
Reaching Volumes Generated by Means of Octal Trees
and Cartesian Constraints

I. Rodrígueza, M. Peinadoa, R. Boulicb, D. Meziata

aComputer Engineering Department, University of Alcalá, Madrid, Spain
bSwiss Federal Institute of Technology, Lausanne, Switzerland

inma@aut.uah.es, manupg@aut.uah.es, ronan.boulic@epfl.ch, meziat@aut.uah.es

Abstract

This paper presents a system to analyze the reachability
of the human body. The inverse kinematics technique is
employed to find which regions of space are reachable
using a certain reach strategy. This information is stored
in a data structure called Volume Approximation Tree
(VATree). This tree has proven itself to be an appropriate
data structure for two reasons: it provides an efficient
representation of the reachable volumes and it reduces
the number of inverse kinematics simulations necessary
for its construction. Once the VATrees are constructed
for the different reach strategies, that information can be
used to determine in real time which strategy is most
suitable for a given reach task.

1. Introduction

Human movement and, in particular, human arm
motions play an important role in studies of the human
body. Reaching is a daily life activity. We frecuently
reach a glass of water, a door handle, a book in a shelf,
etc. Human reachable spaces generated by computers
allow the analysis of the human body and its
environment. We can generate and compare reachable
spaces in different conditions (sitting, standing …)

Computers give us the flexibility to easily change
simulation parameters and analyze the results in virtual
worlds before applying them to the real world. In a
typical industrial workspace many products are
manipulated by the worker’s arm. That is the reason why
reaching tasks have been widely studied in ergonomic
research [6]. For example, cars are designed so that front
panel elements are easily accessible by the driver; these
elements must be reached in a direct or quasi-direct way.

Medical studies also concentrate their efforts in
reaching movements. The reachable volume for a
physically impaired person should be different than the
volume corresponding to a non-handicapped person.

This paper is organized in six sections. Section one is
this introductory section. Section 2 describes the state of
the art. Section 3 presents an algorithm for volume
approximation. Section 4 describes how this algorithm is
utilized to approximate reachable volumes. It also
outlines the relation between inverse kinematics and the
process of reachable volume generation. Section 5 shows
some results and compares different reaching strategies.
Section 6 presents conclusions and future work.

2. State of the Art

A previous study of reach analysis has utilized an
analytically generated reach volume. However, this
analytical approach is limited to articulated structures
with a small number of degrees of freedom (2 in this
case) [10].

Other studies tried to predict the elbow movements
from the shoulder movements in order to understand what
should be the final position of the wrist (the wrist itself
was given no mobility) while reaching. The goal of these
studies was the development of a neuroprosthesis for
spinal cord injured which no longer have the control of
the elbow junction [5].

Interpolation synthesis can produce motions from a
mixture of prerecorded data motions. Wiley and Hahn
specifically followed this approach. They solved the
problem of obtaining natural reach postures by
interpolating motion captured data [14].
 A study distinguished three reach areas depending on the
distance from the hand to the target [12]. The author
defined different strategies for each area taking into
account factors like the need to control the center of mass
or the need for additional supports.

Another research developed a method for delineating
surface patches defining the reach envelop of a
kinematics chain in closed form. It was designed to be
applied to robotic manipulators [1].

A recent work has proposed a method to predict reach
motions based on experimental data. A functional
regression analysis is made to model how joint angles
change over time [8].

3. Approximating Volumes Using Box Trees

We have designed a data structure that let us
approximate a certain volume. It is called Volume
Approximation Tree (VATree). It leads to a simple and
fast algorithm to test whether a given point lies inside the
approximated region. In the next section we present the
application of VATree to the representation of human
reachable regions.

The proposed data structure is an octal tree (nodes
have eight children). Octal trees (usually referred to as
octrees) are commonly used for representing volumes or
surfaces [11].

In a VATree each node stores the parameters of its box
(origin, width, height, depth) and its type. There are four
types of nodes (see Figure 3):
• Inner node(I): The eight vertices of its box are

inside the volume that is being approximated. We
assume that if the eight vertices can be reached,
then the entire box is reachable.

• Outer node(Out): Its box is totally outside the
volume.

• Parent node(P): Some of the vertices of its box
lay inside the volume and the rest lay outside. To
achieve a tighter approximation of the volume,
parent nodes are subdivided yielding a set of eight
child nodes or subnodes.

• Final nodes(F): They are related to parent nodes
in the sense that they lay on the surface of the
volume as well. However, they are treated
differently because their depth in the tree is
maximum, and thus they can’t be subdivided.

Note that only nodes of parent type have pointers to its
eight child nodes. Children are obtained by subdividing
their parent’s box.

Construction Procedure

The following parameters are necessary for
constructing a VATree:

- Dimensions and position of the initial box B0. This
box must be chosen so that it completely contains
the volume being approximated.

- Maximum tree depth, Dmax.
- Minimum tree depth, Dmin.
- V, the volume to be approximated.

Given a certain node Ni, the following algorithm

shows how to construct the branch that hangs from Ni:

1. If the current depth D is less than Dmin, go to step 7.
2. Compute the position of the eight vertices of Ni’s

box.

3. Apply the function isPointInside to those eight
vertices, to find whether each one lies inside or
outside V.

4. If every vertex is inside V, label Ni as an INNER
node and finish.

5. If every vertex is outside V, label Ni as an OUTER
node and finish.

6. It the current depth equals the maximum depth, label
Ni as a FINAL node and finish.

7. Label Ni as a PARENT node and allocate memory
for its eight child nodes. Repeat from step 1 eight
times, taking as root each of those eight child nodes.

Algorithm 1. VATree construction

As many vertices are shared by different subnodes
many of the calls to isPointInside are redundant. We have
provided a mechanism in which, during its subdivision,
each parent node calls isPointInside for the different
vertices of its descendants, storing the result so that this
information can be used when building the child nodes.
This way, only one call is made for each different vertex.

 The success of the algorithm strongly depends on
how correctly the initial box B0 is selected. Extreme
situations can arise, such as those shown in Figure 1. The
solution to this problem is based on forcing the tree to
have a minimum depth Dmin. During the construction of
the tree, all nodes laying at depths greater than Dmin are
unfailingly labeled as parents and subdivided, regardless
of their location in relation to the volume.

Figure 1.

(a) A case in which is needed Dmin=1
(b) A case in which Dmin=1 is also needed
(c) The box is so big that Dmin=1 is not enough
(d) A complex volume can make Dmin=2 insufficient

Several factors must be taken into account when

choosing an appropriate value for Dmin:
- The size ratio of the initial box B0 and the volume V.

In the example of Figure 1.a, one subdivision sufficed
because B0 was chosen with a size similar to V’s. In
Figure 1.c, however, B0 is too big when compared to V
and thus Dmin should be greater than 1 for the procedure
to work as intended.

- The complexity of the volume V. In Figure 1 d, for
instance, the volume requires Dmin > 1 because after the
first subdivision all sampling points lay in its exterior.

(a) (b) (c) (d)

The construction algorithm works better when V is a
simple volume, such as a sphere. When this is not true, it
is recommendable to choose a greater Dmin.

Construction of an Example Tree

An intuitive representation can be achieved if a two-
dimensional version of the algorithm is considered. In
such a case, each parent node has only four children, and
the tree approximates an area instead of a volume.

Note that this simplification implies no loss of
generality for symmetric volumes such as a sphere. Figure
2 illustrates the construction of a tree that approximates a
circular area, with Dmin=1 and Dmax=3.

In Figure 2-a the initial box B0 can be seen, as well as
the circle being approximated. Note that B0 has been
properly selected so that it tightly fits the circle. In the
first iteration of the algorithm the root node is labeled as
PARENT, despite all of its vertices lying outside the
circle. This is correct because the depth D is 0 at this
stage, lesser than Dmin.

Figure 2-b depicts the situation after subdiving the root
node. This subdivision yields four subnodes of depth
D=1, which are all labeled as parent because they have
some vertices inside the circle and others outside. It
should be remarked that to label these four nodes no calls
to isPointInside are performed, because all relevant
information has been previously collected by their parent.

As seen, the four nodes that resulted after subdividing
the root node are themselves parent nodes. Thus they
must be subdivided, giving the situation shown in Figure
2-c. This figure shows the sixteen nodes of depth D=2.
Four of these nodes are classified as inner and won’t be
further subdivided. The remaining twelve nodes have
vertices inside and outside the circle, and thus are labeled
as parent nodes and are subdivided.

After performing the second subdivision, the situation
is as shown in Figure 2-d. Note that nodes labeled inner
in the previous step are now absent, since they weren’t
subdivided. Also note that from all nodes of depth three,
28 are labeled outer because they are completely outside
the circle. The remaining nodes are labeled final since
they belong to the frontier of the circle (i.e. some of their
vertices lay inside an others lay outside) but can’t be
subdivided, being their depth equal to Dmax.

Figure 2. Construction of a 2D version of the tree

The resultant tree is represented in Figure 3. Some
branches have been omitted for the sake of clarity. In
Figure 3 nodes labeled as P are Parent nodes, Inn are
Inner nodes, F are Final nodes and Out are outer nodes.

Figure 3. Structure of an example tree

4. Generating a Human Reachable Volume

We aim to know, before the animation takes place,
whether a goal is reachable. In other words, to determine
in real time if the human model is able to reach a certain
point in 3D space. The first solution we attempted was to
perform a background IK (Inverse Kinematics)
simulation whose outcome was the reachability of the
point. However, this approach was soon found unfeasible
due to the excessive amount of computation required (IK
simulations are inherently costly). We decided to store
which regions of 3D space were reachable by the human
model. Thus, finding whether a point is reachable is
merely a matter of consulting this pre-computed
information.

The VATree was tested with a spherical volume using
the algorithm described in the previous section. In that
case the IsPointInside function represented the equation
of a sphere. What would be the IsPointInside function to
approximate the reachable space of a human arm or foot?
For humans we ask the inverse kinematics machine if
each vertex of the box is reachable after a limited number
of iterations. Figure 4 shows the initial box utilized to
generate the reachable space of a human arm.

Figure 4. Initial box to calculate reachable space

Inverse Kinematics and VATree Construction

Inverse kinematics is an animation technique that let
the user attach Cartesian constraints to some parts of an
articulated structure, in our case the human body [2][4].
As our goal is to approximate the volume representing the
reachability of a virtual human, the Cartesian constraints
are situated in each vertex of the box utilized to construct
the reachability tree.

Figure 5 shows the process of construction of the
reachability tree as in Algorithm 1 but in a graphical way.
The interaction between the tree construction module and
the Inverse kinematics module occurs when the algorithm
needs to know if the point is or is not reachable; this is
shown by red lines in the figure.

Figure 5. IK & Tree Construction

Depending on the inverse kinematics engine
configuration, the tree construction will generate a
reachable space with specific characteristics. For
example, if the IK engine controls the center of mass this
will be reflected in the final reachable space. If several
tasks are established to do a reaching (balance, looking at
the goal, goal position) tasks configurations with different
priorities will generate different reachable spaces.

5. Reaching Strategies

In real life when we have to reach an object we use
several strategies. For instance, if the object is close
enough we reach it directly. Otherwise, if the object is in
a low position we may need to crouch or even to take a

step forward. In fact different strategies characterize
different type of reaching. Each reaching task is matched
with a different strategy depending on where the goal is
and where the hand/foot is.

When a person has to reach an object with the hand,
depending on the distance between the goal and the hand,
the reaching will be direct or it will be necessary to bend
the knees (See Figure 6, Figure 7). In the latter case, the
goal is not included in the reachable space of the direct
one, but inside the reachable space of the crouch strategy.
It is worth noting that in the crouch strategy both feet
remain on the floor, without heel rising. Another possible
strategy would permit a heel-rising movement, thus
reaching a wider region.

Our inverse kinematics engine has the possibility of
choosing between several strategies if the direct one is
not appropriate.

Figure 6. Direct Strategy

Figure 7. Crouch strategy

We represent reachable spaces by means of the
individual boxes whose vertices are inside the reachable
volume. In Figure 8 we visualize, using different colors,
the reaching volumes corresponding to some of the
available strategies. In red, normal reaching with right
hand. In green, normal reaching with left hand. And in
blue crouch reaching with right hand.

Figure 8. Reachable spaces: direct with left hand(green),
direct with right hand(red) and crouch (blue)

Several strategies can share a common intersection
space, as shown in Figure 9. If a goal is found to lay
inside an intersection region, a high level layer situated
on top of the inverse kinematics engine decides which
strategy is more suitable. This decision is made based on
a priority mechanism.

Figure 9. Intersection between strategies

Our VATree structure offers an adequate way to find if
a goal is reachable. By maintaining trees for different
reaching strategies we can chose the most suitable for a
given reach. However, there is an important issue that
needs to be addressed: Which posture of the human
model (i.e. which combination of joint values) makes the
reach possible? Our current approach is to perform an
additional inverse kinematics simulation whose output is
directly shown to the end user. This approach has the
advantage that the resulting posture corresponds to the
exact goal, as opposed to other feasible techniques, such
as motion interpolation.

Once reachable spaces have been generated, the
inverse kinematics engine is used again to simulate a
reaching task; it needs a goal in 3D space and an effector
and information about the regions that this effector is able
to reach.

Comparison of Reachability Trees

Reach space (in red) shown in Figure 10.a was
generated by a simulation with a direct strategy (see
Figure 6) but using as kinematics chain only the arm of
the articulated figure.

Figure 10.b displays the reach space (in green)
generated by a simulation with a direct strategy but using
the upper body as kinematics chain. Space in (b) is higher
than (a) because the clavicle adds extra degrees of
freedom. This space is also bigger in front and side views
due to the contribution of the spine.

 Reach space (in blue) on Figure 10.c is generated by a
simulation with a direct strategy using as kinematics
chain all the hierarchy and controlling the center of mass.
In this case some voxels in the upper and front regions
are no reachable anymore, compared to case (b). Also
compared to case (b), in case (c) lower positions are
reachable due to the contribution of the hip joint that in
case (b) was not included.

 Figure 11 gathers the three reachable spaces from
Figure 10. In this case the blue strategy has been
represented by dots instead of boxes and the green one is
visualized in wireframe.

Figure 10. Three reachable spaces:
(a) Direct using only the arm
(b) Direct using the entire hierarchy
(c) Direct using the entire hierarchy and

controlling balance

Direct Strategy

Raise heels Strategy

Crouch Strategy

(a) (b) (c)

Figure 11. The three reachable spaces together

6. Conclusions and Future work

We have designed a data structure, called VATree, that
allows the approximation of volumes and in particular the
approximation of human reachable volumes.

Our approach is an important step towards an
integrated reach behavior exploiting various strategies
associated to their reach volumes. Different reachable
spaces for different strategies have been generated.

We have utilized the Inverse Kinematics technique to
construct the reachable trees and to create the reaching
task.

Besides the normal and crouched strategy, the system
can be extended to contemplate other strategies such as
tiptoeing, squat (buttocks resting on or near the heels),
upper body torsion, etc..

The high-level library could exploit low level
information (i.e: joint level) that would drive the human
to do the reaching with another strategy. As fatigue is the
exhaustion that limits human activity, we plan to compare
reachable space when a person is fatigued [13] with that
of a person not fatigued.

We also plan to address the timing of motion in order
to get more smooth and realistic reaching animations [3]
[7]. For this purpose an interpolation scheme can be
useful. This would require storing postural data in each
reachable node of the tree. An advantage of this scheme
is that it would let us apply available data about the
trajectory followed by the hand during reaching motions.
More specifically, Faraway has stated that such trajectory
is not a straight line [9], contrary to what previous studies
had suggested.

7. References

[1] Abdel-Malek, K. and Yeh, H.J., Analytic Boundary of
the Workspace for General Three Degree of Freedom
Mechanisms. International Journal of Robotic Research.
Vol. 16, No 2 , 198-213, 1997.

[2] Baerlocher P., Boulic R., Task-priority Formulations for
the Kinematic Control of Highly Redundant Articulated
Structures, Proc. of IROS'98, Victoria, Canada, Oct.
1998 .

[3] J.E. Bobrow, S. Dubowsky, J.S Gibson. Time–optimal
Control of Robotic Manipulators along Specific Paths.
International Journal of Robotic Research.Vol. 4. No.3,
1985.

[4] R. Boulic, R. Mas, D. Thalmann, A robust Approach for
the Center of Mass Position Control with Inverse
Kinetics. Journal of Computers and Graphics, Vol. 20,
No. 5, 693-701, 1996.

[5] L. Cenciotti. Design and Implementation of a System
for the Prediction of Upper Arm Articular Synergies
Based on Soft-computing Algorithms. PhD, Scuola
Superiore Sant'Anna, Pisa, Italy, 2001.

[6] Eui S. Jung, Dohyung Kee and Min K. Chung, Reach
Posture Prediction of Upper Limb for Ergonomic
Workspace Evaluation, Proceedings of the Human
Factors Society.-36th Annual .Meeting, 702-706, 1992.

[7] A.H Fagg, L. Zelevinsky, A.G Barto, J.C Houk. A
Pulse-step Model of Control for Arm Reaching
Movements. Proceedings of the 1998 Meeting of the
Society for the Neural Control of Movement.

[8] J.J. Faraway, Modeling Reach Motions Using
Functional Regression Analysis. Digital Human
Modeling for Design and Engineering Conference and
Exposition, Michigan, June. 2000.

[9] J.J. Faraway, Modeling Hand Trajectories During
Reaching Motion. TR-383. Department of Statistics.
University of Michigan. October, 2001.

[10] Kee, D.H., Shin, Y.T., Kang, D.S., and Chung, E.S.
Reach Volume. Proceedings of the Fall Conferences of
Korean Institute of Industrial Engineers, 232-237, 1996.

[11] D. Libes. Modeling Dynamic Surfaces with Octrees,
Computers & Graphics Magazine, Vol. 15, No 3, 1991

[12] R. Mas, R. Boulic, D. Thalmann. Extended Grasping
Behavior for Autonomous Human Agents, First ACM
Conference on Autonomous Agents'97, Los Angeles,
1997

[13] I. Rodríguez, R. Boulic., D. Meziat. A Joint Level Model
of Fatigue for the Postural Control of Virtual Humans.
Proceedings of Human and Computer 2002, 220-225,
Tokyo, 2002.

[14] D.J. Wiley, J.K. Hahn. Interpolation Synthesis of
Articulated Figure Motion. IEEE Computer Graphics &
Applications, Vol. 17, No 6, Nov./Dec. 1997.

