
A Generic Framework to Exploit Virtual Worlds as Normative and
Dynamic Interactive Spaces

D. Brota1, I. Rodriguez1, A. Puig1 and M.Esteva2

1Applied Mathematics Department, University of Barcelona, Spain
2Artificial Intelligence Research Institute, Barcelona, Spain

Abstract— In this research we present a generic framework
for behavior management in social virtual worlds. Due to
the type of activities taking place in a social virtual world,
it is important to rely on mechanisms ensuring that the
virtual environment is prepared to be a dynamic space
where participants are informed about activities evolution
and where norms are used to organize participants’ actions,
to define actions’ consequences and to prevent undesired
participants behaviours. We define an interaction framework
where model rendering and event capture are separated from
decision mechanisms allowing to be used by an IA based
module (e.g multiagent system) and exploited by different
virtual world platforms. We present a prototype developed
using Wonderland platform where we contribute with a new
type of component named iObjectCell and a new scheme of
multi-view model.

Keywords: Virtual environments, Web3D and applications, infor-
mation spaces

1. Introduction
Advances in internet technology get virtual world tech-

nology closer not only to home users (for entertainment
purposes) but to wide-spread enterprises/institutions which
have a powerful tool to develop remote activities between
stakeholders like employees and clients in business, or
teachers and students in a educational institution. Then,
virtual environments have clear applications in e-governance,
e-learning and e-commerce, just to name a few.

In this research, we work with social virtual worlds
populated by participants that collaborate in order to achieve
a common and individual goals [1]. Due to the type of
activities taking place in a social VW, it is important to
rely on mechanisms ensuring that the virtual environment is
prepared to be a dynamic space where 1) participants are
informed about activities evolution and where 2) norms are
used to organize participants’ actions, to define actions’ con-
sequences and to prevent undesired participants behaviours.
We rely on virtual objects, populating the virtual world, to
enforce norms and give assistance to participants.

Continuing with our line of research in the so-named
intelligent objects [2] [3], we present a general framework of
object behaviour control tied with an IA based external mod-
ule and prepared to be exploited by several VW platforms.

This is done creating a specific module to capture participant
interactions on objects populating the virtual world and
connecting this module with an external and generic one in
charge of deciding what should be the virtual object action.
Decision depends on an organization-based multiagent sytem
(MAS) which establishes the valid interactions participants
may have and the consequences of those interactions [4][5].
In this paper, we present contributions that can be classified
in two different groups. In the first one, we arrange general
issues enumerated as follows:

• We ensure the compliance of norms by participants
using virtual objects with an external module named
iObject manager which decides whether participants
comply established norms.

• We present a new object behaviour control scheme
applicable to different VW platforms.

• We see VW as dynamic information spaces which
exploit the virtual nature of the spaces, and the objects
populating these spaces, allowing to represent things
impossible to their real world counterparts.

The second group of contributions are related with the VW
platform, Wonderland (WL)[6], chosen for the prototype:

• We have developed a multi-view scheme for objects in
WL in order to allow that different users have different
views of the same object.

• We incorporate a new type of Cell named iObject and
in particular we incorporate the concept of Door in WL
(iObjectDoor), until now inexistent in this virtual world
platform.

This paper is organized as follows. Section 2 reviews
the related work on norms management in virtual worlds,
VW as singular information spaces and interaction schemes
for dynamic virtual environments. Section 3 gives a general
overview of the interaction and information space frame-
work. In section 4, the proposed framework is evaluated us-
ing our own extension of Wonderland virtual world. Section
5 gives conclusions and future work.

2. Related work
Most of well-known virtual communities -such as Second

Life, Active Worlds, Entropia and others- require participants
to agree to the company’ s terms of service in the signing
up process [7]. Participants should understand the terms



and conditions to which they are agreeing as a member of
that community. Most people don’t read or are otherwise
immune due to the lack of consequences. There are some
types of incorrect behaviours that we think can be addressed
programatically, that is contemplated in the design of the
VW platform and ensured at deployment time. We propose
to use intelligent objects as element helping users to comply
norms and if it is necessary to prevent forbidden actions.
For example, to block entry to people who is less than
18 years old in a special virtual room. WonderDAC is an
extension module developed for Wonderland that allows to
show or hide parts of a VW depending on the user and group
profile [8]. In contrast to WonderDAC, developed to control
discretionary access basing on users and group permissions,
our approach is more general allowing, for example, the
control of access to spaces based on the historic of user
activities. For example, a norm establishes that a participant
can not enter to the projection room unless he has bought a
ticket for that room and session.

Part of our inspiration for a general interaction approach
for objects populating a virtual world comes from the
smart objects proposal [9] and the posterior work done by
Jorinssen [10] [11]. Nevertheless, our approach is differ-
ent to those because they worked with their own virtual
environments named ACE (Agent Common Environment)
and ALVIC (Architecture for Large-Scale Virtual Interactive
communities), respectively. In this way, their object interac-
tion approach is general in the sense it is independent of
the final application but can not get out of their concrete
virtual platform (they have their own scripting language and
engine). Our interaction framework has been designed to
be applied to different VW platforms such as Wonderland
and Second Life. In this way, rendering and event capture
continue being controlled in the concrete VW platform but
the behaviour decision is managed in an external and generic
manager.

Virtual worlds can be seen as singular information spaces
where the virtual nature of the own space (e.g. floor) and the
furniture (e.g panel) can be exploited in a special manner not
possible for their real counterparts. For example, in the real
world it is not possible to dynamically change tiles color in
a floor to represent an agree/disagree position of participants
in a discussion. This has been done in a recent work [12]. We
aim to incorporate an added value to virtual objects allowing
to give valuable information to participants. As an example
in section 4.4, a door is visualized either green or red
depending on the user trying to pass through. Accessibility
issues can also be addressed in these information spaces, for
example a noticeboard object adapts letter size depending
either on user profile or on the distance between the user
and the panel. Exploiting these native properties of virtual
objects, we create rich and expressive social spaces.

We extend the dynamic conception of current VW plat-
forms in which users are free to dynamically change aspects

Client

- Rendering

- Interaction input

- Objects behaviour

Server

- Changes propagation to 
clients

- Digital assets storage

Fig. 1: Client and server side functionalities in a conventional
VW platform

of the virtual world by means of built-in tools and scripting
behaviours [13] [6]. Part of the unexplored promise of
virtual spaces is their potential for automatic architectural
flexibility. Our proposal is to extend the ability of a VW
to dynamically change itself and exploit the virtualness of
the space supporting the presentation of information, which
would be impossible to do in the real world, and so provide
a better support to participants on their activities.

3. Generic behaviour management
This section presents our framework for generic behaviour

management and compare it with the approach of con-
ventional virtual worlds. Our framework decouples event
provider from event dealer (i.e behaviour handling) allowing
a better support for normative and dynamic virtual worlds.

Figure 1 depicts functionalites included in a conventional
VW platform based on a client-server technology. Clients
take charge of rendering, interaction and behaviour handling
(i.e. event capture and treatment). On the server side, digital
assets are stored (in proprietary or standard format), and the
server propagates client changes to the rest of connected
users. A drawback of this architecture is that an object
behaviour has to be reprogrammed when VW platform
changes.

Our approach, presented in Figure 2, gets behaviour
handling out of the VW platform. It is treated in an external
module named iObjects manager. An iObject is a 3D entity
populating the virtual environment which is exploited in two
ways: it allows normal interaction as it would do in the real
world (e.g approach/touch a door to open) and its virtual
nature gives an added value to the provided information
(e.g adapts dinamically color or size). More information
on iObjects can be found in [2] [3]. In the virtual world,
iObjects ensure participants norm compliance and give the
user assistance during his participation.

iObjects’ manager is designed to be used by several
virtual world platforms. To do that, it is needed to develop
an extension module, iObjects extension in Figure 2, in
the VW platform that will communicate with the generic
manager using a socket connection. Next section describes
the extension module we have developed in Wonderland
from Sun Microsystem and presents some simulation results.



Client

 Virtual World platform 1

Behaviour handling

Decision based on MAS 
execution state

iObjects Manager 

Virtual World platform 2

Socket(object, new/event/del, client)
 

Server

- Changes propagation to 
clients

- Standard/proprietary 3D 
content

- Rendering

- Interaction input

Client

- Rendering

- Interaction input

Socket(object, new/event/del, client)

Socket (object, action)

Socket(object, action)

Hash(new,del): iOVW, iOgeneric

Generic events: OnPaint, 
OnMouseButtonEvent, OnEnter, OnExit

iObjects extension

M
A
S

Server

- Changes propagation to 
clients

- Standard/proprietary 3D 
content

iObjects extension

Fig. 2: Our proposal for decoupling behaviour management
in VW platforms

As can be appreciated in Figure 2, an interaction with
an iObject is captured in the virtual world client and it is
sent, using a socket message, to the iObjects manager. The
message indicates client identifier, object and event used to
interact with the object. The iObject manager decides which
iObject action (e.g. change color, size, trigger animation)
has to be sent back to the VW. This decision is based
on a response given by an organization-based multiagent
system which establishes norms and possible interactions.
The manager maintains a hash with iObject identifier in
the concrete VW (ioVW) and its generic counterpart (iO-
generic). Currently, generic iObject events contemplated are
OnPaint, OnMouseButton, OnEnter (an avatar enters in an
area near to object’s position) and OnExit (an avatar leaves
an area near to object’s position). Note that it is needed to
do a mapping between concrete VW events and generic ones
contemplated by the iObjects manager.

4. Prototype for evaluation
There are several VW platforms to develop an interac-

tive virtual environment, Second Life, Active Worlds and
Wonderland, to name a few. All of them consist of similar
components such as avatars, buildings, scripting components
and built-in features. We chose Wonderland because it was
conceived to work with 3D standards, it is open-source
and multi-platform (java-based). We have developed our
prototype in WL 0.4 where 3D content is represented in
X3D standard format. WL 0.5 works with COLLADA, a

well-extended 3D interchange format. We are now migrating
to version 0.5 available only for developers.

Once selected the VW platform, we studied 1) how to
incorporate iObjects in WL and 2) how to capture an event
(i.e an object interaction) in WL and communicate it to
the external and generic iObject manager. In particular, our
prototype presents results obtained using an iObjectDoor. In
WL, doors are merely holes allowing to pass through them
to avatars and so change from one room to another one. An
iObjectDoor adds an additional nuance letting pass through it
only avatars having permission, that is, avatars who comply
with the norms established by the multiagent system shown
in Figure 2. Our extension of WL platform requires to
develop a new type of Cell named iObjectCell. Cells are
the small unity of visualization in WL. A Cell represents a
3D volume and its properties. There are static and movable
cells. For example, an avatar is a movable cell and furniture,
walls and floor are static cells. As shown in Figure 3, cells
are nested into a tree structure (i.e scene graph). For instance,
in a world you might have a WorldRootCell that represents
the whole world, a room cell that represents a room, then
cells within that room representing avatars, a phone and a
door.

Every cell is registered on the Server, and if the avatar,
controlled by the user, is within a cell vicinity, the model is
sent to the client who comes to see it. In this way, models are
only loaded when it is needed with the consequent saving
on memory and time.

The server-side cell-representation is loaded at the server
boot-trapping time. The server maintains the shared state of
the world across participants (see scene graph in the left part
of Figure 3). Clients are responsible for local renderings,
using local files and by drawing objects with JAVA 3D
APIs. Local changes in the scene can be performed without
notification to the server side and so, to other clients. If local
changes are notified, the server broadcasts a message to all
clients describing the "kind of change" done. All clients see
the same scene (e.g table in Figure 3) under different points
of view, depending on their avatar positions. In section 4.2
we present an extension of WL to allow multiple views of
the same cell by different clients.

4.1 Extending WL with iObjectCell
In WL, each cell has four main components: a CellGLO

(Game Logic Objects) on the server side, a Cell in the Client
side, an intermediate Cell for client-server communication
and a visual representation (i.e 3-D model). Each CellGLO
class on the server has a corresponding Cell class on
the client which is responsible for rendering the cell and
for capturing cell events. Each cell has been modelled in
Blender, exported as X3D and converted to .j3s format,
that is the final format loaded in WL 0.4 version. We have
extended WL creating a new type of Cell named iObjectCell.



Fig. 3: Cell trees

Fig. 4: Components of an iObject Cell

Figure 4 shows iObjectCell components: iObjectCellGLO,
iObjectCell, iObjectCommon and the 3D model.

iObjectCellGLO subclass extends WL class
StationaryCell, it communicates to the client-side
the cell visual content and other setup data implementing
the CellGLO.getSetupData() method. In addition,
iObjectCellGLO controls an iObject different states and
actions. Moreover, a set of opened clients’ sessions is used
to broadcast an specific action to everyone. For instance, if
a door is opened by a client, the rest of the clients should
see the door opening animation, although they are not
allowed to pass through it.

iObjectCell subclass is an specialization of
the client-side Cellclass. It implements the
ExtendedClientChannelListener in order to
handle cell events (e.g mouse, entry/exit vell). Both the
visual representation and animation of the cell are managed
by this subclass. For example, 3D tranformations of the cell
geometric model for animation purposes.

iObjectCommon maintains both the current state of iOb-
jects and the set of messages exchanged between the server

and the client side. It is also responsible for reading and
parsing the XML cell file within the Wonderland File System
(WFS). WFS is a set of XML files, structured in a similar
way as unix file system, shared by the server and the clients
that describes the layout and state of a world on disk. In these
XML we store all visual models and material properties of
the iObject, such as color and textures.

4.2 Extending WL with a multi-view scheme
Virtual worlds can be exploited as dynamic information

spaces, for example, adapting the visualization of a virtual
object depending on the participant profile or previous
activities. We propose a cell multi-view scheme by keeping
different 3D models of the cell. All clients share an indexed
set of visual representations of a cell (red door, green door,
glazing door, etc.), but only one is active for each client in
a given moment. Figure 4 illustrates the set of models and
visual properties of a door.

When an iObjectCell changes its appearance for a client,
the client-side of the cell notifies the produced change to the
server-side iObjectCellGLO subclass. The server should be
informed in order to maintain the current iObject’ visual
appearances for all of the clients, due to the memory
optimization on the client side is managed by the server. In
this optimization, only the cells which are currently visible
are loaded by the client and those which are no longer visible
are deleted. The visible cells are determined by the avatar
position. When the avatar walks around the world, previously
non-visible iObjects can become visible now. In this point,
the visual aspect of the iObject should be coherent to its last
change.

4.3 A Simple iObject: iObjectDoor
The visual representation of a door has been modeled

using Blender. An iObjectDoor is an iObjectCell that con-
sists of a door frame, a door shape and a transparent
bounding cylinder (See Figure 5). Entry and exit events
on the iObjectCell are used to either enable or disable



Fig. 5: Modeling an iObjectDoor visual representation

collisions between the avatar and the iObjectDoor. We use
the bounding cylinder to forbid, if necessary, clients to pass
through the door. In this way, the bounding cylinder actuates
like an invisible wall.

Wonderland server handles collisions only on objects
represented as triangulated meshes. Thus, iObjectDoor’s
bounding cylinder is represented as a mesh. Collisions are
disabled or enabled whenever the WL client captures the
enter or exit cell events, respectively. An enter cell event
is triggered when an avatar gets into an established bound
radius of a cell. On the contrary, an exit cell event is triggered
when an avatar gets out bounded limits.

By default, the collision control of the iObject’s cylinder
component is enabled for all clients. Only on iObjectDoor
entry events, the collision control is disabled when a client
with access permission tries to pass through the door. Then,
a door 3D animation starts to open the door. To avoid
concurrent access to the door, it is not allowed any client
to access to the threshold of the door meanwhile it is
opening and closing. Two avatars should not go through
the iObjectDoor simultaneously, even if both of them are
allowed to do it. When the avatar has passed through the
door, an exit cell event is triggered, a closing animation starts
and the collision control of the door is enabled again. In
addition, all avatars without access permission have always
the collision control enabled so that they can never get closer
to the door.

An iObjectDoor animation on the client-side is managed
by means of 3D matrix transformations. In WL 0.4, another
possibility is to import a .rtg file containing both the 3D
model and the animation. When an avatar is near to the
door and clicks the mouse over the door, the iObjectDoor
captures the event and asks the iObjects manager whether
the client complies norms allowing to access the room (e.g.
in an auction, the buyer has paid registration fee). Then,
if the answer is affirmative, the iObjectDoor runs the local
animation and notifies it to the server so that the rest of

clients also visualize it.

4.4 Simulations
In this section, we show two simulations exploiting norm

compliance and multi-view scheme for an iObjectDoor in
Wonderland. Table 1 shows snapshots taken from two clients
in successive instants of time (T1-T5). Client 1 sees the door
in green because he complies with the norm allowing to
enter the next room. Client 2 sees it in red because he does
not comply the norm. Recall that iObject door is in charge
of ensure norm compliance by means of iObjects manager
connection to the MAS (multiagent system, see Figure 2).

Table 2 shows snapshots taken from three clients in
successive instants of time (T1-T2). Client 1 sees a red door
because he doesn’t comply norms allowing to both enter
the next room and see through the door. Client 2 sees a
glazing red door because he doesn’t comply norm to enter
and complies norm to see through the door. Client 3 sees a
glazing door in green color because he complies both norms.

5. Conclusions and future work
In this research we present a generic behavior man-

agement for objects populating a virtual world. We get
behaviour handling out of the VW platform so that it is
performed in an external module named iObjects manager
allowing to be exploited by different virtual world platforms.
An iObject is a 3D entity populating the virtual environment
which is exploited in two ways: it allows normal interaction
as it would do in the real world (e.g approach/touch a
door to open) and its virtual nature gives an added value
to the provided information (e.g adapts dynamically color
or size depending on the client). Extending Wonderland
platform, we have contributed with a new type of cell
name iObjectCell and, in particular, we have developed an
iObjectDoor which 1) allows to pass through it only to
avatars complying norms established by a multiagent system
and 2) offers a different visualization of objects (multi-view
scheme) depending on the client.

As future work we plan to extend the iObject module with
new types of intelligent objects (e.g notice-board, brochure)
and test its functionality in other VW platforms such as SL or
Active Worlds. In the current prototype iObjects are stored in
the structure of directories managed by Wonderland server
(WFS). For virtual world platforms which work with 3D
standard content, we plan to offer a database of iObjects
prepared to be incorporated to the VW at run-time.

Acknowledgements Partially funded by projects IEA
(TIN2006-15662-C02-01), AT (CONSOLIDER CSD2007-
0022), EU-FEDER, CICYT TIN2008-02903 and by the
Generalitat de Catalunya under the grant 2005-SGR-00093.
M.Esteva enjoys a Ramon y Cajal contract from the Spanish
Government.



Table 1: iObjectDoor ensuring norm (pass through) and multi-view (color) scheme
Client1 complies norm to pass through Client2 doesn’t complies norm

T1

T2

T3

T4

T5



Table 2: iObjectDoor ensuring norms (pass and see through) and multi-view (different color and type of door) scheme
Client 1 (access denied) Client 2 (access denied) Client 3 (free access)

(visibility denied) (free visibility) (free visibility)

T1

T2

References
[1] R. Bartle, Designing Virtual Worlds. New Riders, 2003.
[2] I. Rodriguez, M. Salamo, M. Lopez, J. Cerquides, A. Puig, and

C. Sierra, “Completing the virtual analogy of real institutions via
iobjects,” in CCIA, 2007.

[3] I. Rodriguez, A. Puig, M. Esteva, C. Sierra, A. Bogdanovych, and
S. Simoff, “Intelligent objects to facilitate human participation in
virtual institutions,” in Conference on Web Intelligence, 2008.

[4] M. Esteva, Electronic Institutions: from specification to development.
PhD (UPC), 2003, ser. IIIA Monograph Series. IIIA, 2003, no. 19.

[5] A. Bogdanovych, M. Esteva, S. Simoff, C. Sierra, and H. Berger,
“A methodology for developing multiagent systems as 3d electronic
institutions,” in Agent-Oriented Software Engineering VIII., vol. 4951,
2008, pp. 103–117.

[6] “Wonderland from sun microsystems,” https://lg3d-
wonderland.dev.java.net/, 2008.

[7] “Second life term of services,”
http://secondlife.com/corporate/tos.php, 2008.

[8] T. E. Wright and G. Madey, “Wonderdac: An implementation of
discretionary access controls within the project wonderland,” in Tech
report. Univ. of Notre Dam, 2008.

[9] M. Kallmann, J. Monzani, A. Caicedo, and D. Thalmann, “A common
environment for simulating virtual human agents in real time,” in
Proc.Workshop on Achieving Human-Like Behavior in Interactive
Animated Agents, 2000.

[10] P. Jorissen, M. Wijnants, and W. Lamotte, “Using collaborative
interactive objects and animation to enable dynamic interactions in
collaborative virtual environments,” Conference on Computer anima-
tion and Social Agents, 2004.

[11] P. Jorissen, M. Wijnants, and W. Lamotte, “Dynamic interactions in
physically realistic collaborative virtual environments,” IEEE trans-
action on visualization and computer graphics, vol. 11, no. 6, pp.
649–659, 2005.

[12] D. Harry and J. Donath, “Information spaces: Building meeting
rooms in virtual environments,” in Conference on Human Factors in
Computing Systems, 2008, pp. 3741–3746.

[13] D. Friedman, A. Steed, and M. Slater, “Spatial social behavior in
second life,” Lecture Notes in Computer Science, Springer, vol. 4722,
pp. 252–263, 2007.


