
Vis Comput (2010) 26: 521–531
DOI 10.1007/s00371-010-0473-7

O R I G I NA L A RT I C L E

A Virtual World Grammar for automatic generation
of virtual worlds

Tomas Trescak · Marc Esteva · Inmaculada Rodriguez

Published online: 15 April 2010
© Springer-Verlag 2010

Abstract Hybrid systems such as those that combine 3D
virtual worlds and organization based multiagent systems
add new visual and communication features for multiuser
applications. The design of such hybrid and dynamic sys-
tems is a challenging task. In this paper, we propose a sys-
tem that can automatically generate a 3D virtual world (VW)
from an organization based multiagent system (MAS) spec-
ification that establishes the activities participants can en-
gage on. Both shape grammar and virtual world paradigms
inspired us to propose a Virtual World Grammar (VWG)
to support the generation process of a virtual world de-
sign. A VWG includes semantic information about both
MAS specification and shape grammar elements. This in-
formation, along with heuristics and validations, guides the
VW generation producing functional designs. To support the
definition and execution of a Virtual World Grammar, we
have developed a so named Virtual World Builder Toolkit
(VWBT). We illustrate this process by generating a 3D vi-
sualization of a virtual institution from its specification.

Keywords Shape grammars · Virtual institutions ·
3D virtual worlds · Multi-agent systems · CAD

T. Trescak (�) · M. Esteva
Artificial Intelligence Research Institute,
Spanish Council for Scientific Research, Barcelona, Spain
e-mail: ttrescak@iiia.csic.es

M. Esteva
e-mail: marc@iiia.csic.es

I. Rodriguez
Applied Mathematics Department, University of Barcelona,
Barcelona, Spain
e-mail: inma@maia.ub.es

1 Introduction

Nowadays e-* applications, where * stands either for
e-commerce, e-learning, or e-government, are mostly web-
based applications where stakeholders have no visual clues
helping them to carry out their interactions. These applica-
tions have limited possibility to deal with user interaction.
This lack of multiuser and visual awareness in web-based
systems can be handled by the 3D virtual world (VW) tech-
nology. Virtual worlds are graphical environments that pro-
vide effective communication among participants and let
them focus their attention on the who, where, or when of
events.

Our belief is that 3D virtual worlds in combination with
organization based multiagent systems [5] (i.e., a compu-
tational version of traditional human organizations or insti-
tutions) may provide at least three new possibilities to e-*
applications:

– Thanks to the regulation imposed by the multiagent sys-
tem (MAS), the 3D environment becomes a normative
virtual world where norms are enforced at runtime instead
of by the terms of service contract.

– A 3D real-time representation of the multiagent system
facilitates a better understanding of what is happening at
both agent and the entire system levels.

– Virtual world participants can be both humans and soft-
ware agents facilitating human direct participation in
MAS and intelligent agents participation in VW.

The construction of such a 3D virtual world using an au-
thoring system (i) is a time consuming task for designers and
(ii) makes it almost impossible to manage the dynamic up-
date of the virtual world design at runtime. The latter issue
is crucial for us as we are interested in the dynamic nature
of VWs. Then we need a powerful method to generate 3D
virtual scenes in an automatic way.

mailto:ttrescak@iiia.csic.es
mailto:marc@iiia.csic.es
mailto:inma@maia.ub.es

522 T. Trescak et al.

In this paper, we propose a system that can automatically
generate a 3D virtual world from a MAS specification, that
is, from a formal description of activities taking place in the
system modeled by the organization based MAS. Both shape
grammars and virtual worlds paradigms inspired us to define
the concept of Virtual World Grammar (VWG) that supports
the generation of such 3D virtual worlds. A shape gram-
mar is a method of generating designs which uses primitive
shapes and rules of interaction among them [11, 13]. While
a shape grammar only conveys geometrical data, a VWG
overcomes this lack of semantic data. It includes a shape
grammar, semantic information about both MAS specifica-
tion, and shape grammar elements. Moreover, it includes
heuristics and validations that guide the VW generation pro-
ducing functional designs. We have developed a framework
named Virtual World Builder Toolkit (VWBT) for the defi-
nition and execution of VWGs.

Section 2 provides a motivation example and an overview
of our system. Section 3 presents the related work. Section 4
introduces the VWG and formally defines all of its com-
ponents. Section 5 presents the toolkit developed to exploit
VWGs. Section 6 presents results. Finally, Sect. 7 gives con-
clusions and ideas for future works.

2 Motivation example and overview of the system

Our motivation example is an auction system which allows
both in-house users (bidders present in a real auction room)
and Internet users to participate in real auctions happening
all around the world.

However, how to accomplish the presence in all these
places and achieve an effective and comfortable communi-
cation between in-house and Internet users? Our answer is a
hybrid environment which combines 3D virtual worlds and
multiagent system technologies. All these auctions are gen-
erated as some virtual space, either as a room in a big auc-
tion building or as a separate building in the virtual world.
All the users are displayed as avatars. Internet users move
around the building and visit different auctions by entering
auction rooms. In-house users are tracked either by cameras
or some communication device and their act is constantly
updated in the 3D representation.

Figure 1 gives an overview of our approach that facili-
tates the generation of such type of hybrid environments out
of a formal specification. In particular, we focus on the gen-
eration of a Virtual Institution (VI), from its specification
(performative structure). A VI is a 3D virtual world with
normative regulation of interactions [2]. A specification of
the Auction House virtual institution is depicted in the top
rectangle of Fig. 1. Rounded rectangles represent activities
(also called scenes). In this performative structure, we see
the following scenes: Admission, Item Registration, Auc-
tion, and Auction Info. The initial and final scenes represent

Fig. 1 System overview

the institution entrance and exit points which are mapped to
the entry and exit of the generated 3D VW. In our proposed
auction house scenario, there are many “Auction” scenes;
the number depends on currently active real-world auctions.

As indicated by dotted arrows in Fig. 1, the definition
of objects (from both the specification and shape grammar)
along with the list of their properties forms a general vocab-
ulary, that is the ontology of the VW grammar. For each ob-
ject of the specification and shape grammar (SG), we create
an instance of the related ontology object. The system also
needs to specify objects’ mappings that define which shape
grammar object can represent which specification element.
In VI, we are focusing on activities which are mapped to the
spaces, such as stand-alone buildings or rooms in an institu-
tion building.

When we have successfully defined our ontology and cre-
ated all instances of specification and shape grammar ob-
jects, we can proceed to the generation of a VW. In what or-
der we process the objects and where are they placed accord-
ing to the position of previously placed object? This is where
heuristics take an important role. They decide the next spec-
ification element to process and the applicable rule of the
shape grammar for the selected specification element.

To make sure that we are generating functional and cor-
rect designs, we use validations during every step of the gen-
eration. We can also evaluate the final design. For example,
we do not want designs where rooms intersect each other or
rooms which have no entry or exit. As shown in the bottom
of Fig. 1, the automatic generation of a virtual institution is
done in 2 steps. First, a 2D floor plan of the institution is
generated. Then a 3D transformation mechanism transforms
this floor plan into a final 3D scene.

A virtual world grammar for automatic generation of virtual worlds 523

3 State-of-the-art

There are several approaches that have worked in the gen-
eration of VW designs from conceptual specifications. Bog-
danovych [1, 2] generated a 2D floor plan of a virtual insti-
tution from the conceptual model described in its performa-
tive structure. This approach used rectangular dualization of
biconnected planar graphs. For this purpose, OCoRD soft-
ware was developed. This approach brings some challenges
for the scaling of the sizes of the different rooms. It also does
not let the virtual world designer freely create different de-
signs for the institution. In this paper, we provide an alterna-
tive to this approach using shape grammars, allowing much
more freedom in the VI design and generating many differ-
ent functional designs with limited additional cost. We do
not generate transitions as separate rooms (as in OCoRD),
but we map all transitions to a hallway. In this way we can
generate floor plans of buildings with much simpler naviga-
tion for the user. Our system contemplates not only a gener-
ation of the 2D layout but a complete 3D scene.

Our approach is similar to the one of Duarte, where shape
grammars are used to generate Siza’s Malagueira houses [4]
using an online application that rendered such houses de-
pending on user preferences. Duarte introduced the concept
of discursive grammars that contain a shape grammar, a de-
scription grammar, and a set of heuristics. We also contem-
plate semantic data to enrich pure shape grammars. Duarte
generated 2D designs from user preferences and we gen-
erate virtual worlds from a formal specification taking into
account the activities participants can engage on.

VRID (Virtual Reality Interface Design) [12] and VEDS
(Virtual Environment Development Structure) [7] have been
methodologies that have tried to facilitate the designer task
either by dividing the design in high- and low-level phases
or guiding him in taking design decisions to get an usable
virtual environment. A conceptual model of a virtual en-
vironment was presented by Ossa [10], the model consid-
ered conceptual graphs and rule based systems that were
really complex to be managed by designers. i4D was an-
other methodology based on the representation of concep-
tual models but this methodology contributed with a thin
abstraction layer taking into account only an small space of
the domain knowledge [6]. Compared to these approaches,
our system provides a high level abstraction layer by means
of the virtual world grammar which enclosed both data and
processes related to the 2D and 3D generation of designs.

VR-WISE system and Ontoworld tool have focused on
the gap between the abstract model and the implementa-
tion prototype and have proposed an approach to gener-
ate VW from high-level descriptions given by ontologies
[8, 14]. Objects in the domain and their relationships have
been described in a so called domain ontology. The domain
ontology is converted into a representable domain ontology

which describes how objects in the domain can be repre-
sented in the virtual environment. As a main difference with
our approach, the domain ontology does not have all the in-
formation needed to generate the 3D virtual world whereas
the VWG has it. Our approach generates the virtual world
layout and situates 3D objects there and VR-WISE system
situates objects in an already generated virtual scene.

4 Virtual World Grammar

In this section, we introduce the concept of Virtual World
Grammars. First, we formalize all the necessary elements,
such as ontology, validation, and heuristics, to conclude the
section by giving a formal definition of a VWG. For each of
the VWG parts, we present a solution related to the motiva-
tion example.

4.1 Ontology

An ontology is a formal definition of the relevant concepts
of a domain. In the context of a Virtual World Grammar,
the ontology contains two different kinds of concepts. On
the one hand, those related to the description of the activ-
ities that will take place in the virtual world. They define
how activities are conceptualized, the relationships among
them, and in combination with a shape grammar determine
the layout of the virtual world. On the other hand, there are
the concepts that define the properties of the virtual world
elements. That is, the properties of the shapes in the virtual
world design. Notice that a shape grammar contains geomet-
rical information about shapes but it does not contain any se-
mantic information about them. Hence, an ontology defines
the properties containing semantic information, such as tex-
ture or size, about those shapes that are later used during the
generation process, and to validate the obtained design.

In order to define an ontology, we take an object oriented
approach. The different concepts are defined by classes and
there exists a hierarchical relationship among them. We de-
fine B = {integer, real,boolean, string} as the set of basic
data types and IC as a set of indexes.

Definition 1 We define an ontology as a tuple o = (C,≺)

where:

– C = {(ci,Ai, σci
)}i∈IC

is a set of class definitions (con-
cepts), each one defined as a tuple, where ci stands for
the class identifier, Ai is a set of attribute identifiers, and
σci

: Ai −→ T maps each attribute to its type, where T is
recursively defined by the following rules:
– (B ∪ {ci}i∈IC

) ⊂ T

– if ti , tj ∈ T then ti × tj ∈ T

– if ti ∈ T then ti list ∈ T

– Nothing else belongs to T .
– ≺ is a class hierarchy such that if ci ≺ cj then Aj ⊆ Ai .

524 T. Trescak et al.

We distinguish between the concepts describing the ac-
tivities and their relationships related to the MAS specifica-
tion (CSpec), and those related to properties of shapes from
shape grammar (CSG). Hence, C = CSpec ∪ CSG.

While the previous definition establishes how the domain
concepts are formalized, by termso we denote the actual in-
stances of the concepts defined in an ontology o. Further-

more, by terms
CSpec
o we denote the instances of concepts in

CSpec, while by termsCSG
o the instances of concepts CSG.

4.1.1 Auction house ontology

From the specification of the Auction House institution, only
scenes that define activities are used in the generation (see
blue rounded rectangles in Fig. 1). Hence, the specification
concepts (CSpec) just contain the scene (activity) class. At-
tributes of this class come from the virtual institution specifi-
cation. For instance, attributes defining maximum number of
participants of an activity. The specification elements for a
concrete virtual institution are obtained by searching within
the specification document.

To guide the 3D transformation of a 2D floor plan, we
need data such as a texture, size, or information if some 2D
object will be substituted by some 3D model or procedu-
rally generated. An example of such procedurally generated
structure is a wall. Walls can be rendered as solid walls with
texture, or walls with opening for windows. We introduce
the following shape grammar concepts (CSG) and their prop-
erties:

– Design wall is the basic design element which forms
higher level objects. It represents an actual separation
wall between some virtual spaces. Every wall holds a ba-
sic set of geometrical properties such as position, length,
and more importantly a wall type. The wall type defines
how the wall is rendered. used, such as wall texture, wall
width, and wall height.

– Design space represents an area that will be substituted by
a functional or nonfunctional (see office-layout in Fig. 8
a) 3D model. It serves exclusively this issue. Design space
holds information about the 3D model, such as path, tex-
ture, or size and this information is used during the 3D
transformation phase.

– Design block is a collection of walls and design spaces
that creates one “shape” of our shape grammar. We can
look at our grammar execution as a lego-like building
process, where different blocks are spatially placed to-
gether to create the final design. This placement is vali-
dated using validation rules.

4.2 Shape grammar

Shape grammar is a method of generating designs by using
primitive shapes and the rules of interaction among them.

One of the shapes is marked as the starting shape. Shape
grammar rules are composed of left-side shapes and right-
side shapes, where right-side shape replaces the left-side
shape. Designs are generated from the shape grammar by
starting with the initial shape and recursively applying its
rules.

Definition 2 A shape grammar [11] (SG) is a 4-tuple: SG =
(VT ,VM,R, I) where

1. VT is a finite set of terminal shapes. V ∗
T is a set of shapes

formed by the finite arrangement of an element or ele-
ments of VT in which any element of VT may be used
multiple number of times with any scale, rotation or re-
size operation.

2. VM is a set of shapes used as markers, such that V ∗
T ∩

VM = ∅. Markers permit to control how rules are applied
to the left-side shape. Rules with markers are called la-
beled rules.

3. R is a finite set of rules, that are ordered pairs (u,v) such
that u is a left-side shape consisting of an element of
VT ∗ possibly combined with an element of VM and v

is a right-side shape consisting of an:
(i) element of V ∗

T contained in u or
(ii) element of V ∗

T contained in u combined with an el-
ement of VM or

(iii) element of V ∗
T contained in u combined with an ad-

ditional element of V ∗
T and an element of VM .

4. I is the starting shape consisting of elements of V ∗
T

and VM .

A rule and the steps of a shape grammar derivation
process are displayed in Fig. 2. The shape grammar rule is
marked with a black square. This rule simply adds a rotated
copy of a rectangle to its origin.

4.2.1 Auction house shape grammar

We define two different shape grammars to present possibili-
ties of our system. The first grammar, displayed in Fig. 7 cre-
ates one institution building and for each activity it creates a
room within this building. The second grammar, depicted by
Fig. 9, creates a separate building for each activity. Shapes
of a shape grammar represent different blocks (rooms) of the
building and placeholders (spaces) for the 3D models. Dif-
ferent activities from specification are associated with these
spaces and they are automatically resized to fit to the num-
ber of activity participants. Auction House shape grammar

Fig. 2 Shape grammar derivation process

A virtual world grammar for automatic generation of virtual worlds 525

uses two different rule types. The first one, an addition rule,
positions rooms into different locations within the outline
(init rule) and the second one, also an addition rule, distrib-
utes the rooms depending on the position of the previous one
(distrib rule).

4.3 Validations

Validations provide a mechanism for testing and evaluating
the execution of a shape grammar. We define a validation
language that will serve as a basic representation for the
validation terms. First, we define the set of binary opera-
tors Ω = {<,≤,=,>,≥}. Second, we define an open set of
functions Φ = {range, in,not}. This set can be extended by
designers by adding new functions.

Definition 3 Given an ontology o = (C,≺), a set of basic
operators Ω and a set of functions Φ , we define the valida-
tion language LV as the language generated by the follow-
ing grammar with starting symbol E:
E ::= E opE with op ∈ Ω

| fun(M) with fun ∈ Φ

|p.P with p ∈ CSpec

|q.Q with q ∈ CSG

|c with c ∈ termso

M ::= E | M,M

P ::= a | P.a with a ∈ ACSpec

Q ::= a | Q.a with a ∈ ACSG

where Ai stands for the set of attributes of concepts of type i.

Definition 4 Validation term TLV
also called validator is a

term created using validation language TLV
∈ LV .

Validations can be evaluated at two different stages of
the generation process. Specifically, they can be evaluated
after each generation step (step validations) or at the end of
the generation process (final validations). Step validations
provide control mechanisms for shape grammar execution
so that no invalid path of execution is selected (e.g., test
for correct placement of rooms so the walls do not cross).
Final validations serve for evaluating the final design and
we can regard them as goals or objectives of the generation
process.

4.3.1 Auction house validations

We define a new validator intersect, that is executed after
each execution step, and checks that (i) design blocks do not
intersect, but they can touch and that (ii) blocks do not touch
by walls marked as outer (O) or outer entry (OE) (this value
comes from the wall type parameter).

4.4 Heuristics

Heuristics guide the process of world generation. They have
two important roles. First, to decide in which order to
process the elements from the specification. Second, how
to find possible execution nodes in the execution tree for
the currently selected specification element. The generation
process stores information in a tree structure where each
node holds specific information about the state of genera-
tion. This tree structure holds the execution states, which
are defined either by a shape or a rule. If defined by a shape,
it has as many children nodes as there exist rules with this
shape on the left side. If defined by a rule, it holds the ref-
erence to actual shape and the rule to apply. Figure 3 shows
an example of such a tree. Rectangles represent execution
states defined by shapes, while ovals represent states defined
by rules. The black nodes of this tree have been already ex-
panded. We can see that rule-based nodes have 0 or 1 chil-
dren, depending if they have been expanded or not. The child
of a rule represents the right side shape of the rule.

Definition 5 We define heuristic next as a function hnext :
term

CSpec
o ×2term

CSpec
o ×2term

CSpec
o → term

CSpec
o , which for any

x ∈ term
CSpec
o , a set of already processed specification ele-

ments and a set of all specification elements returns element

y ∈ term
CSpec
o , which will be the next processed element.

Function hnext(nil,∅,SE), returns an initial element.

Definition 6 We define heuristic exec as a function hexec :
VT × treeexec → ntree, that given a shape x ∈ VT and an
execution tree t ∈ treeexec returns the next node to expand
y ∈ ntree.

Definition 7 We define heuristics as a tuple H = (hnext,
hexec) where hnext is a heuristic next function and hexec is
a heuristic exec function.

Fig. 3 An example of execution tree using tree-search protocol

526 T. Trescak et al.

Fig. 4 SGI interface with
WVBT extensions

In other words, function hnext is responsible for defining
the order in which specification elements are processed. On
the other hand, function hexec is responsible for finding cor-
rect node in the execution tree representing possible rule that
can be executed. If more than one node is returned, we can
randomly decide which one to choose.

4.4.1 Auction house heuristics

In the Auction House example, hnext is a simple function that
returns the next element in the list of specification elements
given the last processed one. The hexec function searches for
the nonexpanded nodes of the execution tree that can be used
to place the current element. Notice that in the virtual world
grammar is defined which shapes can be used to represent
a specification element. Thus, the function searches for the
rule nodes whose right-side shape is one of these shapes.
When several candidate nodes are found the function just
randomly selects one of them.

4.5 Virtual world grammar

After all previous definitions, we can now define a Virtual
World Grammar. It includes an ontology specifying all the
concepts and the definition of the specification instances of
the concrete elements that have to be used to generate the
virtual world. It also includes a shape grammar that contains
the different shapes and the rules used to generate the fi-
nal design. Each specification element is mapped to a set of

shapes that can represent it in the generated virtual world.
During the generation process, it is decided which one will
represent the element in the generated design. Each terminal
shape is associated to a class defining the properties of that
shape. VWG also includes a set of heuristics that guide the
generation process and validations that bring possibility to
control and evaluate this process. At last, it includes func-
tion that for each validation term defines its execution time.

Definition 8 We define a virtual world grammar (VWG) as
a tuple: VWG = (o,SG,SE, fSE, fs, V , ft , H) where

1. o is an ontology that defines the relevant concepts for the
generation process; that is multiagent system specifica-
tion elements, and shape properties.

2. SG = (VT ,VM,R, I) is shape grammar describing shapes
and rules.

3. SE ⊆ terms
CSpec
o is a set of instances of specification ele-

ments.
4. fSE : SE → V +

T returns for an specification element the
set of shapes that can represent it in the generated design.

5. fs : VT → CSG maps each shape to the ontology class
defining its properties.

6. V is a set of validators.
7. ft : TLV

→ {STEP,END} is a function that assigns a
value STEP to the validator if it has to be evaluated after
each step of shape grammar execution, or value END if
it is evaluated at the end of generation.

8. H is a set of heuristics.

A virtual world grammar for automatic generation of virtual worlds 527

5 Virtual World Builder Toolkit

The Virtual World Builder Toolkit (VWBT) provides vi-
sual interfaces and mechanisms to define and execute vir-
tual world grammars. The toolkit loads the specification
of a multiagent system and combines it with information
stored in the Virtual World Grammar to produce the final
output. Furthermore, its graphical user interface provides a
friendly way to define all parts of VWG. It is integrated in
our Shape Grammar Interpreter (SGI) [13]. Figure 4 shows
the interface of SGI. An intermediate output of the genera-
tion process is a 2D draft of the virtual world (floor plan).
Using a 3D transformation engine (jMonkeyEngine), this
draft is later transformed into a 3D model. The tool allows to
implement different renderers that export the 3D model into
different virtual worlds (e.g., Second Life, Project Wonder-
land). Furthermore, this solution allows to:

– dynamically react to changes in the specification and sim-
ply regenerate the adapted virtual world

– separate artistic (graphical) design of the institution from
the functional implementation

– make generation process transparent to institution de-
signer and 3D virtual world designer

– browse design space and easily explore possible designs

5.1 Design generation process

Algorithm 1 is used to generate a 2D floor plan and it sum-
marizes the use of all defined parts of VWG. The algorithm
first initializes variables. Function initTree initializes an ex-
ecution tree by inserting a starting shape as the root node.
Then using function hnext searches for the next specification
element to process, assigning it to variable a, and adds it
into the list of executed elements SpecElems. Using func-
tion fSE, it finds the set of shapes that can be used to repre-
sent this element. It loops over this whole set till it finds a
valid design. In this loop, it searches for the execution tree
node using heuristic function hexec and executes it by calling
function Execute creating new shape. It validates the result
of execution. If the result is valid, it proceeds to the next it-
eration. The process finishes when it has processed all nodes
from the SE (SpecificationElements). The process fails and
returns nothing if no valid design was found.

5.2 Workflow for definition and execution of VWG

Virtual World Builder Toolkit brings many creative possi-
bilities into virtual world design process. Designers may
explore many different designs based on a shape grammar.
Shape grammar elements (SGE) serve as a visual style sheet
for a generation process. Trying different values for para-
meters, or even having prepared multiple sets of instances

Algorithm 1: Virtual World Builder algorithm
Input: Specification, Virtual World Grammar
Output: 2D draft (floor plan) of the virtual world
begin

// initialize variables
a ← nil; specElems ← ∅;
texec ← initTree();n ← ∅
while (size(specElems()) ! = size(SE)) do

// get element from specification
a ← hnext(a, specElems,SE)

// put this element in control set specElems
specElems ← a

// search for valid design
valid ← false
// find associated shapes
S ← fSE(a)

foreach (s ∈ S) do
while (not(valid) ∨ n = ∅) do

// find unexecuted node in the exec. tree
n ← hexec(s, texec)

// execute rule and store right shape
c ← Execute(n, texec)

// validate
valid ← Validate (c)

if valid then break
if valid then appendChild(texec, n, c)

else return ∅
return texec

end

brings possibilities of theming or skinning of virtual worlds.
Figure 5 describes the workflow process for the definition
and execution of a virtual world grammar. Depending on
the results of draft or final generation we can readapt the
grammar.

Grammar designer can either browse possible designs or
modify existing parts of the shape grammar to obtain satis-
fiable results. The workflow is divided into three main parts.
First, in the preliminary definition, he defines the ontology
and the shape grammar. Second, in the instance definition,
he loads the specification, creates and defines all specifica-
tion and shape grammar elements, and specifies mappings
between them. Then validations and heuristics are intro-
duced. Finally, in the execution part, he browses random de-
signs and modifies instance parameters to produce the 2D
draft and at last, transforms this draft to 3D.

6 Results

In this section, we present different results of the generation
and we measure generation performance. As an input, we

528 T. Trescak et al.

take the auction house virtual institution and we vary the
number and size of the auction rooms. We also define two

Fig. 5 Workflow for definition and execution of VWG

different shape grammars. We use simplified display of rules
presented in Fig. 6 where left-side of the rule is shown in
black and right-side in red.

First shape grammar, depicted in Fig. 7, generates an in-
stitution building and positions all rooms inside this build-
ing. The initial shape of this grammar is the outline shape
and then it distributes the rooms within this outline. A floor
plan and a 3D render for the five auction rooms (we have se-
lected five rooms for a demo example of a small institution)
and three remaining rooms (Admission, Item Register, Auc-
tion Info) is displayed in Fig. 8. This output was produced
using three shapes (outline, rectangle room, and iso-room)
and four rules (two rules place the rooms within this outline
and two rules distribute the rooms within this outline). The
drawback of this grammar is that it is very simple and the
design space it can generate is rather small.

The second shape grammar for the auction house insti-
tution is not limited by the initial outline and it generates
large design spaces. Figure 9 displays an excerpt from this
grammar. We can see four shapes that represent three pos-
sible room designs and an initial shape. In the right part,
we see examples of rules which place rooms according to
the position of the previous shape. Rooms in this grammar
are generated as stand-alone buildings. Figure 10 shows two
generated floor plans and the corresponding 3D models for
five auction rooms. The small rectangles and the rectangles
within the shape grammar shapes represent the placehold-

Fig. 6 Rule display simplification

Fig. 7 Shape grammar 1 for the Auction House institution

Fig. 8 An output of the Virtual
World Grammar using shape
grammar 1

A virtual world grammar for automatic generation of virtual worlds 529

Fig. 9 An excerpt from the shape grammar 2 for the Auction House institution

Fig. 10 Two different outputs of the Virtual World Grammar using shape grammar 2

ers (office-layout in Fig. 8) for the 3D models that will be
substituted during the 3D transformation phase.

Figure 11 shows a graph of the measurements for a given
amount of activities. We have scaled the institution up to
30 scenes and in these scenes we have used some complex
models to measure the possibilities of the jMonkeyEngine.
The generation of the floor plan for a large institution was
under one second. The 3D render grew from two seconds
for five rooms to 30 seconds for 25 rooms. The reason for
increased time is the use of complex models, such as trees,
which in total made more that 1.4 million of faces for 30
rooms.

An Auction House institution is a typical example of the
use of the virtual institutions. Our approach allows comfort-
able separation of the parts of the virtual institution into de-

Fig. 11 Performance measurements of VWG

530 T. Trescak et al.

sign subsets. This allows to produce designs for large insti-
tutions or confederations of institutions.

7 Conclusions

We have presented a virtual world grammar for the auto-
matic generation of 3D virtual worlds in which inhabitants
can be both humans and agents. The VWG holds seman-
tic information about a multiagent system specification, de-
scribing activities and relationship between them, a shape
grammar, introducing design elements and their characteris-
tics, and a list of validations and heuristics guiding the gen-
eration process. The virtual world generation is done in two
steps; a first one in which the output is a 2D floor plan, and
a second one which generates a 3D representation of the vir-
tual world.

Contributions of our research are (i) the introduction
of the virtual world grammar concept and its components,
(ii) the algorithm which defines how to navigate between
the specification and the shape grammar execution tree using
heuristics and validations, and (iii) the Virtual World Builder
Toollkit that provides a user-friendly interface allowing a
comfortable definition and execution of virtual world gram-
mars.

An important feature of the VWG workflow is that the
user can explore many different designs or modify existing
parts of the shape grammar to explore new designs. We have
demonstrated the VWG applicability in the generation of a
3D visualization of a virtual institution. The definition of the
virtual world grammar can be applied generally for any mul-
tiagent system where it has meaning to visualize its activi-
ties in a 3D virtual world. Current approach allows to map
one activity per one space. Mapping more activities to one
space brings challenges to their execution as it is difficult to
control the concurrent execution or simply identify which of
these action needs to be executed upon arrival to this virtual
space.

Until now, our main efforts have been concentrated in
the design generation step, our next endeavor is to focus
on issues happening at run time such as users/agents en-
rollment and the dynamic update of the hybrid system. We
will also study the integration of our previous work on 3D
objects’ behavior in virtual environments [9][3]. We also
plan to apply our methodology in computer games domain,
namely in MMORPG, where electronic institutions control
the norm enforcement and VWG takes care of the visualiza-
tion process.

Acknowledgements This work is partially funded by EVE
(TIN2009-14702-C02-01/TIN2009-14702-C02-02) and AT (CON-
SOLIDER CSD2007-0022) projects, EU-FEDER funds, the Catalan
Gov. (Grant 2005-SGR-00093), and Marc Esteva’s Ramon y Cajal con-
tract.

References

1. Ancona, M., Bogdanovytch, A., Drago, S., Quercini, G.: Rectan-
gular dualization of biconnected plane graphs in linear time and
related applications. In: VIII Congress of Simai (Società Italiana
di Matematica Applicata e Industriale) (2006)

2. Bogdanovych, A.: Virtual institutions. PhD thesis, University of
Technology, Sydney, Australia (2007)

3. Brota, D., Rodriguez, I., Puig, A., Esteva, M.: A generic frame-
work to exploit virtual worlds as normative and dynamic interac-
tive spaces. In: Computer Graphics and Virtual Reality, pp. 151–
157 (2009)

4. Duarte, J.P.: Customizing mass housing: a discursive grammar for
Siza’s Malagueira houses. PhD thesis, Cambridge (MA): Massa-
chusetts Institute of Technology (2001)

5. Esteva, M., Rosell, B., Rodrguez-Aguilar, J.A., Arcos, J.L.:
Ameli: an agent-based middleware for electronic institutions. In:
International Joint Conference on Autonomous Agents and Multi-
agent Systems, vol. 1, pp. 236–243 (2004)

6. Geiger, C., Paelke, V., Reimann, C., Rosenbach, W.: A framework
for the structured design of vr/ar content. In: VRST’00: Proceed-
ings of the ACM symposium on Virtual reality Software and Tech-
nology, pp. 75–82. ACM, New York (2000)

7. Wilson, J.R., Eastgate, R.M., D’Cruz, M.: Structured development
of virtual environments. In: K. Stanney (ed.) Handbook of Virtual
Environments: Design, implementation and applications, pp. 353–
378 (2002)

8. Mansouri, H., Kleinermann, F., De Troyer, O.: Detecting incon-
sistencies in the design of virtual environments over the web us-
ing domain specific rules. In: Web3D’09: Proceedings of the 14th
International Conference on 3D Web Technology. pp. 101–109.
ACM, New York (2009)

9. Rodriguez, I., Puig, A., Esteva, M., Sierra, C., Bogdanovych, A.,
Simoff, S.: Intelligent objects to facilitate human participation in
virtual institutions. In: Web Intelligence, pp. 196–199 (2008)

10. Southey, F., Linders, J.G.: Ossa—a conceptual modelling sys-
tem for virtual realities. In: ICCS’01: Proceedings of the 9th In-
ternational Conference on Conceptual Structures. pp. 333–345.
Springer, London (2001)

11. Stiny, G., Gips, J.: Shape grammars and the generative specifica-
tion of painting and sculpture. In: C.V. Friedman (ed.) Information
Processing’71, pp. 1460–1465. Amsterdam (1972)

12. Tanriverdi, V., Jacob, R.J.K.: Vrid: a design model and methodol-
ogy for developing virtual reality interfaces. In: Proc. ACM VRST
2001 Symposium on Virtual Reality Software and Technology, pp.
175–182. ACM, New York (2001)

13. Trescak, T., Rodriguez, I., Esteva, M.: General shape grammar in-
terpreter for intelligent designs generations. In: CGIV’09 (2009)

14. Troyer, O.D., Bille, W., Romero, R., Stuer, P.: On generating
virtual worlds from domain ontologies. In: MMM, pp. 279–294
(2003)

A virtual world grammar for automatic generation of virtual worlds 531

Tomas Trescak received Masters
title in Computer Science in 2004
from the Masaryk University, Brno,
Czech Republic. In 2009, he re-
ceived the title of Master of Com-
puter Vision and Artificial Intelli-
gence from Autonomous Univer-
sity, Barcelona Spain. Currently, he
is a doctoral student at the Arti-
ficial Intelligence Research Insti-
tute, Barcelona, and his principal re-
search interests include: multiagent
systems, design of normative virtual
worlds, and generation of interac-
tive virtual worlds from its specifi-

cation. He has participated in several national projects since 2008. Pro-
fessionally, he has worked as software engineer and later as software
architect for an international software company.

Marc Esteva received a BSc in
Computer Science (1998) and a
PhD in Computer Science (2003)
from the Technical University of
Catalonia (UPC). Currently, he is a
post-doctoral researcher at the Arti-
ficial Intelligence Research Institute
(IIIA), and his principal research in-
terests include: multiagent systems,
electronic commerce, and design of
normative virtual worlds. He has
held post-doctoral appointments at
the University of Technology Syd-
ney and the University of Illinois at
Urbana-Champaign. He has partic-

ipated in several national and international projects since 1999 and
he has published over 40 papers in international conferences and
specialized journals. He received the best prototype paper award at
the First International Joint Conference of Autonomous Agents and
MultiAgent Systems (AAMAS2002), the second prize of the award
“Nuevas Aplicaciones para Internet” (Award on New Applications for
Internet) given by the Technical University of Madrid (UPM) in 2002,
and he was a finalist for the “Cor Baayen Award” in 2005. He has
served the community by being in the program committee of several
international conferences and workshops mainly in the area of multia-
gent systems.

Inmaculada Rodriguez Santiago
studied computer science in the
University of Granada and obtained
her PhD in the University of Al-
cala in 2004. She is a lecturer in
the Applied Mathematics Depart-
ment in the University of Barcelona
where she is member of WAI (Vol-
ume Visualization and Artificial In-
telligence) research group. She has
worked in the computer animation
of virtual humans and currently her
major research focus lies on the in-
telligent generation and population
of virtual environments.

	A Virtual World Grammar for automatic generation of virtual worlds
	Abstract
	Introduction
	Motivation example and overview of the system
	State-of-the-art
	Virtual World Grammar
	Ontology
	Auction house ontology

	Shape grammar
	Auction house shape grammar

	Validations
	Auction house validations

	Heuristics
	Auction house heuristics

	Virtual world grammar

	Virtual World Builder Toolkit
	Design generation process
	Workflow for definition and execution of VWG

	Results
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

