
 

 

Chapter 5  

Fatigue Exploitation in an Inverse 
Kinematics Framework 

5.1 Introduction 

As was seen in the related work chapter, there are several available techniques to 

generate computer animations. In particular, Inverse Kinematics was presented as a 

technique in which the animator only has to specify the goal to reach and the Inverse 

Kinematics engine solves the succession of joint angles needed to achieve it. This 

technique allows an interactive manipulation of complex structures. We propose a fatigue 

model to be applied to an articulated figure representing a human body so that it is an 

adequate technique for such a complex structure.  

Since the time dimension is not explicitly handled in Inverse Kinematics, the 

convergence loop is often interpreted as the progressive enforcement of the constraints 

over time. The present chapter integrates time as an explicit variable in an Inverse 

Kinematics framework in such a way that fatigue evolution over time can be exploited. 

Fatigue is then applied to postures optimization and characterization.  
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5.2 Inverse Kinematics 

In Inverse Kinematics, the animator generally specifies end-effector and positions 

constraints (tasks), and the computer solves for the joint configuration needed to achieve 

the desired task/s. Tasks are usually expressed in Cartesian space. End-effector is the part 

of the articulated structure that is controlled, for example, the hand in Figure  5-1. On the 

contrary, in Forward Kinematics, the animator specifies angles and the computer finds the 

end-effector position.   

Figure  5-1. Forward vs. Inverse Kinematics 

In analytic Inverse Kinematics (AIK), methods are adequate for simple structures. 

These methods are commonly used in the robotic field [Cra86]. Based on an earlier work 

[Kor82], IKAN  provides an analytical method to solve generalized Inverse Kinematics 

problems on a human arm or leg. Its major limitation is that the system separates the 

articulated structure in several kinematics chains for which an analytical approach is 

applicable [Tol00].  

One of our motivation for choosing numeric Inverse Kinematics is to provide 

synergistic solutions where all joints contribute to achieve all constraints. Numerical 

methods use equation solving or optimization techniques to obtain a more general 

solution. 

Analytic solutions are not adequate for complex articulated structures. Hence, 

numerical methods are used to solve the Inverse Kinematics problem. 
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In the fatigue exploitation, we have used an Inverse Kinematics engine based on the 

well-known resolved motion-rate control from robotics [Whi69].  

This technique does a linearization of a non-linear problem using the Jacobian Matrix J, 

which relates small changes of the joint coordinates q∆  to small changes of task 

coordinates x∆ .  

qJx ∆=∆  

In fact, the Inverse Kinematics problem tries to find a solution to the “inverse” linear 

system: 

 xJq ∆=∆
+

 (1) 

 where +J  represents the pseudoinverse of the Jacobian [Bou71]. 

The linear system is solved and the process repeated until the system converges to a 

solution. 

The control of human postures needs to combine several tasks or constraints. For 

example, if we want to reach a point in the space, we will need a center of mass constraint 

to maintain the balance, a look-at constraint to gaze at the goal and a foot constraint to 

keep the foot in the floor. Therefore, the formulation given in (1) has to manage multiple 

tasks and they should be ordered by priority, in the example, the balance constraint has a 

higher priority than the look-at constraint. 

It is important to select a strategy to solve the multiple tasks problem. One solution, the 

so-called weighting strategy, is to find a trade-off solution where no task is achieved exactly 

but each residual error is minimized [Bad87]. Another solution is to sort the tasks by order 

of priority. When they can be achieved simultaneously, all are satisfied, otherwise the task 

with higher priority reaches its goal while the residual error of the other tasks is minimized, 

without perturbing the achieved one.  

Table  5-1 resumes several task-priority formulations, describing the author, year and 

main characteristics. Our system uses Baerlocher’s approach.  

Although in the next section redundancy will be used for other optimization purposes, 

it has been efficiently exploited by all task-priority formulations. Considering that the 

primary task has higher priority level than the secondary task, in a task priority strategy, a 
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task with lower priority is executed only if it does not conflict with the higher priority task. 

This is done by projecting the secondary task onto the null space of the primary task. 

 

 

YEAR/AUTHOR 

 

 

FORMULATION CHARACTERISTICS 

 

1981/Nakamura 

 

 

Algorithmic singularities occur, then Damped-Least-
Squared-Inverse is used and secondary task tracking is less 
accurate [Nak86] 

 

 

1991/Siciliano 

 

Recursive extension of [Nak86] to n tasks [Sic91] 

 

1994/97 Chiaverini  

 

 

Algorithmic singularities do not occur but secondary task 
tracking introduces greater error [Chi94][Chi97] 

 

 

1998/Baerlocher 

 

Improve the speed of algorithm introduced in [Sic91] 

 

Propose an incremental formula for the null space 
projector evaluation [Bae98] 

 

 

2001/Youngjin Choi 

 

Utilize the weighted pseudoinverse in place of the 
pseudoinverse 

 

Bring the smaller error for the secondary task comparing 
to previous methods 

 

Algorithmic singularities do not occur [Cho01] 

 

Table  5-1. Task-priority formulations 

Next section describes in more detail the problem of redundancy and its exploitation in 

several optimization scenarios. 
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5.2.1 Redundancy 

An articulated structure is redundant when there are more degrees of freedom than 

constraints to be satisfied; we face an underdetermined problem as the number of degrees 

of freedom of the human body exceeds the number of task coordinates. 

Methods based on the resolved motion-rate control allow to exploit the redundancy 

problem in several ways. The formulation due to Liégeois [Lie77] uses the gradient vector 

of a performance criterion, z , in the homogeneous part of the solution to the inverse 

kinematics problem:  

zPxJq JN )(+∆=∆
+   

where x∆  is a known desired task increment, q∆  is the unknown increment of joint 

coordinates, +J  is the pseudo-inverse Jacobian, )()( JJIJNP
+

−=  is the orthogonal projection 

operator on the null space of the Jacobian and z  represents an additional optimization 

term in joint space. 

An application of optimization is to keep the joint angles as close as possible to some 

desired values. Liégeois proposed to exploit the homogeneous part of the solution to 

achieve joint limit avoidance. The function to minimize was the squared norm of the 

difference between the current and the mid-range posture: 

 )(2 mqqz −−=  

where q represents the current posture and qm the mid-range posture. 

Another researcher used it to avoid singularity [Kle84]. Singular configurations are 

undesirable joint configurations characterized by the Jacobian matrix losing its rank, and 

inducing extremely large joint velocities for small end-effector changes. Maciejewski 

demonstrated the use of Singular Value Decomposition (SVD) to detect near-singular 

configurations and apply damping measures to joint velocities as compensation for the 

discontinuities produced by the pseudoinverse method [Mac90]. 

Redundancy has also been applied to obstacle or collision avoidance [Bou86] [Esp85] 

and maximum comfort [Bru87]. 

Maciejewski attached an instantaneous repulsive velocity to the manipulator point 

closest to the obstacles [Mac85] [Mac89]. Then, it is defined a secondary end effector with 
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Jacobian Js and pseudo-inverse Js
+. As the main task has influence on the secondary end 

effector, it is needed to subtract it from the repulsive velocity in order to compensate it in 

the final solution. The following formulation describes Maciejewski’s proposal: 

 )(])([ xJsJsxJJIsJxJq ∆
+

−∆
++

−+∆
+

=∆  

In conclusion, besides primary tasks (i.e. cartesian constraints), the Inverse Kinematics 

technique allows the execution of secondary tasks (usually expressed in joint space) thanks 

to the redundancy of the articulated figure. The secondary task has the lowest priority level 

due to it is projected in the null space of the primary one. For this reason, we do not use 

the optimization approach for fatigue minimization. In the next section, we present the 

hard constraint concept which guarantees the highest priority for constraints. 

5.2.2 Hard Constraints 

In addition to Inverse Kinematics tasks (i.e. end effector position/orientation), it is 

possible to ensure the satisfaction of others equality and inequality constraints with the 

highest priority, in other words hard constraints. Our approach uses the constraining 

property of the task-priority solution described in [Bae01] for postures optimization. The 

author applied hard constraints to joint limits and joints couplings. Let us describe how 

equality and inequality constraints are integrated in the initialization phase of the task-

priority solution. A set of s linear equality and inequality constraints are expressed as 

follows: 

riibqTic ...1, ==  

sriibqTic ...1, +=<=   

where q is a n-dimensional vector of joint coordinates, ic  represents a vector of 

dimension n and ib  is a scalar. In the following, C represents the Jacobian of all active 

constraints, it gathers every ic .  

Without using equality and inequality constraints, in the initialization phase of the task-

priority algorithm the solution vector is set to zero, and the projection matrix to the 

identity: 
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1) 00 =∆q   

 2) nIP =  

Using equality and inequality constraints, the algorithm modifies the initialization stage 

as follows: 

1) )(0 CqbCq −
+

=∆   

2) CCIPP nCNJN
+

−== )()( 0
, where T

1 ]...[ rccC =  and T
1 ]...[ rbbb =  

Inequality constraints are managed using the active set method. The active set method 

proceeds by partitioning inequality constraints in two sets, active (or sufficiently close to be 

supposed active for this iteration) and inactive. The inactive constraints are ignored for the 

iteration. The active set for this iteration is sometimes called the working set. 

Initially, the method proceeds by including only equality constraints in the working set, 

then it is solved for q∆ . The new state qq ∆+ is calculated and it is checked whether there is 

any violated inequality constraint. These are then introduced in the working set (by 

converting them into equality constraints). This conversion is done by the active set 

method which assumes that an inequality constraint that lies on the boundary of the 

constraint acts like an equality constraint. The new state is selected by moving on the 

surface defined by the working set. With this new working set, a new q∆  is computed and 

the process is repeated until all constraints are satisfied. 

5.3 Fatigue Model Exploitation 

5.3.1 Overview 

In this research, the use of the fatigue model is twofold. On one hand, to search for 

postures where fatigue is minimized, that is, it is used in postures optimization. On the 

other hand, to identify postures or reachable spaces using the fatigue physiological factor. 

Both are described in the next sections.  

5.3.2 Postures Optimization 

A previous research on Inverse Kinematics proposed a torque minimization due to 

gravity torques; it was based on geometric properties [Bou97]. A more recent proposal 
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included both gravity and external forces. Its purpose was to converge to postures with a 

minimum amount of joint torques. Both approaches exploited structure redundancy to 

solve the optimization problem. 

Our fatigue minimization method is based on the constraint approach described in 

section  5.2.2. We introduce a hysteresis activation pattern for each half-joint to set a fatigue 

reduction constraint whenever necessary. They can be named “hard constraints” as they 

have to be ensured with a higher priority than all other tasks. 

Figure  5-2 describes the constraint hysteresis activation pattern. When a half-joint 

fatigue level is above the fatigue threshold, the joint variation is constrained to reduce the 

half-joint torque by a small increment compatible with the corresponding time increment 

(hypothesis of slow motion). Then the other tasks are achieved in the null space of that 

constraint.  The constraint exists until the half-joint recovery level is reached (second line 

of arrows in Figure  5-2), moment in which the fatigue minimization process is deactivated.  

The hysteresis activation pattern forces a minimal duration for the recovery by setting a 

lower threshold for de-activating constraints; this reflects better human behavior compared 

to a single activation/deactivation threshold [Mcn02]. 

Our approach achieves fatigue minimization exploiting active and passive torques at 

joint level. We have utilized a factor, named “muscular tonus” (see Figure  5-3 ), which 

represents the proportion of active torque that is being used in the fatigue reduction 

process. 

Tonus is a value normalized between 0 and 1. When tonus is 1, active torque is 

completely exploited in the fatigue minimization constraint. In the opposite case, when 

tonus is 0, active torque is not included and only passive torque is being exploited. The 

control of the tonus is introduced in order to produce a wider range of valid postures. 

The fatigue reduction constraint produces a joint variation that reduces the active 

torque of the most fatigued half-joint and increases the passive torque produced by 

tendons and ligaments.  
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Figure  5-2. Constraint hysteresis activation pattern 

Figure  5-3. Tonus determines the influence of the active torque  

Tonus Factor Contribution 

The tonus factor used as described above allows the generation of a wider range of 

postures as it exploitation leads to solutions not achieved only using active torque. It allows  

to generate a greater potential of phsychologically marked poses.  

An example is the passive torque achieved at joint limits by people standing; poses 

adopted in such conditions look more slouch. 

MUSCULAR TONUS 

Active Torque Passive Torque 
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Active Torque 

In the case of active torque, torque reduction is calculated as follows: If the joint l is 

fatigued, its torque
l

activeτ  has to be minimized. We compute the partial derivative of 

l
activeτ  with respect to all joints: 

 
jq

lactive
jVq

∂

∂

=

τ

, j∀  

A vector storing these partial derivatives indicates how much torque 
l

activeτ  changes 

for a small variation of each joint. Then, the vector Vq  stores the partial derivatives:  

)1...,,0( −= nVqVqVq , where n is the number of joints.  

To compute jVq , we need the Jacobians JTi associated with the external forces fi  and the 

gravity Jacobian JG associated with the weight w. This is the expression of the coordinate  

jVq corresponding to joint j: 

)(_).(_ jaxwlGJjaxif
ne

i
lTiJjVq +=∑   

where ne is the number of external forces, lTiJ _ is the column l of JTi , lGJ _  is the 

column l of JG  associated with the weight w and ja represents the unit axis of rotation of 

joint j. We need only the column l of these Jacobians because it corresponds to the torque 

l
activeτ  to minimize. The entire Jacobians JTi and JG were used in the study mentioned in 

the previous section [Bar01].  

In fact, what we want is to construct an inequality constraint of the form: bqa
T

< . 

Recall the definition of hyperplane H:  









∈=∈= RbbqTanRqH ,/ , where Ta  represents the normal of the hyperplane H. A 

hyperplane divides space into upper and lower halfspaces:  









∈<∈= RbbqTanRqLH ,/  









∈>∈= RbbqTanRqUH ,/  

We will see the construction of the inequality constraint with an example in 2D, where 
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the hyperplane represents a line. 

As the gradient vector described above, Vq , is the direction of maximum increase of 

the function and what we want is to minimize the torque, we take its opposite. We set a 

maximum speed for the joint variation, for example in the arm case study the maximum 

value is 1.2 degree/second.  

Figure  5-4. Example of hyperplane in 2D 

The joint variation needed for the minimization is calculated as follows:  

qV
l

activelq .τατ ⋅=∆ , where α  is a negative scalar, 
l

activeτ  is the torque of the most 

fatigued joint and qV  is the gradient vector indicating how much 
l

activeτ changes for a 

small variation of each joint. 

As can be seen in Figure  5-4, q is out of the feasible region, then the lqτ∆ , needed to 

drive it to the feasible region, has opposite direction to aT: 

)( lqnormalizedTa τ∆−= , note that Ta  is the gradient vector that represents the 

hyperplane. 

As lqq τ∆+  is on the hyperplane, its product by Ta  gives the scalar b  : 

)( lqqTab τ∆+⋅=  

Therefore, we have already defined an inequality constraint that drives the q  vector 

q1 
 

q2 
 

a 
 

b 
 

feasible region 
 

q 
 

∆ qτl 

 

bqTa =  

bqTa <  

unfeasible region 
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towards a direction of minimum torque. 

Passive Torque 

In the case of passive torque, we use a model derived by Riener [Rie99]. Functions k 

and h in Figure  5-5 and Figure  5-6 represent the passive moment of knee and hip joints 

respectively, where HKA θθθ ,,  are ankle, knee and hip angles in degrees. Similar functions 

can be derived for other joints.  

Figure  5-5. Graphic representation of function ),,( HKAk θθθ  
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Figure  5-6. Graphic representation of function ),( HKh θθ  

The term to calculate the joint variation needed to find passive torque of the most 

fatigued joint is calculated by means of the partial derivative of the previous functions, that 

is, their Jacobian.  

Table  5-2 shows the partial derivatives of function h. Then, a gradient vector pV , 

storing the partial derivatives of function h,  along with qV  is used in the creation of the 

inequality constraint. 

Table  5-2.  Partial derivatives of function h in Figure  5-6 

The fatigue minimization as described before, accomplishes the minimization of the 

most fatigued joint reducing active and passive torques coming from external forces, 

tendons and ligaments.  

The following chapter presents the case studies <lifting in sagital plane> and <the 

contraposto>. Both cases exploit the fatigue minimization approach as described in this 

section. 

5.4 Reachable Space Evaluation for Postures Characterization 

At a higher level than posture optimization, postures characterization is achieved 

thanks to the combination of fatigue assessment at joint level and the generation of 

reachable spaces. In this way, a feature that identifies a posture is the induced fatigue while 
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the posture is sustained.  

 

When a subject maintains a posture during certain time while, i.e. carrying an external 

load; after a fatigue assessment, the posture can be classified inside a range of fatigue 

indices. Consequently, the reachable space using this posture or similar ones can also be 

characterized by the fatigue factor. It is possible to appreciate that a region of the 

reachability space is reached with less fatigued postures than other regions. In the 

following, we introduce the concept of reachability and describe how spaces of reachability 

are constructed. 

Human movement and, in particular, human arm motions play an important role in 

studies of the human body. Reaching is a daily life activity. We frequently reach a glass of 

water, a door handle, a book on a shelf, etc.  

Computer generated reachable spaces allow the analysis of the human body and its 

environment. We can generate and compare reachable spaces in different conditions 

(sitting, standing,…).  

Our motivation is due to the necessity of systems that help to manage data relative to 

the most frequent tasks involved in human activity. In particular, we aim to use fatigue data 

to characterize postures and reachable spaces in several reaching strategies. 

5.4.1 Construction of a Reachable Volume for Different Strategies 

Depending on the type of reaching that we want to generate, we establish a set of 

constraints that characterize the task. Therefore, a set of constraints has to be defined in 

order to generate the reachable volume corresponding to each strategy [Rod03c] [Rod03d].  

The distance between the virtual human and the volume to approximate determines a 

near or far reaching. The height of the volume with respect to the virtual human also 

determines differences in the sort of reaching. A very low volume situated at feet level will 

allow studying crouch reaching.  

Table  5-3 shows the set of Inverse Kinematics constraints that define three different 

strategies. 

The performance of a standing reach needs some forward bending of the trunk, thus 
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requiring postural stability provided by a controlled center of mass. Other constraints are a 

positional constraint applied to the body part, which does the reach, and a look-at 

constraint that makes the subject gaze at the target. All these constraints define what we 

call a direct near reach.  

If the goal is so low that the subject needs to crouch, in addition to those constraints 

previously mentioned, flexing legs and a change on the root of motion are also required.  

Finally, for seated reach, in which the person has to reach an object starting from a 

seated posture, the center of mass needs not be controlled, but it is necessary to change the 

location of the motion flow root. The root of the motion is set to the thigh because the hip 

is highly involved in the movement. If this joint was not included in the joint chain, wrong 

postures and smaller reachable spaces would be generated. 

Figure  5-7 describes the process of labeling and storing a reachable volume. Given the 

set of constraints that define a strategy, a mechanism queries the Inverse Kinematics 

engine, asking for reachability.  

An initial voxel is specified and the reachability query is applied to its eight vertexes. 

The initial voxel should be chosen large enough so that it is bigger than the reachable 

space. In this way it will force a voxel decomposition. Otherwise, the decomposition might 

stop too early with a crude approximation. 

The Inverse Kinematics engine replies telling whether the voxel is reachable or 

unreachable. We say that a voxel is reachable when the strategy is adequate to reach its 

eight vertexes. 

An unreachable voxel, on the other hand, is entirely made of unreachable points. When 

a voxel has a mixture of reachable and unreachable parts, it is divided into eight new, 

smaller child voxels and the same process is applied to each of them. 

A detailed description of the algorithm followed to construct a reachable volume can be 

found in Figure C.1 of appendix C. 
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STRATEGY 

 

 
Center of mass control 

Positional constraint (i.e. hand) 
Look-at constraint 

Motion flow root (pelvis) 
 

STANDING REACH: 
 

DIRECT 

 

 

 

 
Center of mass control 

Position constraint (i.e. hand) 
Looking constraint 

Flexing legs 
Change root of motion (i.e. foot) 

 

 
STANDING REACH: 

 
CROUCH 

 

 
 

 
 
 
 
 

Position constraint (i.e. hand)  
Looking constraint 

Change root of motion (i.e. foot) 
 

SEATED REACH 

 

 
 

Table  5-3. Constraints that define reaching strategies  
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Figure  5-7. Generation of a reachable volume 

Figure  5-8 shows reachable volumes generated with different strategies. Reach space (in 

red) shown in Figure  5-8.A was generated by a simulation with a direct strategy but using as 

kinematics chain only the arm of the articulated figure.  

Figure  5-8.B displays the reachable space (in green) generated by a simulation with a 

direct strategy but using the upper body as kinematics chain. Reachable space in (B) is 

higher than in (A) because the clavicle adds extra degrees of freedom. This space is also 

bigger in front and side views due to the contribution of the spine. 
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Figure  5-8. Three reachable spaces: (A) Direct using only the arm (B) Direct using the upper 
body (C) Direct using the entire hierarchy and controlling balance 

Reachable space (in blue) on Figure  5-8.C is generated by a simulation with a direct 

strategy using as kinematics chain all the hierarchy and controlling the center of mass. In 

this case some voxels in the upper and front regions are not reachable anymore, compared 

to case (B). Also compared to case (B), in case (C) lower positions are reachable due to the 

contribution of the hip joint that in case (B) was not included.   

5.4.2 Adding Fatigue Data to the Reachability Volume 

In the storing of reachability data along with fatigue data, the Inverse Kinematics 

engine and the fatigue module play an important role. Figure  5-9 shows the mechanism 

followed to store information about fatigue in reachable points. Numbers drawn over 

arrows indicate the order of processes. The Inverse Kinematics module receives 

information about the point that want to be classified as reachable or unreachable, and a 

set of tasks that define the strategy to do the reaching. Then, the Inverse Kinematics engine 

gives information about reachability. Only for reachable points the fatigue assessment 
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process is activated.  

The Inverse Kinematics engine iterates towards the goal defined by the reachable point. 

The achieved posture is maintained during certain time in order to assess how fatiguing the 

posture is. During steps 3 and 4 a high interaction between the two modules is needed as 

the fatigue module needs updated data about posture in order to calculate joint fatigue 

level. In fact, these steps are performed repeatedly until the time established for the 

simulation is reached. Finally, the fatigue module returns a fatigue value used to feature the 

point as reachable with a determined fatigue value. This fatigue value has been computed 

for a predefined duration and external load. It is shown on Figure 6-9 of chapter 6 which 

shows results on reachable spaces including fatigue data. 

Figure  5-9. Featuring reachable points with fatigue data 
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5.5 Summary 

In this chapter, we have shown how the fatigue model handles the time dimension 

within an Inverse Kinematics optimization loop. We have presented this technique as 

adequate for the interactive management of complex articulated figures, in particular, 

virtual humans.  

Fatigue has been exploited in an Inverse Kinematics framework and it has been applied 

to postures optimization and characterization.  

In posture optimization, a mechanism for fatigue minimization, named constraint 

hysteresis activation pattern, is used to adjust fatigued postures.  

The fatigue model has also been used to store information of fatigue in reachability 

trees. We have described the process of construction of a reachable volume for different 

strategies. In addition, we have shown the interaction between the fatigue and reachability 

modules in order to store fatigue data in reachable volumes. 


