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Abstract 

 
This paper presents a system to analyze the reachability 
of the human body. The inverse kinematics technique is 
employed to find which regions of space are reachable 
using a certain reach strategy. This information is stored 
in a data structure called Volume Approximation Tree 
(VATree). This tree has proven itself to be an appropriate 
data structure for two reasons: it provides an efficient 
representation of the reachable volumes and it reduces 
the number of inverse kinematics simulations necessary 
for its construction. Once the VATrees are constructed 
for the different reach strategies, that information can be 
used to determine in real time which strategy is most 
suitable for a given reach task. 

1. Introduction 

Human movement and, in particular, human arm 
motions play an important role in studies of the human 
body. Reaching is a daily life activity. We frecuently 
reach a glass of water, a door handle, a book in a shelf, 
etc. Human reachable spaces generated by computers 
allow the analysis of the human body and its 
environment. We can generate and compare reachable 
spaces in different conditions (sitting, standing …) 

Computers give us the flexibility to easily change 
simulation parameters and analyze the results in virtual 
worlds before applying them to the real world. In a 
typical industrial workspace many products are 
manipulated by the worker’s arm. That is the reason why 
reaching tasks have been widely studied in ergonomic 
research [6]. For example, cars are designed so that front 
panel elements are easily accessible by the driver; these 
elements must be reached in a direct or quasi-direct way. 

Medical studies also concentrate their efforts in 
reaching movements. The reachable volume for a 
physically impaired person should be different than the 
volume corresponding to a non-handicapped person.  

 

This paper is organized in six sections. Section one is 
this introductory section. Section 2 describes the state of 
the art. Section 3 presents an algorithm for volume 
approximation. Section 4 describes how this algorithm is 
utilized to approximate reachable volumes. It also 
outlines the relation between inverse kinematics and the 
process of reachable volume generation. Section 5 shows 
some results and compares different reaching strategies. 
Section 6 presents conclusions and future work. 

2. State of the Art 

A previous study of reach analysis has utilized an 
analytically generated reach volume. However, this 
analytical approach is limited to articulated structures 
with a small number of degrees of freedom (2 in this 
case) [10].  

Other studies tried to predict the elbow movements 
from the shoulder movements in order to understand what 
should be the final position of the wrist (the wrist itself 
was given no mobility) while reaching. The goal of these 
studies was the development of a neuroprosthesis for 
spinal cord injured which no longer have the control of 
the elbow junction [5]. 

Interpolation synthesis can produce motions from a 
mixture of prerecorded data motions. Wiley and Hahn 
specifically followed this approach. They solved the 
problem of obtaining natural reach postures by 
interpolating motion captured data [14]. 
 A study distinguished three reach areas depending on the 
distance from the hand to the target [12]. The author 
defined different strategies for each area taking into 
account factors like the need to control the center of mass 
or the need for additional supports. 

Another research developed a method for delineating 
surface patches defining the reach envelop of a 
kinematics chain in closed form. It was designed to be 
applied to robotic manipulators [1]. 

A recent work has proposed a method to predict reach 
motions based on experimental data. A functional 
regression analysis is made to model how joint angles 
change over time [8]. 



3. Approximating  Volumes Using Box Trees  

We have designed a data structure that let us 
approximate a certain volume. It is called Volume 
Approximation Tree (VATree). It leads to a simple and 
fast algorithm to test whether a given point lies inside the 
approximated region. In the next section we present the 
application of VATree to the representation of human 
reachable regions.  

The proposed data structure is an octal tree (nodes 
have eight children). Octal trees (usually referred to as 
octrees) are commonly used for representing volumes or 
surfaces [11].  

In a VATree each node stores the parameters of its box 
(origin, width, height, depth) and its type. There are four 
types of nodes (see Figure 3): 
• Inner node(I): The eight vertices of its box are 

inside the volume that is being approximated. We 
assume that if the eight vertices can be reached, 
then the entire box is reachable. 

• Outer node(Out): Its box is totally outside the 
volume.  

• Parent node(P): Some of the vertices of its box 
lay inside the volume and the rest lay outside. To 
achieve a tighter approximation of the volume, 
parent nodes are subdivided yielding a set of eight 
child nodes or subnodes.  

• Final nodes(F): They are related to parent nodes 
in the sense that they lay on the surface of the 
volume as well. However, they are treated 
differently because their depth in the tree is 
maximum, and thus they can’t be subdivided.  

Note that only nodes of parent type have pointers to its 
eight child nodes. Children are obtained by subdividing 
their parent’s  box. 
 
Construction Procedure 
 

The following parameters are necessary for 
constructing a VATree: 

-  Dimensions and position of the initial box B0. This 
box must be chosen so that it completely contains 
the volume being approximated. 

- Maximum tree depth, Dmax.  
- Minimum tree depth, Dmin.  
- V, the volume to be approximated. 

 
Given a certain node Ni, the following algorithm 

shows how to construct the branch that hangs from Ni: 
 
1. If the current depth D is less than Dmin, go to step 7. 
2. Compute the position of the eight vertices of Ni’s 

box. 

3. Apply the function isPointInside to those eight 
vertices, to find whether each one lies inside or 
outside V.  

4. If every vertex is inside V, label Ni as an INNER 
node and finish. 

5. If every vertex is outside V, label Ni as an OUTER 
node and finish. 

6. It the current depth equals the maximum depth, label 
Ni as a FINAL node and finish. 

7. Label Ni as a PARENT node and allocate memory 
for its eight child nodes. Repeat from step 1 eight 
times, taking as root each of those eight child nodes. 

Algorithm 1. VATree construction 

As many vertices are shared by different subnodes 
many of the calls to isPointInside are redundant. We have 
provided a mechanism in which, during its subdivision, 
each parent node calls isPointInside for the different 
vertices of its descendants, storing the result so that this 
information can be used when building the child nodes. 
This way, only one call is made for each different vertex. 

  The success of the algorithm strongly depends on 
how correctly the initial box B0 is selected. Extreme 
situations can arise, such as those shown in Figure 1. The 
solution to this problem is based on forcing the tree to 
have a minimum depth Dmin. During the construction of 
the tree, all nodes laying at depths greater than Dmin are 
unfailingly labeled as parents and subdivided, regardless 
of their location in relation to the volume. 

 

Figure 1. 

(a) A case in which is needed Dmin=1 
(b) A case in which Dmin=1 is also needed 
(c) The box is so big that Dmin=1 is not enough 
(d) A complex volume can make Dmin=2 insufficient 

 
Several factors must be taken into account when 

choosing an appropriate value for Dmin: 
- The size ratio of the initial box B0 and the volume V. 

In the example of Figure 1.a, one subdivision sufficed 
because B0 was chosen with a size similar to V’s. In 
Figure 1.c, however, B0 is too big when compared to V 
and thus Dmin should be greater than 1 for the procedure 
to work as intended. 

- The complexity of  the volume V. In Figure 1 d, for 
instance, the volume requires Dmin > 1 because after the 
first subdivision all sampling points lay in its exterior. 

(a) (b) (c) (d)



The construction algorithm works better when V is a 
simple volume, such as a sphere. When this is not true, it 
is recommendable to choose a greater Dmin. 
 
Construction of an Example Tree 
 

An intuitive representation can be achieved if a two-
dimensional version of the algorithm is considered. In 
such a case, each parent node has only four children, and 
the tree approximates an area instead of a volume. 

Note that this simplification implies no loss of 
generality for symmetric volumes such as a sphere. Figure 
2 illustrates the construction of a tree that approximates a 
circular area, with Dmin=1 and Dmax=3. 

In Figure 2-a the initial box B0 can be seen, as well as 
the circle being approximated. Note that B0 has been 
properly selected so that it tightly fits the circle. In the 
first iteration of the algorithm the root node is labeled as 
PARENT, despite all of its vertices lying outside the 
circle. This is correct because the depth D is 0 at this 
stage, lesser than Dmin.  

Figure 2-b depicts the situation after subdiving the root 
node. This subdivision yields four subnodes of depth 
D=1, which are all labeled as parent because they have 
some vertices inside the circle and others outside. It 
should be remarked that to label these four nodes no calls 
to isPointInside are performed, because all relevant 
information has been previously collected by their parent. 

As seen, the four nodes that resulted after subdividing 
the root node are themselves parent nodes. Thus they 
must be subdivided, giving the situation shown in Figure 
2-c. This figure shows the sixteen nodes of depth D=2. 
Four of these nodes are classified as inner and won’t be 
further subdivided. The remaining twelve nodes have 
vertices inside and outside the circle, and thus are labeled 
as parent nodes and are subdivided.  

After performing the second subdivision, the situation 
is as shown in Figure 2-d. Note that nodes labeled inner 
in the previous step are now absent, since they weren’t 
subdivided. Also note that from all nodes of depth three, 
28 are labeled outer because they are completely outside 
the circle. The remaining nodes are labeled final since 
they belong to the frontier of the circle (i.e. some of their 
vertices lay inside an others lay outside) but can’t be 
subdivided, being their depth equal to Dmax. 

 
Figure 2. Construction of a 2D version of the tree 

The resultant tree is represented in Figure 3. Some 
branches have been omitted for the sake of clarity. In 
Figure 3 nodes labeled as P are Parent nodes, Inn are 
Inner nodes, F are Final nodes and Out are outer nodes. 

 

 
Figure 3. Structure of an example tree 

4. Generating a Human Reachable Volume 

We aim to know, before the animation takes place,  
whether a goal is reachable. In other words, to determine 
in real time if the human model is able to reach a certain 
point in 3D space. The first solution we attempted was to 
perform a background IK (Inverse Kinematics) 
simulation whose outcome was the reachability of the 
point. However, this approach was soon found unfeasible 
due to the excessive amount of computation required (IK 
simulations are inherently costly). We decided to store 
which regions of 3D space were reachable by the human 
model. Thus, finding whether a point is reachable is 
merely a matter of consulting this pre-computed 
information. 

The VATree was tested with a spherical volume using 
the algorithm described in the previous section. In that 
case the IsPointInside function represented the equation 
of a sphere. What would be the IsPointInside function to 
approximate the reachable space of a human arm or foot? 
For humans we ask the inverse kinematics machine if 
each vertex of the box is reachable after a limited number 
of iterations. Figure 4 shows the initial box utilized to 
generate the reachable space of a human arm. 

 
Figure 4. Initial box to calculate reachable space 



Inverse Kinematics and VATree Construction 
 

Inverse kinematics is an animation technique that let 
the user attach Cartesian constraints to some parts of an 
articulated structure, in our case the human body [2][4]. 
As our goal is to approximate the volume representing the 
reachability of a virtual human, the Cartesian constraints 
are situated in each vertex of the box utilized to construct 
the reachability tree.  

Figure 5 shows the process of construction of the 
reachability tree as in Algorithm 1 but in a graphical way. 
The interaction between the tree construction module and 
the Inverse kinematics module occurs when the algorithm 
needs to know if the point is or is not reachable; this is 
shown by red lines in the figure. 
 

 

Figure 5. IK & Tree Construction 

Depending on the inverse kinematics engine 
configuration, the tree construction will generate a 
reachable space with specific characteristics. For 
example, if the IK engine controls the center of mass this 
will be reflected in the final reachable space. If several 
tasks are established to do a reaching (balance, looking at 
the goal, goal position) tasks configurations with different 
priorities will generate different reachable spaces.  

5. Reaching Strategies 

In real life when we have to reach an object we use 
several strategies. For instance, if the object is close 
enough we reach it directly. Otherwise, if the object is in 
a low position we may need to crouch or even to take a 

step forward. In fact different strategies characterize 
different type of reaching. Each reaching task is matched 
with a different strategy depending on where the goal is 
and where the hand/foot is.  

When a person has to reach an object with the hand, 
depending on the distance between the goal and the hand, 
the reaching will be direct or it will be necessary to bend 
the knees (See Figure 6, Figure 7). In the latter case, the 
goal is not included in the reachable space of the direct 
one, but inside the reachable space of the crouch strategy. 
It is worth noting that in the crouch strategy both feet 
remain on the floor, without heel rising. Another possible 
strategy would permit a heel-rising movement, thus 
reaching a wider region. 

Our inverse kinematics engine has the possibility of 
choosing between several strategies if the direct one is 
not appropriate. 

 

Figure 6. Direct Strategy 

 
Figure 7. Crouch strategy 

We represent reachable spaces by means of the 
individual boxes whose vertices are inside the reachable 
volume. In Figure 8 we visualize, using different colors, 
the reaching volumes corresponding to some of the 
available strategies. In red, normal reaching with right 
hand. In green, normal reaching with left hand. And in 
blue crouch reaching with right hand. 



 

Figure 8. Reachable spaces: direct with left hand(green), 
direct with right hand(red) and crouch (blue) 

Several strategies can share a common intersection 
space, as shown in Figure 9. If a goal is found to lay 
inside an intersection region, a high level layer situated 
on top of the inverse kinematics engine decides which 
strategy is more suitable. This decision is made based on 
a priority mechanism.  

 

Figure 9. Intersection between strategies 

Our VATree structure offers an adequate way to find if 
a goal is reachable. By maintaining trees for different 
reaching strategies we can chose the most suitable for a 
given reach. However, there is an important issue that 
needs to be addressed: Which posture of the human 
model (i.e. which combination of joint values) makes the 
reach possible? Our current approach is to perform an 
additional inverse kinematics simulation whose output is 
directly shown to the end user. This approach has the 
advantage that the resulting posture corresponds to the 
exact goal, as opposed to other feasible techniques, such 
as motion interpolation. 

Once reachable spaces have been generated, the 
inverse kinematics engine is used again to simulate a 
reaching task; it needs a goal in 3D space and an effector 
and information about the regions that this effector is able 
to reach.  

Comparison of Reachability Trees  

Reach space (in red) shown in Figure 10.a was 
generated by a simulation with a direct strategy (see 
Figure 6) but using as kinematics chain only the arm of 
the articulated figure. 

Figure 10.b displays the reach space (in green)  
generated by a simulation with a direct strategy but using 
the upper body as kinematics chain. Space in (b) is higher 
than (a) because the clavicle adds extra degrees of 
freedom. This space is also bigger in front and side views 
due to the contribution of the spine. 

 Reach space (in blue) on Figure 10.c is generated by a 
simulation with a direct strategy using as kinematics 
chain all the hierarchy and controlling the center of mass. 
In this case some voxels in the upper and front regions 
are no reachable anymore, compared to case (b). Also 
compared to case (b), in case (c) lower positions are 
reachable due to the contribution of the hip joint that in 
case (b) was not included.   

 Figure 11 gathers the three reachable spaces from 
Figure 10. In this case the blue strategy has been 
represented by dots instead of boxes and the green one is 
visualized in wireframe.  

Figure 10. Three reachable spaces:  
(a) Direct using only the arm  
(b) Direct using the entire hierarchy  
(c) Direct  using the entire hierarchy and 

controlling balance 

Direct Strategy 

Raise heels Strategy 

Crouch Strategy 

(a) (b) (c) 



 
Figure 11. The three reachable spaces together 

6. Conclusions and Future work 

We have designed a data structure, called VATree, that 
allows the approximation of volumes and in particular the 
approximation of human reachable volumes.  

Our approach is an important step towards an 
integrated reach behavior exploiting various strategies 
associated to their reach volumes. Different reachable 
spaces for different strategies have been generated. 

We have utilized the Inverse Kinematics technique to 
construct the reachable trees and to create the reaching 
task. 

Besides the normal and crouched strategy, the system 
can be extended to contemplate other strategies such as 
tiptoeing, squat (buttocks resting on or near the heels), 
upper body torsion, etc.. 

The high-level library could exploit low level 
information (i.e: joint level) that would drive the human 
to do the reaching with another strategy. As fatigue is the 
exhaustion that limits human activity, we plan to compare 
reachable space when a person is fatigued [13] with that 
of a person not fatigued. 

We also plan to address the timing of motion in order 
to get more smooth and realistic reaching animations [3] 
[7]. For this purpose an interpolation scheme can be 
useful. This would require storing postural data in each 
reachable node of the tree. An advantage of this scheme 
is that it would let us apply available data about the 
trajectory followed by the hand during reaching motions. 
More specifically, Faraway has stated that such trajectory 
is not a straight line [9], contrary to what previous studies 
had suggested.  
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