
$$

- We get 17-adic approximations to $c_{4}, c_{6} \in \mathbb{Q}_{17}$
- They are close to these elements in K :

$$
\begin{aligned}
c_{4}= & -1325859270120180 r^{3}-2460982567523193 r^{2}-3242072888399232 r \\
& -714309328055430 \\
c_{6}= & 78543185680947745285236 r^{3}+145787275553784015951756 r^{2} \\
& +192058643480032231752528 r+42315298049698090866126
\end{aligned}
$$

- Check that the curve $y^{2}=x^{3}+c_{4} x+c_{6}$ has indeed conductor \mathcal{N}

An explicit example

- $K=\mathbb{Q}(r)$ with $r^{4}-r^{2}-4 r-1=0$. Has signature $(2,1)$
- $\mathcal{N}=\left(r^{3}-4\right) \mathcal{O}_{K}$, an ideal of norm 17
- $\Gamma_{0}(\mathcal{N}) \subset B^{\times}(\operatorname{disc}(B / K)=(1)$ and ramifies at the real places)
- There is a rational eigenclass in $f \in H^{1}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Q}\right)$
- $\omega_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}_{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{17}, \mathbb{Z}\right)\right)\right)$ and $\gamma \in H_{2}\left(\Gamma_{0}(\mathcal{N}), \mathbb{Z}\right)$

$$
q_{E}=\gamma_{\delta \gamma} \omega_{f}=10 \cdot 17^{-1}+11+13 \cdot 17+7 \cdot 17^{2}+7 \cdot 17^{3}+13 \cdot 17^{4}+9 \cdot 17^{5}+\cdots+O\left(17^{100}\right)
$$

- We get 17-adic approximations to $c_{4}, c_{6} \in \mathbb{Q}_{17}$
- They are close to these elements in K :

$$
\begin{aligned}
c_{4}= & -1325859270120180 r^{3}-2460982567523193 r^{2}-3242072888399232 r \\
& -714309328055430 \\
c_{6}= & 78543185680947745285236 r^{3}+145787275553784015951756 r^{2} \\
& +192058643480032231752528 r+42315298049698090866126
\end{aligned}
$$

- Check that the curve $y^{2}=x^{3}+c_{4} x+c_{6}$ has indeed conductor \mathcal{N}
- Similarly: over 300 curves over fields of degree 2, 3, 4, 5 .

Tables (Cubic fields of signature $(1,1)$)

$\left\|\Delta_{K}\right\|$	$f_{K}(x)$	$\mathrm{Nm}(\mathfrak{N})$	$\mathfrak{p} \mathfrak{D m}$	$c_{4}(E), c_{6}(E)$
23	[1, 0, -1]	185	$\left(r^{2}+1\right)_{5}\left(3 r^{2}-r+1\right)_{37}(1)$	$\begin{aligned} & 643318 r^{2}-1128871 r+852306, \\ & 925824936 r^{2}-1624710823 r+1226456111 \end{aligned}$
31	[-1, 1, 0]	129	$(-r-1)_{3}\left(-3 r^{2}-2 r-1\right)_{43}(1)$	$\begin{aligned} & -4787 r^{2}+10585 r+3349 \\ & 1268769 r^{2}-371369 r+424764 \end{aligned}$
44	[1, 1, - ${ }^{\text {] }}$	121	$(2 r-1)_{11}\left(r^{2}+2\right)_{11}(1)$	$\begin{aligned} & 4097022 r^{2}-6265306 r+7487000 \\ & 14168359144 r^{2}-21861492432 r+260391407 \end{aligned}$
44	[1, 1, - ${ }^{\text {] }}$	121	$(2 r-1)_{11}\left(r^{2}+2\right)_{11}(1)$	$\begin{aligned} & 1774 r^{2}-1434 r-1304, \\ & -42728 r^{2}-123104 r-54300 \end{aligned}$
44	[1, 1, - ${ }^{\text {] }}$	121	$(2 r-1)_{11}\left(r^{2}+2\right)_{11}(1)$	$\begin{aligned} & 4097022 r^{2}-6265306 r+7487000 \\ & 14168359144 r^{2}-21861492432 r+260391407 \end{aligned}$
59	[-1, 2, 0]	34	$\left(-r^{2}-1\right)_{2}\left(-r^{2}-2 r-2\right)_{17}(1)$	$\begin{aligned} & 262 r^{2}+513 r+264, \\ & -2592 r^{2}+448 r+13231 \end{aligned}$
59	[-1, 2, 0]	34	$\left(-r^{2}-2 r-2\right)_{17}\left(-r^{2}-1\right)_{2}(1)$	$\begin{aligned} & 16393 r^{2}+20228 r-12524, \\ & 4430388 r^{2}-5579252 r+1619039 \end{aligned}$
59	[-1, 2, 0]	46	$\left(-2 r^{2}+r-2\right)_{23}\left(-r^{2}-1\right)_{2}(1)$	$\begin{aligned} & 18969 r^{2}+8532 r+41788 \\ & 4216716 r^{2}+1911600 r+9298151 \end{aligned}$
59	[-1, 2, 0]	74	$\left(-r^{2}-1\right)_{2}\left(2 r^{2}+2 r+1\right)_{37}(1)$	$\begin{aligned} & 33054 r^{2}+15049 r+72776 \\ & 9702640 r^{2}+4400116 r+21401723 \end{aligned}$
59	[-1, 2, 0]	88	$\left(-r^{2}-1\right)_{2}(r-2)_{11}\left(r^{2}+r+1\right)_{4}$	$\begin{aligned} & 16609 r^{2}+7084 r+37332, \\ & 3522136 r^{2}+1613876 r+7760395 \\ & \hline \end{aligned}$
59	[-1, 2, 0]	187	$\left(2 r^{2}+r+2\right)_{17}(r-2)_{11}(1)$	$\begin{aligned} & -32 r^{2}-848 r+432, \\ & -7600 r^{2}+23368 r-8704 \end{aligned}$
76	[-2, -2, 0]	117	$\left(2 r^{2}-r-3\right)_{13}\left(-r^{2}+2 r+1\right)_{9}(1)$	$\begin{aligned} & 48 r+16, \\ & -128 r^{2}-224 r-216 \\ & \hline \end{aligned}$
83	[-2, 1, -1]	65	$(r+1)_{5}(-2 r+1)_{13}(1)$	$\begin{aligned} & 3089 r^{2}+1086 r+4561, \\ & 333604 r^{2}+117840 r+493059 \end{aligned}$

Computing equations of elliptic curves over number fields via p-adic methods

Xevi Guitart ${ }^{1}$ Marc Masdeu ${ }^{2}$ Haluk Sengun ${ }^{3}$
${ }^{1}$ Universitat de Barcelona
${ }^{2}$ University of Warwick
${ }^{3}$ University of Sheffield

Seminari de teoria de nombres, Barcelona Jan 2015

