MAZUR'S CONSTRUCTION OF THE KUBOTA-LEPOLDT p-ADIC L-FUNCTION

XEVI GUITART

Abstract

We give an overview of Mazur's construction of the Kubota-Leopoldt p-adic L function as the p-adic Mellin transform of a Bernoulli measure. We follow (or rather just copy in many occasions) Lang [Lan78] ($\S 2$ of Chapter 2 and $\S 3$ of Chapter 4) and Koblitz [Kob84, Chapter II].

1. Introduction

Let $\zeta(s)$ be the zeta function, defined for $\operatorname{Re}(s)>1$ as

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1} \tag{1.1}
\end{equation*}
$$

We aim to give a construction of the Kubota-Leopoldt p-adic zeta function ζ_{p}, which is a function of a p-adic variable that interpolates values of ζ at negative integers. One might think, on first thought, that the interpolation property of ζ_{p} should be

$$
\begin{equation*}
\zeta_{p}(1-k)=\zeta(1-k), \text { for all } k \in \mathbb{Z}_{>0} \tag{1.2}
\end{equation*}
$$

However, as we will see, this is not exactly the interpolation property that ζ_{p} satisfies. The actual one differs from (1.2) in two aspects:
(1) it interpolates ζ "with the p-th Euler factor removed", and
(2) only at those integers $k \equiv 0(\bmod p-1)$.

That is to say, ζ_{p} satisfies the interpolation property

$$
\begin{equation*}
\zeta_{p}(1-k)=\left(1-p^{k-1}\right) \zeta(1-k) \text { for all } k \equiv 0 \quad(\bmod p-1) \tag{1.3}
\end{equation*}
$$

Recall the following properties of $\zeta(s)$:
(1) Integral representation:

$$
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} x^{s-1} \frac{d x}{e^{x}-1}
$$

In other words, $\zeta(s)$ is essentially (i.e., except for the term $\Gamma(s))$ the Mellin transform of the measure $d x /\left(e^{x}-1\right)$.
(2) Special values: They can be given in terms of Bernoulli numbers. For any $k \in \mathbb{Z}_{>0}$ we have that

$$
\begin{equation*}
\zeta(1-k)=-\frac{B_{k}}{k} \tag{1.4}
\end{equation*}
$$

where the Bernoulli numbers B_{k} are defined by

$$
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}
$$

The strategy for proving (1.4) is to explicitly compute by a direct calculation using (1.1) $\zeta(k)$ for k positive and even. Then one uses the functional equation relating $\zeta(s)$ and $\zeta(1-s)$ to derive (1.4) for all $k \in \mathbb{Z}_{>0}$.
We will present Mazur's construction of ζ_{p}, in which ζ_{p} is defined as a " p-adic Mellin transform" of a so-called Bernoulli distribution.

Actually, we will treat a more general case. Let

$$
\chi:\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times} \longrightarrow \overline{\mathbb{Q}}^{\times}
$$

be a Dirichlet character, which we lift to a function $\chi: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ extending by 0 to the non prime to p integers. We fix an embedding $\overline{\mathbb{Q}} \subset \mathbb{C}_{p}=\widehat{\overline{\mathbb{Q}}}_{p}$, and we regard the values of χ either as algebraic numbers or as elements of \mathbb{C}_{p} via this fixed embedding.

The L-function of χ is given for $\operatorname{Re}(s)>1$ by

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}=\prod_{\ell}\left(1-\frac{\chi(\ell)}{\ell^{s}}\right) .
$$

It can be extended by analytic continuation to \mathbb{C} and it turns out that for positive integers k its special values are

$$
L(1-k, \chi)=-\frac{B_{k, \chi}}{k}
$$

where the $B_{k, \chi}$ are the so-called generalized Bernoulli numbers (see Definition 3.5 below for the definition).

The goal of this notes is to give a proof of the following result.
Theorem 1.1 (Kubota-Leopoldt, Iwasawa). There exists a unique p-adic meromorphic (analytic if $\chi \neq \chi_{\text {triv }}$) function $L_{p}(s, \chi)$, $s \in \mathbb{Z}_{p}$, such that for $k \in \mathbb{Z}_{>0}$

$$
L_{p}(1-k, \chi)=L\left(1-k, \chi \omega^{-k}\right)
$$

where $\omega:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \overline{\mathbb{Q}}^{\times}$denotes the Teichmüller character.
Remark 1.2. If we take $\chi=\chi_{\text {triv }}:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \overline{\mathbb{Q}}^{\times}$the trivial character modulo p and $k \equiv 0$ $(\bmod p)$ we see that

$$
L_{p}(1-k, \chi)=L(1-k, \chi)=\left(1-p^{k-1}\right) \zeta(1-k)
$$

so that we obtain the p-adic zeta function $\zeta_{p}(s)$ as a particular case.

2. p-ADIC DISTRIBUTIONS

Let $\left\{X_{n}\right\}$ be a collection of finite sets and

$$
\pi_{n+1}: X_{n+1} \longrightarrow X_{n}
$$

a collection of surjective maps. Thus we can consider the projective limit $X=\varliminf_{\gtreqless} X_{n}$ and the projections $r_{n}: X \rightarrow X_{n}$. We endow X with the limit topology, meaning that a basis of opens is
$\left\{r_{n}^{-1}(x): x \in X_{n}\right\}_{n}$. Let also K be a complete local field with respect to a non-Archimedean norm $|\cdot|$, and let $\varphi_{n}: X_{n} \rightarrow K$ be a collection of maps.
Definition 2.1. $\left\{\varphi_{n}\right\}_{n}$ is said to be compatible if for each $x \in X_{n}$

$$
\sum_{y \in \pi_{n+1}^{-1}(x)} \varphi_{n+1}(y)=\varphi(x)
$$

Definition 2.2. A function $f: X \rightarrow K$ is locally constant if it factors through X_{n} for some n. We denote by $\mathrm{LC}(X, K)$ the set of locally constant functions.

Observe that if f factors through X_{n} it also factors through X_{m} for any $m \geq n$. Then the compatibility of $\left\{\varphi_{n}\right\}$ implies that

$$
\sum_{x \in X_{n}} f(x) \varphi_{n}(x)=\sum_{x \in X_{m}} f(x) \varphi_{m}(x)
$$

so that there is a well defined K-linear functional

$$
\begin{aligned}
d \varphi: \quad \mathrm{LC}(X, K) & \longrightarrow \\
f & \longmapsto \int f d \varphi:=\sum_{x \in X_{n}} f(x) \varphi_{n}(x) .
\end{aligned}
$$

Then $\left\{\varphi_{n}\right\}$ (or the functional $d \varphi$) is called a distribution on X. Observe that

$$
\begin{equation*}
\left|\int f d \varphi\right|=\left|\sum_{x \in X_{n}} f(x) \varphi_{n}(x)\right| \leq \max _{x \in X_{n}}|f(x)| \cdot\left|\varphi_{n}(x)\right| \leq\|f\| \cdot\|\varphi\| \tag{2.1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the sup norm and $\|\varphi\|=\sup _{n}\left\|\varphi_{n}\right\|$.
Proposition 2.3. Every continuous function $f \in C(X, K)$ is a uniform limit of locally constant functions. That is to say, there exist functions $f_{n} \in L C(X, K)$ such that $\left\|f_{n}-f\right\| \rightarrow 0$.
Proof. One can define $\tilde{f}_{n}: X_{n} \rightarrow K$ by $f_{n}(x)=f(s)$ for any s such that $r_{n}(s)=x$, and then take $f_{n}=\tilde{f}_{n} \circ r_{n}$.

We also have that $\left\|f_{n}-f_{m}\right\| \rightarrow 0$, and by (2.1) we see that

$$
\left|\int\left(f_{n}-f_{m}\right) d \varphi\right| \leq\left\|f_{n}-f_{m}\right\| \cdot\|\varphi\|
$$

so that the sequence $\int f_{n} d \varphi$ converges if $\|\varphi\|<\infty$.
Definition 2.4. A measure is a bounded distribution.
By the discussion above, a measure φ defines a functional

$$
\begin{array}{clc}
d \varphi: \quad \mathrm{C}(X, K) & \longrightarrow & K \\
f & \longmapsto \int f d \varphi:=\lim _{n} \int f_{n} d \varphi(x) .
\end{array}
$$

We end this section with a reformulation of the above formalism, also particularized to the case of interest to us, which is when $X=\mathbb{Z}_{p}$. In this case a distribution is a collection of maps $\varphi_{n}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow K$ satisfying the compatibility condition

$$
\varphi_{n}(a)=\sum_{b=0}^{p-1} \varphi_{n+1}\left(a+b p^{n}\right)
$$

Let us denote by \mathcal{U} the set of open compacts in \mathbb{Z}_{p}. Any $U \in \mathcal{U}$ is a disjoint union of balls of the form $a+p^{n} \mathbb{Z}_{p}$. In particular, we have that

$$
a+p^{n} \mathbb{Z}_{p}=\bigsqcup_{b=0}^{p-1} a+b p^{n}+p^{n+1} \mathbb{Z}_{p}
$$

Then we can define a map

$$
\begin{array}{cccc}
\varphi: & \mathcal{U} & \longrightarrow & K \\
a+p^{n} \mathbb{Z}_{p} & \longmapsto & \varphi\left(a+p^{n} \mathbb{Z}_{p}\right):=\varphi_{n}(a),
\end{array}
$$

and the compatibility condition is equivalent to

$$
\varphi\left(a+p^{n} \mathbb{Z}_{p}\right)=\sum_{b=0}^{p-1} \varphi\left(a+b p^{n}+p^{n+1} \mathbb{Z}_{p}\right)
$$

If we let $\mathcal{U}_{n}=\left\{a+p^{n} \mathbb{Z}_{p}\right\}_{a=0, \ldots, p^{n}-1}$ denote the set of balls of radius p^{-n} we can rewrite the integral of a continuous function f as

$$
\int_{\mathbb{Z}_{p}} f d \varphi=\lim _{n \rightarrow \infty} \sum_{U \in \mathcal{U}_{n}} f\left(t_{U}\right) \varphi(U)
$$

where $t_{U} \in U$ is any sample point.
Finally, if $Y \subset \mathbb{Z}_{p}$ we will use the notation

$$
\int_{Y} f d \varphi=\int_{\mathbb{Z}_{p}} \mathbb{1}_{Y} f d \varphi
$$

3. Bernoulli distributions

Recall the definition of the Bernoulli numbers B_{k} :

$$
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}
$$

The Bernoulli polynomials $B_{k}(X)$ are defined by:

$$
\frac{t e^{t X}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(X) \frac{t^{k}}{k!}
$$

Observe that $B_{k}=B_{k}(0)$. The first Bernoulli polynomials are

$$
B_{0}(X)=1, B_{1}(X)=X-\frac{1}{2}, B_{2}(X)=X^{2}-X-\frac{1}{6}
$$

Proposition 3.1. The Bernoulli polynomials satisfy the relation

$$
\begin{equation*}
B_{k}(X)=p^{k-1} \sum_{a=0}^{p-1} B_{k}\left(\frac{X+a}{p}\right) \tag{3.1}
\end{equation*}
$$

Proof. We have that

$$
\begin{aligned}
\sum_{a=0}^{p-1} \frac{t e^{(X+a) t}}{e^{p t}-1} & =\frac{1}{p} \sum_{a=0}^{p-1} \frac{p t e^{\frac{X+a}{p} p t}}{e^{p t}-1}=\frac{1}{p} \sum_{a=0}^{p-1} \sum_{k=0}^{\infty} B_{k}\left(\frac{X+a}{p}\right) \frac{(p t)^{k}}{k!} \\
& =\frac{1}{p} \sum_{a=0}^{p-1} \sum_{k=0}^{\infty} p^{k-1} B_{k}\left(\frac{X+a}{p}\right) \frac{t^{k}}{k!}
\end{aligned}
$$

On the other hand, by summing the geometric series we find that:

$$
\sum_{a=0}^{p-1} \frac{t e^{(X+a) t}}{e^{p t}-1}=\frac{t e^{X t}}{e^{p t}-1} \cdot \frac{1-e^{p t}}{1-e^{t}}=\frac{t e^{X t}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(X) \frac{t^{k}}{k!}
$$

and the result follows by comparing the terms of $\frac{t^{k}}{k!}$ in the two expressions.
Definition 3.2. The k-th Bernoulli distribution is defined by the maps

$$
\begin{array}{ccc}
\mathbb{Z} / p^{n} \mathbb{Z} & \longrightarrow & \mathbb{Q} \subset \mathbb{Q}_{p} \\
x & \longmapsto & p^{n(k-1)} B_{k}\left(\frac{x}{p^{n}}\right),
\end{array}
$$

where in this expression we take x to be an integer between 0 and $p^{n}-1$.
If t is a rational number let $\langle t\rangle$ denote the least nonnegative in the same class of t modulo \mathbb{Z}. Sometimes we will use also a notation like $B_{k}\left(\left\langle\frac{x}{p^{n}}\right\rangle\right)$ if we don't want to specify that x has to be taken between 0 and $p^{n}-1$.
Remark 3.3. The maps of Definition 3.2 do specify a distribution. Indeed, the compatibility property follows from (3.1).

It is convenient to work with a normalized version of the Bernoulli distribution.
Definition 3.4. We denote by E_{k} the distribution given by the maps

$$
E_{k}^{(n)}(x)=\frac{1}{k} p^{n(k-1)} B_{k}\left(\left\langle\frac{x}{p^{n}}\right\rangle\right) \text { for } x \in \mathbb{Z} / p^{n} \mathbb{Z}
$$

Observe that since the function 1 factorizes through $\mathbb{Z} / p \mathbb{Z}$ we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} d E_{k}=\frac{1}{k} \cdot \sum_{a=0}^{p-1} B_{k}\left(\frac{a}{p}\right)=\frac{B_{k}(0)}{k}=\frac{B_{k}}{k} \tag{3.2}
\end{equation*}
$$

Generalized Bernoulli numbers. Let $f: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow K$ be a function.
Definition 3.5. The generalized Bernoulli polynomials $B_{k, f}$ are defined by

$$
\sum_{a=0}^{p^{n}-1} f(a) \frac{t e^{(X+a)} t}{e^{p^{n} t}-1}=\sum_{k=0}^{\infty} B_{k, f}(X) \frac{t^{k}}{k!}
$$

The constant terms $B_{k, f}:=B_{k, f}(0)$ are the generalized Bernoulli numbers (relative to f).
The following identity is an immediate consequence of the definitions:

$$
B_{k, f}=p^{n(k-1)} \sum_{a=0}^{p^{n}-1} f(a) B_{k}\left(\frac{a}{p^{n}}\right)
$$

Interpreting f as a locally constant function on \mathbb{Z}_{p} we can rewrite this as

$$
\begin{equation*}
\frac{1}{k} B_{k, f}=\int_{\mathbb{Z}_{p}} f d E_{k} \tag{3.3}
\end{equation*}
$$

From distributions to measures. Returning to the Bernoulli distributions, we remark the fact that they are not measures. For instance

$$
E_{1}^{(n)}(x)=B_{1}\left(\frac{x}{p^{n}}\right)=\frac{x}{p^{n}}-\frac{1}{2}=\frac{2 x-p^{n}}{p^{n}}
$$

which is not p-adically bounded. They can be turned into measures by a standard process, called regularization. For this let $c \neq 1$ be a rational integer such that $p \nmid c$. Then we define distributions $E_{k, c}$ by means of the maps

$$
E_{k, c}^{(n)}(x)=E_{k}^{(n)}(x)-c^{k} \cdot E_{k}^{(n)}\left(c^{-1} \cdot x\right), \quad \text { for } x \in \mathbb{Z} / p^{n} \mathbb{Z}
$$

Here $c^{-1} \cdot x$ denotes multiplication in $\mathbb{Z} / p^{n} \mathbb{Z}$. It is easy to see that $E_{k, c}$ is a distribution (for a linear combination of distributions is a distribution). Passing to the limit the above maps we can write

$$
\begin{equation*}
E_{k, c}(x)=E_{k}(x)-c^{k} E_{k}\left(c^{-1} \cdot x\right) \tag{3.4}
\end{equation*}
$$

The following two properties are really key in the construction of the p-adic L-function.
Proposition 3.6. (1) The values of $E_{k, c}^{(n)}$ are p-integral (i.e., they belong to \mathbb{Z}_{p}).
(2) $E_{k, c}^{(n)}(x) \equiv x^{k-1} E_{1, c}^{(n)}(x)\left(\bmod p^{n-d_{k}} \mathbb{Z}_{p}\right)$, where d_{k} is s^{1} the p-adic valuation of the least common multiple of the denominators of the coefficients of $B_{k}(X)$.
Proof. We will first prove the second assertion. To begin with, let's assume that $d_{k}=0$, so that the coefficients of B_{k} lie in \mathbb{Z}_{p}. It is easily checked that $B_{k}(X)$ is of the form

$$
X^{k}+\frac{k}{2} X+\text { higher order terms. }
$$

Now let $x \in \mathbb{Z} / p^{n} \mathbb{Z}$, which we also view as an integer $0 \leq x \leq p^{n}-1$. Denote by $\left\{c^{-1} x\right\}$ the representative of $c^{-1} x$ in $\mathbb{Z} / p^{n} \mathbb{Z}$ that lies in the range $0, \ldots, p^{n}-1$. Then we can write $c\left\{c^{-1} x\right\}=x+a p^{n}$ for some $a \in \mathbb{Z}$. The following congruences are modulo $p^{n} \mathbb{Z}_{p}$:

$$
\begin{aligned}
E_{k, c}^{(n)}(x) & =\frac{1}{k} p^{n(k-1)}\left[B_{k}\left(\frac{x}{p^{n}}\right)-c^{k} B_{k}\left(\frac{\left\{c^{-1} x\right\}}{p^{n}}\right)\right] \equiv \\
& \equiv \frac{1}{k} p^{n(k-1)}\left[\left(\frac{x}{p^{n}}\right)^{k}-\frac{k}{2}\left(\frac{x}{p^{n}}\right)^{k-1}\right]-\frac{1}{k} p^{n(k-1)}\left[c^{k}\left(\frac{\left\{c^{-1} x\right\}}{p^{n}}\right)^{k}-c^{k} \frac{k}{2}\left(\frac{\left\{c^{-1} x\right\}}{p^{n}}\right)^{k-1}\right] \\
& \equiv \frac{1}{k} p^{n(k-1)}\left[\left(\frac{x}{p^{n}}\right)^{k}-\frac{k}{2}\left(\frac{x}{p^{n}}\right)^{k-1}\right]-\frac{1}{k} p^{n(k-1)}\left[\left(c \frac{\left\{c^{-1} x\right\}}{p^{n}}\right)^{k}-c \frac{k}{2}\left(c \frac{\left\{c^{-1} x\right\}}{p^{n}}\right)^{k-1}\right] \\
& \equiv \frac{1}{k} p^{n(k-1)}\left[\left(\frac{x}{p^{n}}\right)^{k}-\frac{k}{2}\left(\frac{x}{p^{n}}\right)^{k-1}\right]-\frac{1}{k} p^{n(k-1)}\left[\left(\frac{x}{p^{n}}+a\right)^{k}-c \frac{k}{2}\left(\frac{x}{p^{n}}+a\right)^{k-1}\right] \\
& \equiv x^{k-1}\left(\frac{c-1}{2}-a\right)
\end{aligned}
$$

[^0]On the other hand:

$$
\begin{align*}
E_{1, c}^{(n)}(x) & =B_{1}\left(\frac{x}{p^{n}}\right)-c B_{1}\left(\frac{\left\{c^{-1} x\right\}}{p^{n}}\right)=\frac{x}{p^{n}}-\frac{1}{2}-c\left[\frac{\left\{c^{-1} x\right\}}{p^{n}}-\frac{1}{2}\right] \tag{3.5}\\
& =\frac{x}{p^{n}}-\frac{1}{2}-\frac{x+a p^{n}}{p^{n}}-\frac{c}{2}=\frac{c-1}{2}-a
\end{align*}
$$

If $d_{k}>0$, one considers $D_{k} B_{k}$ where D_{k} is the least common multiple of the denominators of $B_{k}(X)$. Since $D_{k} B_{k}$ has coefficients in \mathbb{Z}_{p}, the above calculations go through and give the result in general.

Now we prove the first statement. First of all observe that $E_{1, c}^{(n)}$ takes values in \mathbb{Z}_{p} because of (3.5) (recall that $a \in \mathbb{Z}$). Now for n big enough $n-d_{k} \geq 0$, and that $E_{k, c}^{(n)}(x)$ belongs to \mathbb{Z}_{p} follows from part (2) of the proposition. If n is such that $n-d_{k}<0$, we just take m such that $m-d_{k}>0$ and use the distribution relation:

$$
E_{k, c}^{(n)}(x)=\sum_{y \equiv x} E_{\left(\bmod p^{n}\right)}^{(m)}(y) \in \mathbb{Z}_{p}
$$

Remark 3.7. Passing to the limit the second statement in the proposition it can be rewritten as

$$
\begin{equation*}
E_{k, c}(x)=x^{k-1} \cdot E_{1, c}(x) \tag{3.6}
\end{equation*}
$$

Combining this with the formula (3.2) for B_{k} we obtain the following important expression of B_{k} in terms of $E_{1, c}$.
Proposition 3.8. For any $k \in \mathbb{Z}_{>0}$

$$
\begin{equation*}
\frac{B_{k}}{k}=\frac{1}{1-c^{k}} \int_{\mathbb{Z}_{p}} x^{k-1} d E_{1, c}(x) \tag{3.7}
\end{equation*}
$$

Proof. It follows from the following computation:

$$
\begin{aligned}
& \frac{B_{k}}{k} \stackrel{(3.2)}{=} \int_{\mathbb{Z}_{p}} d E_{k} \stackrel{(3.4)}{=} \int_{\mathbb{Z}_{p}} d E_{k, c}+\int_{\mathbb{Z}_{p}} c^{k} d E_{k}\left(c^{-1} \cdot x\right) \\
& \quad \stackrel{(*)}{=} \int_{\mathbb{Z}_{p}} d E_{k, c}+\int_{\mathbb{Z}_{p}} c^{k} \cdot d E_{k}(x) \stackrel{(3.6)}{=} \int_{\mathbb{Z}_{p}} x^{k-1} d E_{1, c}+c^{k} \frac{B_{k}}{k}
\end{aligned}
$$

where in $(*)$ we used the change of variables $x \mapsto c x$ (observe that this transforms \mathbb{Z}_{p} in \mathbb{Z}_{p} because by assumption $\left.c \in \mathbb{Z}_{p}^{\times}\right)$.

Observe that the left term in (3.7) is (the negative of) $\zeta(1-k)$. Therefore, if the right hand side of (3.7) was still meaningful when we replace the integer $k-1$ by an arbitrary $s \in \mathbb{Z}_{p}$, we could use this expression on the right to define a p-adic function that interpolates ζ at the integers.

However, in the right hand side of (3.7) we have the function x^{k-1} for x ranging over the domain of integration, which is \mathbb{Z}_{p}. The problem is that if $x \in \mathbb{Z}_{p}$ and $s \in \mathbb{Z}_{p}$, we can not always consider something like x^{s}. For instance, if $x \in p \mathbb{Z}_{p}$ then it is clear that we can not give a meaning to x^{s} for arbitrary $s \in \mathbb{Z}_{p}$. A first step in order to fix this problem would be to express the Bernoulli numbers as integrals over \mathbb{Z}_{p}^{\times}, rather than over \mathbb{Z}_{p}. The following proposition tells us that this is also possible, and the cost is the appearance of an Euler factor term.

Proposition 3.9. For any $k \in \mathbb{Z}_{>0}$

$$
\begin{equation*}
\left(1-p^{k-1}\right) \cdot \frac{B_{k}}{k}=\frac{1}{1-c^{k}} \int_{\mathbb{Z}_{p}^{\times}} x^{k-1} d E_{1, c}(x) \tag{3.8}
\end{equation*}
$$

Proof. Since $\mathbb{Z}_{p}=\mathbb{Z}_{p}^{\times} \sqcup p \mathbb{Z}_{p}$ we have:

$$
\int_{\mathbb{Z}_{p}} x^{k-1} d E_{1, c}(x)=\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} d E_{1, c}(x)+\int_{p \mathbb{Z}_{p}} x^{k-1} d E_{1, c}(x)
$$

Now the result follows immediately from the following claim:
Claim. $\int_{p \mathbb{Z}_{p}} x^{k-1} d E_{1, c}=p^{k-1} \int_{\mathbb{Z}_{p}} x^{k-1} d E_{1, c}$.
In order to prove the claim, we consider the decomposition of \mathbb{Z}_{p}

$$
\mathbb{Z}_{p}=\bigsqcup_{x=0}^{p^{n}-1} x+p^{n} \mathbb{Z}_{p}
$$

which induces the following decomposition of $p \mathbb{Z}_{p}$:

$$
p \mathbb{Z}_{p}=\bigsqcup_{x=0}^{p^{n}-1} p x+p^{n+1} \mathbb{Z}_{p}
$$

Then, by definition of the integral we have

$$
\begin{aligned}
\int_{p \mathbb{Z}_{p}} x^{k-1} d E_{1, c} & =\lim _{n \rightarrow \infty} \sum_{x=0}^{p^{n}-1}(p x)^{k-1} E_{1, c}^{n+1}(p x) \\
& \stackrel{(*)}{=} p^{k-1} \lim _{n \rightarrow \infty} \sum_{x=0}^{p^{n}-1} x^{k-1} E_{1, c}^{n}(x) \\
& =p^{k-1} \int_{\mathbb{Z}_{p}} x^{k-1} d E_{1, c}(x)
\end{aligned}
$$

where in $(*)$ we have used that $E_{1, c}^{(n+1)}(p x)=E_{1, c}^{(n)}(x)$. This follows directly from the shape of the Bernoulli polynomial $B_{1}(X)=X-\frac{1}{2}$. Indeed,

$$
B_{1}^{(n)}(x)=\frac{x}{p^{n}}=\frac{p x}{p^{n+1}}-\frac{1}{2}=B_{1}^{(n+1)}(p x)
$$

Remark 3.10. The expression on the right hand side of (3.8) still does not make sense when replacing $k-1$ by an arbitrary $s \in \mathbb{Z}_{p}$. Indeed, the expression x^{s} is well defined in general only when x belongs $1+p \mathbb{Z}_{p}$. But at least now $x \in \mathbb{Z}_{p}^{\times}$in (3.8), so that $\langle x\rangle:=x \omega(x)^{-1}$ lies in $1+p \mathbb{Z}_{p}$ and $\langle x\rangle^{s}$ makes sense for all $s \in \mathbb{Z}_{p}$. This is is how we will obtain the desired p-adic L-function, but we postpone the details until the next section.

From the expressions of the Bernoulli numbers in terms of p-adic integrals of Proposition 3.9 one recovers, as a consequence of rather elementary properties of the integrals, the following classical congruences.
Corollary 3.11 (Congruences of Kummer and von Staudt). Let k be a positive integer.
(1) If $p-1 \nmid k$ then $\left|\frac{B_{k}}{k}\right|_{p} \leq 1$.
(2) If $p-1 \nmid k$ and $k \equiv k^{\prime}\left(\bmod (p-1) p^{n}\right)$ then

$$
\left(1-p^{k-1}\right) \frac{B_{k}}{k} \equiv\left(1-p^{k^{\prime}-1}\right) \frac{B_{k^{\prime}}}{k^{\prime}} \quad\left(\bmod p^{n+1}\right)
$$

(3) If $k \equiv 0(\bmod (p-1))$ and k is even then

$$
B_{k} \equiv-\frac{1}{p} \quad\left(\bmod \mathbb{Z}_{p}\right)
$$

Proof. We just prove the second statement, the others are proved similarly. First of all, observe that the congruence is equivalent to

$$
\begin{equation*}
\frac{1}{1-c^{k}} \int_{\mathbb{Z}_{p}^{\times}} x^{k-1} d E_{1, c}(x) \equiv \frac{1}{1-c^{k^{\prime}}} \int_{\mathbb{Z}_{p}^{\times}} x^{k^{\prime}-1} d E_{1, c}(x) \quad\left(\bmod p^{n+1}\right) \tag{3.9}
\end{equation*}
$$

It is enough to prove that:

$$
\begin{gather*}
\frac{1}{1-c^{k}} \equiv \frac{1}{1-c^{k^{\prime}}} \quad\left(\bmod p^{n+1} \mathbb{Z}_{p}\right), \quad \text { and } \\
\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} d E_{1, c}(x) \quad\left(\bmod p^{n+1}\right) \equiv \int_{\mathbb{Z}_{p}^{\times}} x^{k^{\prime}-1} d E_{1, c}(x) \quad\left(\bmod p^{n+1} \mathbb{Z}_{p}\right) \tag{3.10}
\end{gather*}
$$

For this choose c a primitive root modulo p, so that $c^{k} \not \equiv 1(\bmod p)$. This implies that $1-c^{k}$ and $1-c^{k^{\prime}}$ are p-adic units. In addition, if we write $k=k^{\prime}+a p^{n}(p-1)$ for some a we find that

$$
c^{k}-c^{k^{\prime}}=c^{k}\left(1-c^{(p-1) p^{n} a}\right)
$$

But $c^{p-1} \equiv 1(\bmod p)$, and an easy exercise using the binomial expansion shows that $c^{(p-1) p^{n}} \equiv 1$ $\left(\bmod p^{n+1}\right)$. Equivalently,

$$
\left|c^{k}-c^{k^{\prime}}\right|_{p} \leq p^{-(n+1)}
$$

and from this it also follows that

$$
\left|\frac{1}{1-c^{k}}-\frac{1}{1-c^{k^{\prime}}}\right|_{p} \leq p^{-(n+1)}
$$

Applying the same argument to x^{k} and $x^{k^{\prime}}$ (which we can since $x \in \mathbb{Z}_{p}^{\times}$) we also find that

$$
\left|x^{k}-x^{k^{\prime}}\right|_{p} \leq p^{-(n+1)}
$$

Now (3.10) follows from the basic property of the integrals (2.1), together with the fact that $E_{1, c}$ takes values in \mathbb{Z}_{p}.

Now let $\chi: \mathbb{Z} / p^{n} \mathbb{Z} \longrightarrow \overline{\mathbb{Q}} \subset \mathbb{C}_{p}$ be an Dirichlet character (we assume $n>0$, and we extend by 0 on the non-invertible elements). By (3.3) and the fact that χ is zero on $p \mathbb{Z}_{p}$ we see that

$$
\frac{B_{k}}{k}=\int_{\mathbb{Z}_{p}^{\times}} \chi d E_{k}
$$

Proposition 3.12. For $k \in \mathbb{Z}_{>0}$ we have that

$$
\begin{equation*}
\frac{B_{k, \chi}}{k}=\frac{1}{1-\chi(c) c^{k}} \int_{\mathbb{Z}_{p}^{\times}} \chi(x) x^{k-1} d E_{1, c}(x) \tag{3.11}
\end{equation*}
$$

Proof. It is computation, similar to that of Proposition 3.7:

$$
\begin{aligned}
\frac{B_{k, \chi}}{k} & =\int_{\mathbb{Z}_{p}^{\times}} \chi d E_{k}=\int_{\mathbb{Z}_{p}^{\times}} \chi d E_{k, c}+\int_{\mathbb{Z}_{p}^{\times}} \chi(x) c^{k} d E_{k}\left(c^{-1} \cdot x\right) \\
& =\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \chi(x) d E_{1, c}(x)+\int_{\mathbb{Z}_{p}^{\times}} \chi(c) \chi(x) c^{k} d E_{k}(x) \\
& =\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \chi(x) d E_{1, c}(x)+c^{k} \chi(c) \frac{B_{k, \chi}}{k} .
\end{aligned}
$$

4. Definition of the p-adic L-function

Let $\omega: \mathbb{Z}_{p}^{\times} \rightarrow \mu_{p-1} \subset \mathbb{Z}_{p}^{\times}$denote the Teichmüller character (we assume $p \neq 2$ for simplicity here), characterized by the property that $\omega(a) \equiv a(\bmod p)$. Then any $a \in \mathbb{Z}_{p}^{\times}$can be written uniquely as

$$
a=\langle a\rangle \cdot \omega(a), \quad \text { with }\langle a\rangle \equiv 1 \quad(\bmod p)
$$

Definition 4.1. The Mellin transform of a measure μ is the function on the p-adic variable s defined by

$$
\mathbb{M}_{p} \mu(s)=\int_{\mathbb{Z}_{p}^{\times}}\langle a\rangle^{s} \cdot a^{-1} d \mu(a)
$$

The Mellin transform is analytic on \mathbb{Z}_{p}. This follows from the following lemma.
Lemma 4.2. Let μ be a measure on \mathbb{Z}_{p}^{\times}. Then there exist $b_{n} \in \mathbb{Z}_{p}$ with $b_{n} \longrightarrow 0$ such that

$$
\int_{\mathbb{Z}_{p}^{\times}}\langle a\rangle^{s} d \mu=\sum_{n} b_{n} s^{n}, \text { for } s \in \mathbb{Z}_{p}
$$

Proof. We can decompose the integral as

$$
\int_{\mathbb{Z}_{p}^{\times}}\langle a\rangle^{s} d \mu=\sum_{b=1}^{p-1} \int_{\omega(b) \cdot\left(1+p \mathbb{Z}_{p}\right)}\langle a\rangle^{s} d \mu(a) .
$$

In each integral we can make the change of variables $a=\omega(b) x$ (and replace μ by another measure), so that we are reduced to prove the proposition for integrals of the form

$$
\int_{1+p \mathbb{Z}_{p}}\langle x\rangle^{s} d \mu(x)
$$

Now we have that

$$
\begin{aligned}
\int_{1+p \mathbb{Z}_{p}}\langle x\rangle^{s} d \mu & =\int_{1+p \mathbb{Z}_{p}} x^{s} d \mu=\int_{1+p \mathbb{Z}_{p}} \sum_{n=0}^{\infty}\binom{n}{s}(x-1)^{n} d \mu(x)= \\
& =\int_{1+p \mathbb{Z}_{p}} \sum_{n=0}^{\infty} s(s-1) \cdots(s-n+1) \frac{(x-1)^{n}}{n!} d \mu(x)
\end{aligned}
$$

Now x runs over $1+p \mathbb{Z}_{p}$, so that $x \equiv 1\left(\bmod p \mathbb{Z}_{p}\right)$. This implies that $\frac{(x-1)^{n}}{n!}$ is p-integral and tends to $0 p$-adically. Thus we can interchange the sum and the integral:

$$
\begin{equation*}
\int_{1+p \mathbb{Z}_{p}}\langle x\rangle^{s} d \mu=\sum_{n=0}^{\infty} s(s-1) \cdots(s-n+1) c_{n} \tag{4.1}
\end{equation*}
$$

where the $c_{n}=\int_{1+p \mathbb{Z}_{p}} \frac{(x-1)^{n}}{n!} d \mu(x)$ are p-integral and tend to 0 as $n \rightarrow \infty$. Now it is clear that we can reorder (4.1) and write it as a power series of the shape stated in the proposition.

Fix a c such that $\chi(c)\langle c\rangle^{s}$ is not identically 1.
Definition 4.3. The p-adic L-function $L_{p}(1-s, \chi)$ is defined as

$$
L_{p}(1-s, \chi)=\frac{-1}{1-\chi(c)\langle c\rangle^{s}} \int_{\mathbb{Z}_{p}^{\times}}\langle x\rangle^{s} \chi(x) x^{-1} d E_{1, c}(x)
$$

Observe that the integral is an analytic function of s by the lemma. The term in front is analytic except when $\chi(c)\langle c\rangle^{s}=1$. If χ is non trivial then one can choose c such that $\chi(c) \neq 1$ and therefore it is analytic also at $s=0$.

Finally we see that this function satisfies the desired interpolation properties.
Theorem 4.4. For any $k \in \mathbb{Z}_{>0}$ we have that

$$
L_{p}(1-k, \chi)=\frac{-1}{k} B_{k, \chi \omega^{-k}}
$$

Proof. It follows from this simple computation:

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}^{\times}}\langle x\rangle^{k-1} \chi(x) \omega(x)^{-1} d E_{1, c}(x)=\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \chi(x) \omega(x)^{-(k-1)} \omega(x)^{-1} d E_{1, c}(x) \\
&=\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \chi(x) \omega(x)^{-k} d E_{1, c}(x) \\
& \stackrel{(3.11)}{=} \frac{1}{k}\left(1-\chi \omega^{-k}(c) c^{k}\right) B_{k, \chi \omega-k} .
\end{aligned}
$$

Corollary 4.5. If $k \equiv 0(\bmod (p-1))$ and p is odd then

$$
\begin{gathered}
L_{p}(1-k, \chi)=\frac{-1}{k} B_{k, \chi} \\
\text { REFERENCES }
\end{gathered}
$$

[Kob84] Neal Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, second ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR 754003 (86c:11086)
[Lan78] Serge Lang, Cyclotomic fields, Springer-Verlag, New York, 1978, Graduate Texts in Mathematics, Vol. 59. MR 0485768 (58 \#5578)

[^0]: ${ }^{1}$ actually this d_{k} is missing in Lang's statement, but I believe it should be there (cf. [Kob84], Chapter 4, §5, Theorem 5). In any case, it does not make any difference for large n, since d_{k} is independent of n.

