

Chapter 5

Fatigue Exploitation in an Inverse
Kinematics Framework

5.1 Introduction

As was seen in the related work chapter, there are several available techniques to

generate computer animations. In particular, Inverse Kinematics was presented as a

technique in which the animator only has to specify the goal to reach and the Inverse

Kinematics engine solves the succession of joint angles needed to achieve it. This

technique allows an interactive manipulation of complex structures. We propose a fatigue

model to be applied to an articulated figure representing a human body so that it is an

adequate technique for such a complex structure.

Since the time dimension is not explicitly handled in Inverse Kinematics, the

convergence loop is often interpreted as the progressive enforcement of the constraints

over time. The present chapter integrates time as an explicit variable in an Inverse

Kinematics framework in such a way that fatigue evolution over time can be exploited.

Fatigue is then applied to postures optimization and characterization.

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

80

5.2 Inverse Kinematics

In Inverse Kinematics, the animator generally specifies end-effector and positions

constraints (tasks), and the computer solves for the joint configuration needed to achieve

the desired task/s. Tasks are usually expressed in Cartesian space. End-effector is the part

of the articulated structure that is controlled, for example, the hand in Figure 5-1. On the

contrary, in Forward Kinematics, the animator specifies angles and the computer finds the

end-effector position.

Figure 5-1. Forward vs. Inverse Kinematics

In analytic Inverse Kinematics (AIK), methods are adequate for simple structures.

These methods are commonly used in the robotic field [Cra86]. Based on an earlier work

[Kor82], IKAN provides an analytical method to solve generalized Inverse Kinematics

problems on a human arm or leg. Its major limitation is that the system separates the

articulated structure in several kinematics chains for which an analytical approach is

applicable [Tol00].

One of our motivation for choosing numeric Inverse Kinematics is to provide

synergistic solutions where all joints contribute to achieve all constraints. Numerical

methods use equation solving or optimization techniques to obtain a more general

solution.

Analytic solutions are not adequate for complex articulated structures. Hence,

numerical methods are used to solve the Inverse Kinematics problem.

θ1

θ2

E

FORWARD
 KINEMATICS

E = f (θ1, θ2)

INVERSE
 KINEMATICS

{ (θ1, θ2 } = f -1(E)

 5.2 Inverse Kinematics

81

In the fatigue exploitation, we have used an Inverse Kinematics engine based on the

well-known resolved motion-rate control from robotics [Whi69].

This technique does a linearization of a non-linear problem using the Jacobian Matrix J,

which relates small changes of the joint coordinates q∆ to small changes of task

coordinates x∆ .

qJx ∆=∆

In fact, the Inverse Kinematics problem tries to find a solution to the “inverse” linear

system:

 xJq ∆=∆
+

 (1)

 where +J represents the pseudoinverse of the Jacobian [Bou71].

The linear system is solved and the process repeated until the system converges to a

solution.

The control of human postures needs to combine several tasks or constraints. For

example, if we want to reach a point in the space, we will need a center of mass constraint

to maintain the balance, a look-at constraint to gaze at the goal and a foot constraint to

keep the foot in the floor. Therefore, the formulation given in (1) has to manage multiple

tasks and they should be ordered by priority, in the example, the balance constraint has a

higher priority than the look-at constraint.

It is important to select a strategy to solve the multiple tasks problem. One solution, the

so-called weighting strategy, is to find a trade-off solution where no task is achieved exactly

but each residual error is minimized [Bad87]. Another solution is to sort the tasks by order

of priority. When they can be achieved simultaneously, all are satisfied, otherwise the task

with higher priority reaches its goal while the residual error of the other tasks is minimized,

without perturbing the achieved one.

Table 5-1 resumes several task-priority formulations, describing the author, year and

main characteristics. Our system uses Baerlocher’s approach.

Although in the next section redundancy will be used for other optimization purposes,

it has been efficiently exploited by all task-priority formulations. Considering that the

primary task has higher priority level than the secondary task, in a task priority strategy, a

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

82

task with lower priority is executed only if it does not conflict with the higher priority task.

This is done by projecting the secondary task onto the null space of the primary task.

YEAR/AUTHOR

FORMULATION CHARACTERISTICS

1981/Nakamura

Algorithmic singularities occur, then Damped-Least-
Squared-Inverse is used and secondary task tracking is less
accurate [Nak86]

1991/Siciliano

Recursive extension of [Nak86] to n tasks [Sic91]

1994/97 Chiaverini

Algorithmic singularities do not occur but secondary task
tracking introduces greater error [Chi94][Chi97]

1998/Baerlocher

Improve the speed of algorithm introduced in [Sic91]

Propose an incremental formula for the null space
projector evaluation [Bae98]

2001/Youngjin Choi

Utilize the weighted pseudoinverse in place of the
pseudoinverse

Bring the smaller error for the secondary task comparing
to previous methods

Algorithmic singularities do not occur [Cho01]

Table 5-1. Task-priority formulations

Next section describes in more detail the problem of redundancy and its exploitation in

several optimization scenarios.

 5.2 Inverse Kinematics

83

5.2.1 Redundancy

An articulated structure is redundant when there are more degrees of freedom than

constraints to be satisfied; we face an underdetermined problem as the number of degrees

of freedom of the human body exceeds the number of task coordinates.

Methods based on the resolved motion-rate control allow to exploit the redundancy

problem in several ways. The formulation due to Liégeois [Lie77] uses the gradient vector

of a performance criterion, z , in the homogeneous part of the solution to the inverse

kinematics problem:

zPxJq JN)(+∆=∆
+

where x∆ is a known desired task increment, q∆ is the unknown increment of joint

coordinates, +J is the pseudo-inverse Jacobian,)()(JJIJNP
+

−= is the orthogonal projection

operator on the null space of the Jacobian and z represents an additional optimization

term in joint space.

An application of optimization is to keep the joint angles as close as possible to some

desired values. Liégeois proposed to exploit the homogeneous part of the solution to

achieve joint limit avoidance. The function to minimize was the squared norm of the

difference between the current and the mid-range posture:

)(2 mqqz −−=

where q represents the current posture and qm the mid-range posture.

Another researcher used it to avoid singularity [Kle84]. Singular configurations are

undesirable joint configurations characterized by the Jacobian matrix losing its rank, and

inducing extremely large joint velocities for small end-effector changes. Maciejewski

demonstrated the use of Singular Value Decomposition (SVD) to detect near-singular

configurations and apply damping measures to joint velocities as compensation for the

discontinuities produced by the pseudoinverse method [Mac90].

Redundancy has also been applied to obstacle or collision avoidance [Bou86] [Esp85]

and maximum comfort [Bru87].

Maciejewski attached an instantaneous repulsive velocity to the manipulator point

closest to the obstacles [Mac85] [Mac89]. Then, it is defined a secondary end effector with

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

84

Jacobian Js and pseudo-inverse Js
+. As the main task has influence on the secondary end

effector, it is needed to subtract it from the repulsive velocity in order to compensate it in

the final solution. The following formulation describes Maciejewski’s proposal:

)(])([xJsJsxJJIsJxJq ∆
+

−∆
++

−+∆
+

=∆

In conclusion, besides primary tasks (i.e. cartesian constraints), the Inverse Kinematics

technique allows the execution of secondary tasks (usually expressed in joint space) thanks

to the redundancy of the articulated figure. The secondary task has the lowest priority level

due to it is projected in the null space of the primary one. For this reason, we do not use

the optimization approach for fatigue minimization. In the next section, we present the

hard constraint concept which guarantees the highest priority for constraints.

5.2.2 Hard Constraints

In addition to Inverse Kinematics tasks (i.e. end effector position/orientation), it is

possible to ensure the satisfaction of others equality and inequality constraints with the

highest priority, in other words hard constraints. Our approach uses the constraining

property of the task-priority solution described in [Bae01] for postures optimization. The

author applied hard constraints to joint limits and joints couplings. Let us describe how

equality and inequality constraints are integrated in the initialization phase of the task-

priority solution. A set of s linear equality and inequality constraints are expressed as

follows:

riibqTic ...1, ==

sriibqTic ...1, +=<=

where q is a n-dimensional vector of joint coordinates, ic represents a vector of

dimension n and ib is a scalar. In the following, C represents the Jacobian of all active

constraints, it gathers every ic .

Without using equality and inequality constraints, in the initialization phase of the task-

priority algorithm the solution vector is set to zero, and the projection matrix to the

identity:

 5.3 Fatigue Model Exploitation

85

1) 00 =∆q

 2) nIP =

Using equality and inequality constraints, the algorithm modifies the initialization stage

as follows:

1))(0 CqbCq −
+

=∆

2) CCIPP nCNJN
+

−==)()(0
, where T

1]...[rccC = and T
1]...[rbbb =

Inequality constraints are managed using the active set method. The active set method

proceeds by partitioning inequality constraints in two sets, active (or sufficiently close to be

supposed active for this iteration) and inactive. The inactive constraints are ignored for the

iteration. The active set for this iteration is sometimes called the working set.

Initially, the method proceeds by including only equality constraints in the working set,

then it is solved for q∆ . The new state qq ∆+ is calculated and it is checked whether there is

any violated inequality constraint. These are then introduced in the working set (by

converting them into equality constraints). This conversion is done by the active set

method which assumes that an inequality constraint that lies on the boundary of the

constraint acts like an equality constraint. The new state is selected by moving on the

surface defined by the working set. With this new working set, a new q∆ is computed and

the process is repeated until all constraints are satisfied.

5.3 Fatigue Model Exploitation

5.3.1 Overview

In this research, the use of the fatigue model is twofold. On one hand, to search for

postures where fatigue is minimized, that is, it is used in postures optimization. On the

other hand, to identify postures or reachable spaces using the fatigue physiological factor.

Both are described in the next sections.

5.3.2 Postures Optimization

A previous research on Inverse Kinematics proposed a torque minimization due to

gravity torques; it was based on geometric properties [Bou97]. A more recent proposal

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

86

included both gravity and external forces. Its purpose was to converge to postures with a

minimum amount of joint torques. Both approaches exploited structure redundancy to

solve the optimization problem.

Our fatigue minimization method is based on the constraint approach described in

section 5.2.2. We introduce a hysteresis activation pattern for each half-joint to set a fatigue

reduction constraint whenever necessary. They can be named “hard constraints” as they

have to be ensured with a higher priority than all other tasks.

Figure 5-2 describes the constraint hysteresis activation pattern. When a half-joint

fatigue level is above the fatigue threshold, the joint variation is constrained to reduce the

half-joint torque by a small increment compatible with the corresponding time increment

(hypothesis of slow motion). Then the other tasks are achieved in the null space of that

constraint. The constraint exists until the half-joint recovery level is reached (second line

of arrows in Figure 5-2), moment in which the fatigue minimization process is deactivated.

The hysteresis activation pattern forces a minimal duration for the recovery by setting a

lower threshold for de-activating constraints; this reflects better human behavior compared

to a single activation/deactivation threshold [Mcn02].

Our approach achieves fatigue minimization exploiting active and passive torques at

joint level. We have utilized a factor, named “muscular tonus” (see Figure 5-3), which

represents the proportion of active torque that is being used in the fatigue reduction

process.

Tonus is a value normalized between 0 and 1. When tonus is 1, active torque is

completely exploited in the fatigue minimization constraint. In the opposite case, when

tonus is 0, active torque is not included and only passive torque is being exploited. The

control of the tonus is introduced in order to produce a wider range of valid postures.

The fatigue reduction constraint produces a joint variation that reduces the active

torque of the most fatigued half-joint and increases the passive torque produced by

tendons and ligaments.

 5.3 Fatigue Model Exploitation

87

Figure 5-2. Constraint hysteresis activation pattern

Figure 5-3. Tonus determines the influence of the active torque

Tonus Factor Contribution

The tonus factor used as described above allows the generation of a wider range of

postures as it exploitation leads to solutions not achieved only using active torque. It allows

to generate a greater potential of phsychologically marked poses.

An example is the passive torque achieved at joint limits by people standing; poses

adopted in such conditions look more slouch.

MUSCULAR TONUS

Active Torque Passive Torque

TONUS *Active + Passive

RECOVERY-
THRESOLD

"recovering state" needed,

then ACTIVATE

fatigue minimization constraint

DEACTIVATE

fatigue minimization constraint

FATIGUE-
THRESOLD

1 Half-Joint Fatigue Level
0

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

88

Active Torque

In the case of active torque, torque reduction is calculated as follows: If the joint l is

fatigued, its torque
l

activeτ has to be minimized. We compute the partial derivative of

l
activeτ with respect to all joints:

jq

lactive
jVq

∂

∂

=

τ

, j∀

A vector storing these partial derivatives indicates how much torque
l

activeτ changes

for a small variation of each joint. Then, the vector Vq stores the partial derivatives:

)1...,,0(−= nVqVqVq , where n is the number of joints.

To compute jVq , we need the Jacobians JTi associated with the external forces fi and the

gravity Jacobian JG associated with the weight w. This is the expression of the coordinate

jVq corresponding to joint j:

)(_).(_ jaxwlGJjaxif
ne

i
lTiJjVq +=∑

where ne is the number of external forces, lTiJ _ is the column l of JTi , lGJ _ is the

column l of JG associated with the weight w and ja represents the unit axis of rotation of

joint j. We need only the column l of these Jacobians because it corresponds to the torque

l
activeτ to minimize. The entire Jacobians JTi and JG were used in the study mentioned in

the previous section [Bar01].

In fact, what we want is to construct an inequality constraint of the form: bqa
T

< .

Recall the definition of hyperplane H:

∈=∈= RbbqTanRqH ,/ , where Ta represents the normal of the hyperplane H. A

hyperplane divides space into upper and lower halfspaces:

∈<∈= RbbqTanRqLH ,/

∈>∈= RbbqTanRqUH ,/

We will see the construction of the inequality constraint with an example in 2D, where

 5.3 Fatigue Model Exploitation

89

the hyperplane represents a line.

As the gradient vector described above, Vq , is the direction of maximum increase of

the function and what we want is to minimize the torque, we take its opposite. We set a

maximum speed for the joint variation, for example in the arm case study the maximum

value is 1.2 degree/second.

Figure 5-4. Example of hyperplane in 2D

The joint variation needed for the minimization is calculated as follows:

qV
l

activelq .τατ ⋅=∆ , where α is a negative scalar,
l

activeτ is the torque of the most

fatigued joint and qV is the gradient vector indicating how much
l

activeτ changes for a

small variation of each joint.

As can be seen in Figure 5-4, q is out of the feasible region, then the lqτ∆ , needed to

drive it to the feasible region, has opposite direction to aT:

)(lqnormalizedTa τ∆−= , note that Ta is the gradient vector that represents the

hyperplane.

As lqq τ∆+ is on the hyperplane, its product by Ta gives the scalar b :

)(lqqTab τ∆+⋅=

Therefore, we have already defined an inequality constraint that drives the q vector

q1

q2

a

b

feasible region

q

∆ qτl

bqTa =

bqTa <

unfeasible region

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

90

towards a direction of minimum torque.

Passive Torque

In the case of passive torque, we use a model derived by Riener [Rie99]. Functions k

and h in Figure 5-5 and Figure 5-6 represent the passive moment of knee and hip joints

respectively, where HKA θθθ ,, are ankle, knee and hip angles in degrees. Similar functions

can be derived for other joints.

Figure 5-5. Graphic representation of function),,(HKAk θθθ

*820.4)0128.0

0495.00004.0971.3exp()0217.00352.00460.0800.1exp(),,(

KMH

KAHKAHKAk

+−−

+−−−+−−=

θ

θθθθθθθθ

-20 0 20 40 60 80 100 120 140
-25

-20

-15

-10

-5

0

5

10

15

20

25

knee angle (degrees)

p
a
s
s
iv

e
 m

o
m

e
n
t

(N
m

)

072.8)0305.00226.03403.1exp()0750.00034.04655.1exp(),(++−−−−= HKHKHKh θθθθθθ

-60 -40 -20 0 20 40 60 80 100 120
-150

-100

-50

0

50

100

150

200

hip angle (degrees)

p
a
s
s
iv

e
 m

o
m

e
n
t

(N
m

)

 5.4 Reachable Space Evaluation for Postures Characterization

91

Figure 5-6. Graphic representation of function),(HKh θθ

The term to calculate the joint variation needed to find passive torque of the most

fatigued joint is calculated by means of the partial derivative of the previous functions, that

is, their Jacobian.

Table 5-2 shows the partial derivatives of function h. Then, a gradient vector pV ,

storing the partial derivatives of function h, along with qV is used in the creation of the

inequality constraint.

Table 5-2. Partial derivatives of function h in Figure 5-6

The fatigue minimization as described before, accomplishes the minimization of the

most fatigued joint reducing active and passive torques coming from external forces,

tendons and ligaments.

The following chapter presents the case studies <lifting in sagital plane> and <the

contraposto>. Both cases exploit the fatigue minimization approach as described in this

section.

5.4 Reachable Space Evaluation for Postures Characterization

At a higher level than posture optimization, postures characterization is achieved

thanks to the combination of fatigue assessment at joint level and the generation of

reachable spaces. In this way, a feature that identifies a posture is the induced fatigue while

)0305.00226.03403.1exp(0305.0)0750.00034.04655.1exp(0750.0

:

HKHK
H

h

KtorespectderivativePartial

θθθθ
θ

θ

+−−−−−=
∂

∂

)0305.00226.03403.1exp(0226.0)0750.00034.04655.1exp(0034.0

:

HKHK
K

h

HtorespectderivativePartial

θθθθ
θ

θ

+−−−−−=
∂

∂

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

92

the posture is sustained.

When a subject maintains a posture during certain time while, i.e. carrying an external

load; after a fatigue assessment, the posture can be classified inside a range of fatigue

indices. Consequently, the reachable space using this posture or similar ones can also be

characterized by the fatigue factor. It is possible to appreciate that a region of the

reachability space is reached with less fatigued postures than other regions. In the

following, we introduce the concept of reachability and describe how spaces of reachability

are constructed.

Human movement and, in particular, human arm motions play an important role in

studies of the human body. Reaching is a daily life activity. We frequently reach a glass of

water, a door handle, a book on a shelf, etc.

Computer generated reachable spaces allow the analysis of the human body and its

environment. We can generate and compare reachable spaces in different conditions

(sitting, standing,…).

Our motivation is due to the necessity of systems that help to manage data relative to

the most frequent tasks involved in human activity. In particular, we aim to use fatigue data

to characterize postures and reachable spaces in several reaching strategies.

5.4.1 Construction of a Reachable Volume for Different Strategies

Depending on the type of reaching that we want to generate, we establish a set of

constraints that characterize the task. Therefore, a set of constraints has to be defined in

order to generate the reachable volume corresponding to each strategy [Rod03c] [Rod03d].

The distance between the virtual human and the volume to approximate determines a

near or far reaching. The height of the volume with respect to the virtual human also

determines differences in the sort of reaching. A very low volume situated at feet level will

allow studying crouch reaching.

Table 5-3 shows the set of Inverse Kinematics constraints that define three different

strategies.

The performance of a standing reach needs some forward bending of the trunk, thus

 5.4 Reachable Space Evaluation for Postures Characterization

93

requiring postural stability provided by a controlled center of mass. Other constraints are a

positional constraint applied to the body part, which does the reach, and a look-at

constraint that makes the subject gaze at the target. All these constraints define what we

call a direct near reach.

If the goal is so low that the subject needs to crouch, in addition to those constraints

previously mentioned, flexing legs and a change on the root of motion are also required.

Finally, for seated reach, in which the person has to reach an object starting from a

seated posture, the center of mass needs not be controlled, but it is necessary to change the

location of the motion flow root. The root of the motion is set to the thigh because the hip

is highly involved in the movement. If this joint was not included in the joint chain, wrong

postures and smaller reachable spaces would be generated.

Figure 5-7 describes the process of labeling and storing a reachable volume. Given the

set of constraints that define a strategy, a mechanism queries the Inverse Kinematics

engine, asking for reachability.

An initial voxel is specified and the reachability query is applied to its eight vertexes.

The initial voxel should be chosen large enough so that it is bigger than the reachable

space. In this way it will force a voxel decomposition. Otherwise, the decomposition might

stop too early with a crude approximation.

The Inverse Kinematics engine replies telling whether the voxel is reachable or

unreachable. We say that a voxel is reachable when the strategy is adequate to reach its

eight vertexes.

An unreachable voxel, on the other hand, is entirely made of unreachable points. When

a voxel has a mixture of reachable and unreachable parts, it is divided into eight new,

smaller child voxels and the same process is applied to each of them.

A detailed description of the algorithm followed to construct a reachable volume can be

found in Figure C.1 of appendix C.

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

94

SET OF CONSTRAINTS

STRATEGY

Center of mass control

Positional constraint (i.e. hand)
Look-at constraint

Motion flow root (pelvis)

STANDING REACH:

DIRECT

Center of mass control

Position constraint (i.e. hand)
Looking constraint

Flexing legs
Change root of motion (i.e. foot)

STANDING REACH:

CROUCH

Position constraint (i.e. hand)
Looking constraint

Change root of motion (i.e. foot)

SEATED REACH

Table 5-3. Constraints that define reaching strategies

 5.4 Reachable Space Evaluation for Postures Characterization

95

Figure 5-7. Generation of a reachable volume

Figure 5-8 shows reachable volumes generated with different strategies. Reach space (in

red) shown in Figure 5-8.A was generated by a simulation with a direct strategy but using as

kinematics chain only the arm of the articulated figure.

Figure 5-8.B displays the reachable space (in green) generated by a simulation with a

direct strategy but using the upper body as kinematics chain. Reachable space in (B) is

higher than in (A) because the clavicle adds extra degrees of freedom. This space is also

bigger in front and side views due to the contribution of the spine.

All unreachable:

Voxel labelled
UNREACHABLE

All reachable

Some unreachable

Are all vertices
reachable?

 Initial voxel

 Constraints defining the reach
strategy

Divide voxel

 into eight

Repeat for each
sub-voxel

START

INVERSE KINEMATICS

ENGINE

All reachable:

Voxel labelled
REACHABLE

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

96

Figure 5-8. Three reachable spaces: (A) Direct using only the arm (B) Direct using the upper
body (C) Direct using the entire hierarchy and controlling balance

Reachable space (in blue) on Figure 5-8.C is generated by a simulation with a direct

strategy using as kinematics chain all the hierarchy and controlling the center of mass. In

this case some voxels in the upper and front regions are not reachable anymore, compared

to case (B). Also compared to case (B), in case (C) lower positions are reachable due to the

contribution of the hip joint that in case (B) was not included.

5.4.2 Adding Fatigue Data to the Reachability Volume

In the storing of reachability data along with fatigue data, the Inverse Kinematics

engine and the fatigue module play an important role. Figure 5-9 shows the mechanism

followed to store information about fatigue in reachable points. Numbers drawn over

arrows indicate the order of processes. The Inverse Kinematics module receives

information about the point that want to be classified as reachable or unreachable, and a

set of tasks that define the strategy to do the reaching. Then, the Inverse Kinematics engine

gives information about reachability. Only for reachable points the fatigue assessment

 5.4 Reachable Space Evaluation for Postures Characterization

97

process is activated.

The Inverse Kinematics engine iterates towards the goal defined by the reachable point.

The achieved posture is maintained during certain time in order to assess how fatiguing the

posture is. During steps 3 and 4 a high interaction between the two modules is needed as

the fatigue module needs updated data about posture in order to calculate joint fatigue

level. In fact, these steps are performed repeatedly until the time established for the

simulation is reached. Finally, the fatigue module returns a fatigue value used to feature the

point as reachable with a determined fatigue value. This fatigue value has been computed

for a predefined duration and external load. It is shown on Figure 6-9 of chapter 6 which

shows results on reachable spaces including fatigue data.

Figure 5-9. Featuring reachable points with fatigue data

UNREACHABLE

Reachability

INVERSE
KINEMATICS
MODULE

Updated posture

(θ1, …, θn)
for fatigue calculations

3D Point

Set of tasks

REACHABLE

1

Fatiguing ?

FATIGUE MODEL
MODULE

 Fatigue Level F

Iterate towards the
goal (reachable
point)

REACHABLE WITH FATIGUE LEVEL F

3

4

2

5

 Chapter 5 Fatigue Exploitation in an Inverse Kinematics Framework

98

5.5 Summary

In this chapter, we have shown how the fatigue model handles the time dimension

within an Inverse Kinematics optimization loop. We have presented this technique as

adequate for the interactive management of complex articulated figures, in particular,

virtual humans.

Fatigue has been exploited in an Inverse Kinematics framework and it has been applied

to postures optimization and characterization.

In posture optimization, a mechanism for fatigue minimization, named constraint

hysteresis activation pattern, is used to adjust fatigued postures.

The fatigue model has also been used to store information of fatigue in reachability

trees. We have described the process of construction of a reachable volume for different

strategies. In addition, we have shown the interaction between the fatigue and reachability

modules in order to store fatigue data in reachable volumes.

