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XEVI GUITART

Abstract. We give an overview of Mazur’s construction of the Kubota–Leopoldt p-adic L-

function as the p-adic Mellin transform of a Bernoulli measure. We follow (or rather just copy

in many occasions) Lang [Lan78] (§2 of Chapter 2 and §3 of Chapter 4) and Koblitz [Kob84,
Chapter II].

1. Introduction

Let ζ(s) be the zeta function, defined for Re(s) > 1 as

ζ(s) =

∞∑
n=1

n−s =
∏
p

(1− p−s)−1.(1.1)

We aim to give a construction of the Kubota–Leopoldt p-adic zeta function ζp, which is a function
of a p-adic variable that interpolates values of ζ at negative integers. One might think, on first
thought, that the interpolation property of ζp should be

(1.2) ζp(1− k) = ζ(1− k), for all k ∈ Z>0.

However, as we will see, this is not exactly the interpolation property that ζp satisfies. The actual
one differs from (1.2) in two aspects:

(1) it interpolates ζ “with the p-th Euler factor removed”, and
(2) only at those integers k ≡ 0 (mod p− 1).

That is to say, ζp satisfies the interpolation property

ζp(1− k) = (1− pk−1)ζ(1− k) for all k ≡ 0 (mod p− 1).(1.3)

Recall the following properties of ζ(s):

(1) Integral representation:

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1
dx

ex − 1
.

In other words, ζ(s) is essentially (i.e., except for the term Γ(s)) the Mellin transform of
the measure dx/(ex − 1).

(2) Special values: They can be given in terms of Bernoulli numbers. For any k ∈ Z>0 we have
that

ζ(1− k) = −Bk
k
,(1.4)
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where the Bernoulli numbers Bk are defined by

t

et − 1
=

∞∑
k=0

Bk
tk

k!
.

The strategy for proving (1.4) is to explicitly compute by a direct calculation using (1.1)
ζ(k) for k positive and even. Then one uses the functional equation relating ζ(s) and ζ(1−s)
to derive (1.4) for all k ∈ Z>0.

We will present Mazur’s construction of ζp, in which ζp is defined as a “p-adic Mellin transform”
of a so-called Bernoulli distribution.

Actually, we will treat a more general case. Let

χ : (Z/pmZ)
× −→ Q×

be a Dirichlet character, which we lift to a function χ : Z→ Q extending by 0 to the non prime to

p integers. We fix an embedding Q ⊂ Cp = Q̂p, and we regard the values of χ either as algebraic
numbers or as elements of Cp via this fixed embedding.

The L-function of χ is given for Re(s) > 1 by

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
`

(
1− χ(`)

`s

)
.

It can be extended by analytic continuation to C and it turns out that for positive integers k its
special values are

L(1− k, χ) = −Bk,χ
k

,

where the Bk,χ are the so-called generalized Bernoulli numbers (see Definition 3.5 below for the
definition).

The goal of this notes is to give a proof of the following result.

Theorem 1.1 (Kubota–Leopoldt, Iwasawa). There exists a unique p-adic meromorphic (analytic
if χ 6= χtriv) function Lp(s, χ), s ∈ Zp, such that for k ∈ Z>0

Lp(1− k, χ) = L(1− k, χω−k),

where ω : (Z/pZ)
× → Q× denotes the Teichmüller character.

Remark 1.2. If we take χ = χtriv : (Z/pZ)
× → Q× the trivial character modulo p and k ≡ 0

(mod p) we see that

Lp(1− k, χ) = L(1− k, χ) = (1− pk−1)ζ(1− k),

so that we obtain the p-adic zeta function ζp(s) as a particular case.

2. p-adic distributions

Let {Xn} be a collection of finite sets and

πn+1 : Xn+1 −→ Xn

a collection of surjective maps. Thus we can consider the projective limit X = lim←−Xn and the
projections rn : X → Xn. We endow X with the limit topology, meaning that a basis of opens is
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{r−1n (x) : x ∈ Xn}n. Let also K be a complete local field with respect to a non-Archimedean norm
| · |, and let ϕn : Xn → K be a collection of maps.

Definition 2.1. {ϕn}n is said to be compatible if for each x ∈ Xn∑
y∈π−1

n+1(x)

ϕn+1(y) = ϕ(x).

Definition 2.2. A function f : X → K is locally constant if it factors through Xn for some n. We
denote by LC(X,K) the set of locally constant functions.

Observe that if f factors through Xn it also factors through Xm for any m ≥ n. Then the
compatibility of {ϕn} implies that∑

x∈Xn

f(x)ϕn(x) =
∑
x∈Xm

f(x)ϕm(x),

so that there is a well defined K-linear functional

dϕ : LC(X,K) −→ K
f 7−→

∫
fdϕ :=

∑
x∈Xn

f(x)ϕn(x).

Then {ϕn} (or the functional dϕ) is called a distribution on X. Observe that∣∣∣∣∫ fdϕ

∣∣∣∣ =

∣∣∣∣∣ ∑
x∈Xn

f(x)ϕn(x)

∣∣∣∣∣ ≤ max
x∈Xn

|f(x)| · |ϕn(x)| ≤ ||f || · ||ϕ||,(2.1)

where || · || denotes the sup norm and ||ϕ|| = supn ||ϕn||.

Proposition 2.3. Every continuous function f ∈ C(X,K) is a uniform limit of locally constant
functions. That is to say, there exist functions fn ∈ LC(X,K) such that ||fn − f || → 0.

Proof. One can define f̃n : Xn → K by fn(x) = f(s) for any s such that rn(s) = x, and then take

fn = f̃n arn. �

We also have that ||fn − fm|| → 0, and by (2.1) we see that∣∣∣∣∫ (fn − fm)dϕ

∣∣∣∣ ≤ ||fn − fm|| · ||ϕ||,
so that the sequence

∫
fndϕ converges if ||ϕ|| <∞.

Definition 2.4. A measure is a bounded distribution.

By the discussion above, a measure ϕ defines a functional

dϕ : C(X,K) −→ K
f 7−→

∫
fdϕ := limn

∫
fndϕ(x).

We end this section with a reformulation of the above formalism, also particularized to the case
of interest to us, which is when X = Zp. In this case a distribution is a collection of maps
ϕn : Z/pnZ→ K satisfying the compatibility condition

ϕn(a) =

p−1∑
b=0

ϕn+1(a+ bpn).



4 XEVI GUITART

Let us denote by U the set of open compacts in Zp. Any U ∈ U is a disjoint union of balls of the
form a+ pnZp. In particular, we have that

a+ pnZp =

p−1⊔
b=0

a+ bpn + pn+1Zp.

Then we can define a map

ϕ : U −→ K
a+ pnZp 7−→ ϕ(a+ pnZp) := ϕn(a),

and the compatibility condition is equivalent to

ϕ(a+ pnZp) =

p−1∑
b=0

ϕ(a+ bpn + pn+1Zp).

If we let Un = {a+pnZp}a=0,...,pn−1 denote the set of balls of radius p−n we can rewrite the integral
of a continuous function f as ∫

Zp

fdϕ = lim
n→∞

∑
U∈Un

f(tU )ϕ(U),

where tU ∈ U is any sample point.
Finally, if Y ⊂ Zp we will use the notation∫

Y

fdϕ =

∫
Zp

1Y fdϕ.

3. Bernoulli distributions

Recall the definition of the Bernoulli numbers Bk:

t

et − 1
=

∞∑
k=0

Bk
tk

k!
.

The Bernoulli polynomials Bk(X) are defined by:

tetX

et − 1
=

∞∑
k=0

Bk(X)
tk

k!
.

Observe that Bk = Bk(0). The first Bernoulli polynomials are

B0(X) = 1, B1(X) = X − 1

2
, B2(X) = X2 −X − 1

6
.

Proposition 3.1. The Bernoulli polynomials satisfy the relation

Bk(X) = pk−1
p−1∑
a=0

Bk

(
X + a

p

)
.(3.1)
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Proof. We have that

p−1∑
a=0

te(X+a)t

ept − 1
=

1

p

p−1∑
a=0

pte
X+a

p pt

ept − 1
=

1

p

p−1∑
a=0

∞∑
k=0

Bk

(
X + a

p

)
(pt)k

k!

=
1

p

p−1∑
a=0

∞∑
k=0

pk−1Bk

(
X + a

p

)
tk

k!
.

On the other hand, by summing the geometric series we find that:

p−1∑
a=0

te(X+a)t

ept − 1
=

teXt

ept − 1
· 1− ept

1− et
=

teXt

et − 1
=

∞∑
k=0

Bk(X)
tk

k!
,

and the result follows by comparing the terms of tk

k! in the two expressions. �

Definition 3.2. The k-th Bernoulli distribution is defined by the maps

Z/pnZ −→ Q ⊂ Qp
x 7−→ pn(k−1)Bk

(
x
pn

)
,

where in this expression we take x to be an integer between 0 and pn − 1.

If t is a rational number let 〈t〉 denote the least nonnegative in the same class of t modulo Z.
Sometimes we will use also a notation like Bk(〈 xpn 〉) if we don’t want to specify that x has to be

taken between 0 and pn − 1.

Remark 3.3. The maps of Definition 3.2 do specify a distribution. Indeed, the compatibility prop-
erty follows from (3.1).

It is convenient to work with a normalized version of the Bernoulli distribution.

Definition 3.4. We denote by Ek the distribution given by the maps

E
(n)
k (x) =

1

k
pn(k−1)Bk(〈 x

pn
〉) for x ∈ Z/pnZ.

Observe that since the function 1 factorizes through Z/pZ we have∫
Zp

dEk =
1

k
·
p−1∑
a=0

Bk(
a

p
) =

Bk(0)

k
=
Bk
k
.(3.2)

Generalized Bernoulli numbers. Let f : Z/pnZ→ K be a function.

Definition 3.5. The generalized Bernoulli polynomials Bk,f are defined by

pn−1∑
a=0

f(a)
te(X+a)t

epnt − 1
=

∞∑
k=0

Bk,f (X)
tk

k!
.

The constant terms Bk,f := Bk,f (0) are the generalized Bernoulli numbers (relative to f).

The following identity is an immediate consequence of the definitions:

Bk,f = pn(k−1)
pn−1∑
a=0

f(a)Bk(
a

pn
).
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Interpreting f as a locally constant function on Zp we can rewrite this as

1

k
Bk,f =

∫
Zp

fdEk.(3.3)

From distributions to measures. Returning to the Bernoulli distributions, we remark the fact
that they are not measures. For instance

E
(n)
1 (x) = B1(

x

pn
) =

x

pn
− 1

2
=

2x− pn

pn
,

which is not p-adically bounded. They can be turned into measures by a standard process, called
regularization. For this let c 6= 1 be a rational integer such that p - c. Then we define distributions
Ek,c by means of the maps

E
(n)
k,c (x) = E

(n)
k (x)− ck · E(n)

k (c−1 · x), for x ∈ Z/pnZ.

Here c−1 · x denotes multiplication in Z/pnZ. It is easy to see that Ek,c is a distribution (for a
linear combination of distributions is a distribution). Passing to the limit the above maps we can
write

Ek,c(x) = Ek(x)− ckEk(c−1 · x)(3.4)

The following two properties are really key in the construction of the p-adic L-function.

Proposition 3.6. (1) The values of E
(n)
k,c are p-integral (i.e., they belong to Zp).

(2) E
(n)
k,c (x) ≡ xk−1E(n)

1,c (x) (mod pn−dkZp), where dk is1 the p-adic valuation of the least com-

mon multiple of the denominators of the coefficients of Bk(X).

Proof. We will first prove the second assertion. To begin with, let’s assume that dk = 0, so that
the coefficients of Bk lie in Zp. It is easily checked that Bk(X) is of the form

Xk +
k

2
X + higher order terms.

Now let x ∈ Z/pnZ, which we also view as an integer 0 ≤ x ≤ pn − 1. Denote by {c−1x}
the representative of c−1x in Z/pnZ that lies in the range 0, . . . , pn − 1. Then we can write
c{c−1x} = x+ apn for some a ∈ Z. The following congruences are modulo pnZp:

E
(n)
k,c (x) =

1

k
pn(k−1)

[
Bk

(
x

pn

)
− ckBk

(
{c−1x}
pn

)]
≡

≡ 1

k
pn(k−1)

[(
x

pn

)k
− k

2

(
x

pn

)k−1]
− 1

k
pn(k−1)

[
ck
(
{c−1x}
pn

)k
− ck k

2

(
{c−1x}
pn

)k−1]

≡ 1

k
pn(k−1)

[(
x

pn

)k
− k

2

(
x

pn

)k−1]
− 1

k
pn(k−1)

[(
c
{c−1x}
pn

)k
− ck

2

(
c
{c−1x}
pn

)k−1]

≡ 1

k
pn(k−1)

[(
x

pn

)k
− k

2

(
x

pn

)k−1]
− 1

k
pn(k−1)

[(
x

pn
+ a

)k
− ck

2

(
x

pn
+ a

)k−1]

≡ xk−1
(
c− 1

2
− a
)
.

1actually this dk is missing in Lang’s statement, but I believe it should be there (cf. [Kob84], Chapter 4, §5,

Theorem 5). In any case, it does not make any difference for large n, since dk is independent of n.
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On the other hand:

E
(n)
1,c (x) = B1

(
x

pn

)
− cB1

(
{c−1x}
pn

)
=

x

pn
− 1

2
− c

[
{c−1x}
pn

− 1

2

]
(3.5)

=
x

pn
− 1

2
− x+ apn

pn
− c

2
=
c− 1

2
− a.

If dk > 0, one considers DkBk where Dk is the least common multiple of the denominators of
Bk(X). Since DkBk has coefficients in Zp, the above calculations go through and give the result in
general.

Now we prove the first statement. First of all observe that E
(n)
1,c takes values in Zp because of

(3.5) (recall that a ∈ Z). Now for n big enough n− dk ≥ 0, and that E
(n)
k,c (x) belongs to Zp follows

from part (2) of the proposition. If n is such that n− dk < 0, we just take m such that m− dk > 0
and use the distribution relation:

E
(n)
k,c (x) =

∑
y≡x (mod pn)

E
(m)
k,c (y) ∈ Zp.

�

Remark 3.7. Passing to the limit the second statement in the proposition it can be rewritten as

Ek,c(x) = xk−1 · E1,c(x).(3.6)

Combining this with the formula (3.2) for Bk we obtain the following important expression of
Bk in terms of E1,c.

Proposition 3.8. For any k ∈ Z>0

Bk
k

=
1

1− ck

∫
Zp

xk−1dE1,c(x)(3.7)

Proof. It follows from the following computation:

Bk
k

(3.2)
=

∫
Zp

dEk
(3.4)
=

∫
Zp

dEk,c +

∫
Zp

ckdEk(c−1 · x)

(∗)
=

∫
Zp

dEk,c +

∫
Zp

ck · dEk(x)
(3.6)
=

∫
Zp

xk−1dE1,c + ck
Bk
k
,

where in (∗) we used the change of variables x 7→ cx (observe that this transforms Zp in Zp because
by assumption c ∈ Z×p ). �

Observe that the left term in (3.7) is (the negative of) ζ(1− k). Therefore, if the right hand side
of (3.7) was still meaningful when we replace the integer k − 1 by an arbitrary s ∈ Zp, we could
use this expression on the right to define a p-adic function that interpolates ζ at the integers.

However, in the right hand side of (3.7) we have the function xk−1 for x ranging over the domain
of integration, which is Zp. The problem is that if x ∈ Zp and s ∈ Zp, we can not always consider
something like xs. For instance, if x ∈ pZp then it is clear that we can not give a meaning to xs

for arbitrary s ∈ Zp. A first step in order to fix this problem would be to express the Bernoulli
numbers as integrals over Z×p , rather than over Zp. The following proposition tells us that this is
also possible, and the cost is the appearance of an Euler factor term.
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Proposition 3.9. For any k ∈ Z>0

(1− pk−1) · Bk
k

=
1

1− ck

∫
Z×p
xk−1dE1,c(x).(3.8)

Proof. Since Zp = Z×p t pZp we have:∫
Zp

xk−1dE1,c(x) =

∫
Z×p
xk−1dE1,c(x) +

∫
pZp

xk−1dE1,c(x).

Now the result follows immediately from the following claim:

Claim.

∫
pZp

xk−1dE1,c = pk−1
∫
Zp

xk−1dE1,c.

In order to prove the claim, we consider the decomposition of Zp

Zp =

pn−1⊔
x=0

x+ pnZp,

which induces the following decomposition of pZp:

pZp =

pn−1⊔
x=0

px+ pn+1Zp.

Then, by definition of the integral we have∫
pZp

xk−1dE1,c = lim
n→∞

pn−1∑
x=0

(px)k−1En+1
1,c (px)

(∗)
= pk−1 lim

n→∞

pn−1∑
x=0

xk−1En1,c(x)

= pk−1
∫
Zp

xk−1dE1,c(x),

where in (∗) we have used that E
(n+1)
1,c (px) = E

(n)
1,c (x). This follows directly from the shape of the

Bernoulli polynomial B1(X) = X − 1
2 . Indeed,

B
(n)
1 (x) =

x

pn
=

px

pn+1
− 1

2
= B

(n+1)
1 (px).

�

Remark 3.10. The expression on the right hand side of (3.8) still does not make sense when replacing
k−1 by an arbitrary s ∈ Zp. Indeed, the expression xs is well defined in general only when x belongs
1 + pZp. But at least now x ∈ Z×p in (3.8), so that 〈x〉 := xω(x)−1 lies in 1 + pZp and 〈x〉s makes
sense for all s ∈ Zp. This is is how we will obtain the desired p-adic L-function, but we postpone
the details until the next section.

From the expressions of the Bernoulli numbers in terms of p-adic integrals of Proposition 3.9 one
recovers, as a consequence of rather elementary properties of the integrals, the following classical
congruences.

Corollary 3.11 (Congruences of Kummer and von Staudt). Let k be a positive integer.
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(1) If p− 1 - k then
∣∣Bk

k

∣∣
p
≤ 1.

(2) If p− 1 - k and k ≡ k′ (mod (p− 1)pn) then

(1− pk−1)
Bk
k
≡ (1− pk

′−1)
Bk′

k′
(mod pn+1).

(3) If k ≡ 0 (mod (p− 1)) and k is even then

Bk ≡ −
1

p
(mod Zp).

Proof. We just prove the second statement, the others are proved similarly. First of all, observe
that the congruence is equivalent to

1

1− ck

∫
Z×p
xk−1dE1,c(x) ≡ 1

1− ck′
∫
Z×p
xk
′−1dE1,c(x) (mod pn+1).(3.9)

It is enough to prove that:

1

1− ck
≡ 1

1− ck′
(mod pn+1Zp), and

∫
Z×p
xk−1dE1,c(x) (mod pn+1) ≡

∫
Z×p
xk
′−1dE1,c(x) (mod pn+1Zp).(3.10)

For this choose c a primitive root modulo p, so that ck 6≡ 1 (mod p). This implies that 1 − ck
and 1− ck′ are p-adic units. In addition, if we write k = k′ + apn(p− 1) for some a we find that

ck − ck
′

= ck(1− c(p−1)p
na).

But cp−1 ≡ 1 (mod p), and an easy exercise using the binomial expansion shows that c(p−1)p
n ≡ 1

(mod pn+1). Equivalently,

|ck − ck
′
|p ≤ p−(n+1),

and from this it also follows that ∣∣∣∣ 1

1− ck
− 1

1− ck′
∣∣∣∣
p

≤ p−(n+1).

Applying the same argument to xk and xk
′

(which we can since x ∈ Z×p ) we also find that

|xk − xk
′
|p ≤ p−(n+1).

Now (3.10) follows from the basic property of the integrals (2.1), together with the fact that E1,c

takes values in Zp. �

Now let χ : Z/pnZ −→ Q ⊂ Cp be an Dirichlet character (we assume n > 0, and we extend by 0
on the non-invertible elements). By (3.3) and the fact that χ is zero on pZp we see that

Bk
k

=

∫
Z×p
χdEk.

Proposition 3.12. For k ∈ Z>0 we have that

Bk,χ
k

=
1

1− χ(c)ck

∫
Z×p
χ(x)xk−1dE1,c(x)(3.11)
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Proof. It is computation, similar to that of Proposition 3.7:

Bk,χ
k

=

∫
Z×p
χdEk =

∫
Z×p
χdEk,c +

∫
Z×p
χ(x)ckdEk(c−1 · x)

=

∫
Z×p
xk−1χ(x)dE1,c(x) +

∫
Z×p
χ(c)χ(x)ckdEk(x)

=

∫
Z×p
xk−1χ(x)dE1,c(x) + ckχ(c)

Bk,χ
k

.

�

4. Definition of the p-adic L-function

Let ω : Z×p → µp−1 ⊂ Z×p denote the Teichmüller character (we assume p 6= 2 for simplicity here),

characterized by the property that ω(a) ≡ a (mod p). Then any a ∈ Z×p can be written uniquely
as

a = 〈a〉 · ω(a), with 〈a〉 ≡ 1 (mod p).

Definition 4.1. The Mellin transform of a measure µ is the function on the p-adic variable s
defined by

Mpµ(s) =

∫
Z×p
〈a〉s · a−1dµ(a).

The Mellin transform is analytic on Zp. This follows from the following lemma.

Lemma 4.2. Let µ be a measure on Z×p . Then there exist bn ∈ Zp with bn −→ 0 such that∫
Z×p
〈a〉sdµ =

∑
n

bns
n, for s ∈ Zp.

Proof. We can decompose the integral as∫
Z×p
〈a〉sdµ =

p−1∑
b=1

∫
ω(b)·(1+pZp)

〈a〉sdµ(a).

In each integral we can make the change of variables a = ω(b)x (and replace µ by another measure),
so that we are reduced to prove the proposition for integrals of the form∫

1+pZp

〈x〉sdµ(x).

Now we have that∫
1+pZp

〈x〉sdµ =

∫
1+pZp

xsdµ =

∫
1+pZp

∞∑
n=0

(
n

s

)
(x− 1)ndµ(x) =

=

∫
1+pZp

∞∑
n=0

s(s− 1) · · · (s− n+ 1)
(x− 1)n

n!
dµ(x).
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Now x runs over 1+pZp, so that x ≡ 1 (mod pZp). This implies that (x−1)n
n! is p-integral and tends

to 0 p-adically. Thus we can interchange the sum and the integral:∫
1+pZp

〈x〉sdµ =

∞∑
n=0

s(s− 1) · · · (s− n+ 1)cn,(4.1)

where the cn =
∫
1+pZp

(x−1)n
n! dµ(x) are p-integral and tend to 0 as n→∞. Now it is clear that we

can reorder (4.1) and write it as a power series of the shape stated in the proposition. �

Fix a c such that χ(c)〈c〉s is not identically 1.

Definition 4.3. The p-adic L-function Lp(1− s, χ) is defined as

Lp(1− s, χ) =
−1

1− χ(c)〈c〉s

∫
Z×p
〈x〉sχ(x)x−1dE1,c(x).

Observe that the integral is an analytic function of s by the lemma. The term in front is analytic
except when χ(c)〈c〉s = 1. If χ is non trivial then one can choose c such that χ(c) 6= 1 and therefore
it is analytic also at s = 0.

Finally we see that this function satisfies the desired interpolation properties.

Theorem 4.4. For any k ∈ Z>0 we have that

Lp(1− k, χ) =
−1

k
Bk,χω−k .

Proof. It follows from this simple computation:∫
Z×p
〈x〉k−1χ(x)ω(x)−1dE1,c(x) =

∫
Z×p
xk−1χ(x)ω(x)−(k−1)ω(x)−1dE1,c(x)

=

∫
Z×p
xk−1χ(x)ω(x)−kdE1,c(x)

(3.11)
=

1

k

(
1− χω−k(c)ck

)
Bk,χω−k .

�

Corollary 4.5. If k ≡ 0 (mod (p− 1)) and p is odd then

Lp(1− k, χ) =
−1

k
Bk,χ.
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