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Abstract

When designing decentralised autonomic computing sys-

tems, a fundamental engineering issue is to assess system-

wide behaviour. Such decentralised systems are charac-

terised by the lack of global control, typically consist of

autonomous cooperating entities, and often rely on self-

organised emergent behaviour to achieve the requirements.

A well-founded and practically feasible approach to

study overall system behaviour is a prerequisite for suc-

cessful deployment. On one hand, formal proofs of cor-

rect behaviour and even predictions of the exact system-

wide behaviour are practically infeasible due to the com-

plex, dynamic, and often non-deterministic nature of self-

organising emergent systems. On the other hand, simple

simulations give no convincing arguments for guarantee-

ing system-wide properties. We describe an alternative ap-

proach that allows to analyse and assess trends in system-

wide behaviour, based on so-called “equation-free” macro-

scopic analysis. This technique yields more reliable results

about the system-wide behaviour, compared to mere obser-

vation of simulation results, at an affordable computational

cost. Numerical algorithms act at the system-wide level and

steer the simulations. This allows to limit the amount of

simulations considerably.

We illustrate the approach by studying a particular

system-wide property of a decentralised control system for

Automated Guided Vehicles and we outline a road map to-

wards a general methodology for studying decentralised

autonomic computing systems.

1. Introduction

In an industrial research project [5], we examine the pos-

sibilities of a decentralised autonomic computing solution

for an Automated Guided Vehicle (AGV) warehouse trans-

portation system. A group of AGVs has to transport incom-

ing loads from pick up locations to specific destinations in

the warehouse. Experience has shown that the current cent-

ralised system has problems with scalability because it can-

not handle many AGVs efficiently. Therefore, a centralised

solution is not suitable. Also, the current system is not flex-

ible, i.e. it cannot handle frequent changes in the transport-

ation problem and it needs to be customised and optimised

each time the system is deployed in another warehouse.

To overcome these difficulties, there have been efforts

to design hierarchical control systems (e.g. [6]), in which

the goal is to balance control and decentralisation. Our

approach, on the other hand, aims at solutions which are

completely decentralised to obtain maximal flexibility and

scalability. To handle frequent changes, we want the system

to adapt itself to each different situation, i.e. to deal with its

complexity autonomously – the term autonomic comput-

ing has been coined for this system behaviour [9, 10]. To

this end, we construct such decentralised autonomic com-

puting systems as a group of interacting autonomous en-

tities that are expected to cooperate. A coherent system-

wide behaviour is achieved autonomously using only local

interactions, local activities of the individual entities, and

locally obtained information. Such a system is called

a self-organising emergent system [4]. Self-organisation

is achieved when the behaviour is maintained adaptively

without external control. A system exhibits emergence

when there is coherent system-wide or macroscopic beha-

viour that dynamically arises from the local interactions

between the individual entities at the microscopic level. The

individual entities are not explicitly aware of the resulting

macroscopic behaviour; they only follow their local rules.

In the rest of this paper, we will use the terms macroscopic

and system-wide interchangeably.

For decentralised autonomic computing, systems that are

characterised by both self-organisation and emergence are

promising. Such systems promise to be scalable, robust,

stable, efficient, and to exhibit low-latency [1]. However, a

fundamental problem when building self-organising emer-

gent systems is the lack of an analysis approach that al-
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lows to systematically study and asses the system-wide be-

haviour. This paper aims to address that problem.

Guaranteeing desired system-wide behaviour is an in-

dustrial need and requires modelling and analysing the sys-

tem in a systematic and scientific way. To date, research in

autonomic computing (e.g. autonomous robotics [3, 2]) has

mainly used so-called individual-based models (e.g. agent-

based models), which are mostly analysed by performing a

large number of simulation experiments and observing stat-

istical results. At the same time, there is a tendency, for ex-

ample in the autonomous robotics community [13], to ana-

lyse the system behaviour more scientifically (e.g. applying

chaos theory).

Traditionally, scientific analysis is done by deriving

equation-based models, and using numerical methods to ob-

tain more quantitative results about the system-wide beha-

viour. However, when it comes to complex systems with

multiple autonomously interacting entities, it is often prac-

tically infeasible to construct equation-based models that

accurately describe the system behaviour. The popular view

(e.g. [15]) is that a choice has to be made between an

individual-based model, which allows to realistically model

complex systems, or an equation-based model, which al-

lows sophisticated numerical algorithms to be employed.

Therefore, a gap remains between rigourous scientific ana-

lysis and realistic (individual-based) models.

In this paper, we use a recent development in the sci-

entific computing community to bridge this gap: “equation-

free” macroscopic analysis [11, 12]. The general idea is

that it is possible to use algorithms that are designed for

equation-based models, even if the only available model

is individual-based. Whenever the numerical algorithms

need to evaluate the equation, this evaluation is replaced on

the fly by a simulation using the individual-based model.

Therefore, the algorithm decides which simulations (e.g.

initial conditions, duration, time step, etc. ), and how many,

are needed to obtain the desired result. This way, more re-

liable results are obtained about the average system-wide

behaviour, compared to mere observation of simulation res-

ults, while reducing the computational effort drastically.

This approach could become a bridge between complex

emergent systems (e.g. decentralised autonomic computing)

and traditional numerical analysis.

In section 2, general issues on guarantees for self-

organising emergent systems are discussed. Section 3 de-

scribes the AGV case study used throughout the paper, a

possible self-organising emergent solution, and an example

system-wide requirement for which guarantees are needed.

In section 4, the “equation free” macroscopic analysis ap-

proach and a road map outlining how to apply it are de-

scribed. Section 5 applies the approach to the AGV case

and discusses some results that validate our approach. Fi-

nally, we conclude and discuss future work.

2. System-wide Guarantees for

Self-Organising Emergent Systems

Before outlining our analysis approach, we need to

define the results expected from the analysis of self-

organising emergent systems. Self-organising emergent

systems promise to be scalable, robust, stable, efficient,

and to exhibit low-latency [1], but also behave non-

deterministically. Even if the desired system-wide beha-

viour is achieved, the exact evolution is not predictable

[1]. However, self-organising emergent systems exhibit

trends that are predictable. We define a trend as an aver-

age (system-wide) behaviour (i.e. average over a number

of runs). Due to the dynamics of self-organising emer-

gent systems, robustness is preferred to an optimal system-

wide behaviour. Optimality can only be achieved when

the operational conditions remain rather static. But such

a static situation will never be reached in the presence of

frequent changes. Preferring robustness above optimality

implies that modest temporal deviations from the desired

behaviour are allowed as long as the desired behaviour is

maintained in a trend, i.e. in the average behaviour. Nor-

mal temporal deviations are often necessary to explore the

space of possibilities, and to counteract the frequent system

changes. Therefore, the results we expect from an analysis

of self-organising emergent systems are statements that as-

sure the desired evolution of the average system-wide be-

haviour. We define these statements that guarantee desired

trends as system-wide guarantees.

The goal of our analysis approach is to systematically ac-

quire system-wide guarantees. A systematic approach often

implies that one divides the problem into manageable sub-

problems. The system-wide behaviour of a self-organising

emergent system typically consists of a number of system-

wide properties that have to be maintained. Therefore, first

each of those system-wide properties are considered separ-

ately in our analysis approach. Secondly, we focus on the

fact that a system-wide guarantee that holds in all possible

settings in which a system operates is difficult, if not im-

possible to give. Therefore our analysis approach considers

such settings separately as multiple delimited scenarios, i.e.

steady scenarios. A steady scenario is defined as a setting

for the system in which certain assumptions are made about

the possible dynamic changes and the frequency of change.

For example, one can consider steady scenarios where the

system has a high utilisation load, a low utilisation load, or a

scenario where there is a frequent oscillation between high

and low utilisation loads. As a consequence, a complete

analysis of the system-wide behaviour consists of multiple

system-wide guarantees, each for a specific steady scenario

and for a specific system-wide property. In this paper we il-

lustrate the analysis approach for one system-wide property

and one steady scenario.
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3. The Case Study:

Automated Guided Vehicles

In an industrial research project [5], our group devel-

ops self-organising emergent solutions for AGV warehouse

transportation systems. Experience revealed an industrial

need for guarantees about system-wide properties. There-

fore, the AGV case study is used throughout the paper.

3.1. Problem Description

The automated industrial transport system, that we con-

sider, uses multiple transport vehicles. Such a vehicle is

called an AGV and is guided by a computer system (on

the AGV itself or elsewhere). The vehicles get their energy

from a battery and they move packets (i.e. loads, materials,

goods and/or products) in a warehouse. An AGV is capable

of a limited number of local activities: move, pick packet,

and drop packet. The goal of the system is to transport the

incoming packets to their destination in an optimal manner.
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Figure 1. The AGV Simulator.

Because it is too expensive and often infeasible to apply

the analysis approach on a real AGV system, we developed

a realistic simulator1 for AGV systems that allows to ex-

ecute the simulations needed in the analysis approach de-

scribed in section 4. The screen-shot in figure 1 illustrates

the problem setting described above: the locations where

packets must be picked up are located at the left of the fig-

ure, the destinations are located at the right, and the network

in-between consists of stations and connecting segments on

which the AGVs can move. Segments are unidirectional,

i.e. an AGV can follow a segment in one direction. A bid-

irectional segment can be constructed with two overlapping

unidirectional segments. This facilitates the construction of

maps and minimises the possible collision regions. Packets

1http://www.cs.kuleuven.be/˜distrinet/taskforces/agentwise/agvsimulator/

are depicted as rectangular boxes and some of the AGVs

shown hold a packet, others do not.

3.2. A Self-Organising Emergent Solution

The AGV problem is a dynamic problem with non-

deterministic features (e.g. packets can arrive at any mo-

ment, AGVs can fail, obstacles can appear). The project

with our industrial partner [5] has shown that a solution

using a central server to control all AGVs cannot handle

these frequent changes efficiently. The central server has to

constantly monitor the warehouse and each AGV to detect

changes and react to them by steering each AGV. Because

AGVs are moving constantly, reacting on changes has to oc-

cur instantaneously. Therefore, the central server becomes

a bottleneck in the presence of frequent changes. As a con-

sequence, such a central solution is not scalable and can

only handle a limited number of AGVs. Also, the system

is not flexible when it has to be deployed, i.e. the system

needs to be customised and optimised each time it is de-

ployed in another warehouse. Therefore, in the context of

decentralised autonomic computing for larger and dynamic

AGV systems, a self-organising emergent solution in which

the AGVs adapt to the changing situations themselves by

only using locally obtained information, local interactions,

and local activity is promising. In the rest of this section,

a self-organising emergent solution is described, which is

only one of the large number of possible solutions. We do

not state that this is the perfect solution, it is only a test case.

Each AGV needs information to decide autonomously

where to move to on the network in order to reach an incom-

ing packet or a destination to drop a packet. This informa-

tion should be made available locally. To achieve this, we

use so-called artificial pheromones that propagate through

the network. Such pheromones are pieces of data that are

present in the network and, just like real pheromones, they

evaporate over time (i.e. older data disappears gradually).

When a location where packets arrive contains a packet, that

location will actively propagate pheromones through the

network. The pheromones are propagated between neigh-

bouring stations (i.e. only local interaction) in the direction

opposite to the direction in which the AGVs can move. A

pheromone includes information, such as the priority of the

packet, that is important for the AGVs to choose a packet.

Also, the distance from the station on which the pheromone

is located to the location of the packet is important inform-

ation. Therefore, when a pheromone propagates through a

segment, the cost of travelling over that segment is added to

the pheromone. This way, the distance is calculated during

the propagation process. All the pheromones in the network

form a gradient map for the AGVs to follow: on each sta-

tion, the pheromones indicate which outgoing segment is

the “best” to follow, i.e. the AGV chooses the segment in
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the direction of the closest packet and with the highest pri-

ority. Decisions are made one segment at a time, i.e. there

is no planning of a fixed path from source to destination.

When an AGV finally reaches a packet, it picks it up,

and follows another type of pheromone gradient, one that

is propagated from the destination locations. An AGV

chooses a segment to follow so that it can reach the destin-

ation of the packet it is holding via the shortest path. This

shortest path can be found because again the distance is cal-

culated during propagation of the pheromones and added to

the pheromone information at each station.

Note that this solution assumes the presence of infra-

structure on the stations, that can contain pheromone in-

formation and can actively propagate incoming pheromones

towards neighbouring stations. Also, the communication

bandwidth between the stations should allow this propaga-

tion through the entire network. In this paper we assume

that this infrastructure is present. Other solutions that do

not need this infrastructure can also be analysed with the

approach described in section 4.

3.3. Desired Guarantees

There are multiple requirements in an AGV system for

which guarantees are needed. To motivate our test case,

we consider an essential characteristic of self-organisation

which states that certain system-wide properties should be

maintained. For example, to achieve a constant throughput

of packets, the system should ensure that on average there is

always a fraction of the AGVs available to transport new in-

coming packets, while another fraction is busy transporting

packets. In the AGV case, with the lay-out of figure 1, the

system-wide property that reflects this requirement is the

distribution of the total number of AGVs between two situ-

ations: AGVs moving towards the pick up locations without

a packet and AGVs holding a packet and moving towards

the destination locations. An equal distribution needs to be

maintained. Considering the warehouse lay-out of figure

1, we can define two zones in which a certain situation is

desired (see figure 2):

• In Zone A the AGVs should be moving towards the

pick up locations and they should not hold a packet.

• In Zone B the AGVs should be moving towards the

drop off locations and they should hold a packet.

Note that there is an overlap between both zones at the

left and right of the factory lay-out. Because each AGV

can only be counted to be in one situation, the desired situ-

ations are used as a guide: an AGV in these overlap regions

is counted for zone A if the AGV does not hold a packet,

and for zone B if the AGV holds a packet. Note that also

AGVs in zone A could be holding a packet, as well as there

Zone B

Zone A

Figure 2. AGV Distribution between zones.

may be AGVs in zone B that aren’t. These situations are

undesirable, so we wish to avoid them.

Therefore, two guarantees are needed: an equal distribu-

tion between the two desired situations and a small num-

ber of AGVs in the undesirable situations. Because we

prefer robustness to optimality, it is allowed that at certain

points in time there is an unequal distribution and that some

AGVs are in an undesirable situation, as long as trends in

the system-wide behaviour guarantee the two requirements.

The analysis goal is to check if these requirements are

guaranteed for a specific solution and a specific steady scen-

ario. In this paper, we limit our analysis to the scenario with

a maximal system load. Consider the AGV case with the

lay-out shown in figure 1, with 10 AGVs, and with the as-

sumption that the pick up locations always contain a packet

(i.e. packets that are picked up are replaced immediately).

Furthermore, we assume that no other dynamic events can

occur (e.g. AGVs failing, AGVs added to the system, no

obstacles will appear, etc.). It is generally necessary and in-

teresting to investigate the effect of changes in this setting

on the dynamics of the system, but this is outside the scope

of the current paper.

To make the required guarantees concrete we quantify

them mathematically as follows. Two measures are con-

sidered. A first measure (E) represents the distribution

of AGVs between the two desired situations and a second

measure (S) represents the number of AGVs in the desired

situations. These system-wide measures can be calculated

from the number of AGVs in each situation:

NBAP : AGVs in zone A, holding a packet.

NBANP : AGVs in zone A, not holding a packet.

NBBP : AGVs in zone B, holding a packet.

NBBNP : AGVs in zone B, not holding a packet.
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We define the measure S to be the normalised sum of

AGVs in the desired situations. This yields:

S =
NBANP + NBBP

NB
(1)

In this equation, NB is the total number of AGVs. Accord-

ing to the requirements, S needs to be high.

From [8, 14, 2] we know that (spatial) entropy, defined

as

E =

−
∑

1≤i≤N

pi ∗ log pi

log N
, (2)

is suitable to reflect the spatial distribution of entities

between different states. Here pi is the probability that state

i occurs and
∑

1≤i≤N pi = 1. Dividing by log N normal-

ises E to be between 0 and 1. Entropy is high (close to 1)

when the considered states have an equal probability to oc-

cur, and low (close to 0) when only a few of the states have

a high probability to occur.

To apply this measure to the distribution of AGVs, the

different states for the entropy measure are defined as the

desired situations for the AGVs. Consider the AGVs that

are already distributed between the desired situations. The

probability for such an AGV to be in one specific desired

situation at one moment in time is used as the probability

in the entropy equation. Then we can define the entropy

measure for the AGV example as:

E =
−pANP log pANP − pBP log pBP

log 2
(3)

with

pi =
NBi

NBANP + NBBP

(i ∈ {ANP,BP}) (4)

and

pANP + pBP = 1 (5)

According to the requirements, E needs to be high be-

cause then there are approximately as many packet-carrying

AGVs in zone B as there are packet-less AGVs in zone A.

4. Analysis with Advanced Numerical Methods

4.1 Analytic versus Experimental

To guarantee system-wide requirements, typically two

approaches can be used:

• a formal proof: a (mathematical) formal model of the

system is constructed and a proof is found analytically;

• an experimental simulation: simulations of the system

are performed and the analysis results are obtained by

observation of measurements.

The first approach offers hard guarantees, but in the con-

text of decentralised autonomic computing, where complex

and dynamical systems are considered, the model and proof

are complex or even infeasible. The second approach is also

infeasible because simulations of decentralised autonomic

systems are expensive and many (long) simulations are ne-

cessary to make reliable statements.

This paper uses an “equation-free” macroscopic ana-

lysis approach [11, 12], combining numerical analysis al-

gorithms and realistic simulation-based modelling. Tra-

ditionally, numerical analysis is applied to equation-based

models. The system-wide behaviour is modelled by a (mac-

roscopic) evolution equation. Numerical algorithms ob-

tain the desired results, i.e. quantitative statements about

system-wide properties. The results are more reliable than

mere observation of simulations. However, in complex dy-

namical systems, deriving a macroscopic equation from a

model for the dynamics of each autonomous entity (i.e. the

microscopic dynamics) is often not possible, unless the mi-

croscopic model is very simple [15].

The “equation-free” approach resolves this issue by re-

placing the equation-based model by a realistic simulation

model. Simulation measurements are analysed, but, in con-

trast to mere observation, the numerical analysis algorithms

acquire the results themselves by steering the simulation

process towards the algorithm’s goal. The advantage is that

the results are calculated on the fly and only those sim-

ulations are executed that are actually needed to obtain a

specific result. The results are therefore of equal scientific

value as the equation-based analysis, while reducing the

computational effort drastically compared to mere simu-

lations. And compared to formal proofs, this method is

feasible for complex and dynamical systems. Note that nu-

merical algorithms assume a rather smooth behaviour (i.e.

a rather continuous evolution over time). As described in

section 2, for self-organising emergent systems, we focus

on analysing trends which are expected to evolve gradually.

4.2 “Equation-Free” macroscopic analysis

The “equation-free” macroscopic analysis approach was

proposed in [11, 12]. The observation is that most nu-

merical methods have no explicit need for the macroscopic

evolution equation; all they need is a routine that evaluates

these equations for a given value of the macroscopic (meas-

urement, observation) variables. Once we replace these

evaluations with a suitable estimation, all these algorithms

can be readily applied. To this end, the following pro-

cedure, called a “macroscopic time-stepper” [11], is per-

formed. From the given values of the observation variables,

we generate (a set of) consistent initial conditions for the

microscopic AGV system (initialisation operator); we then

simulate using the microscopic simulation code, and we fi-
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tion over Time

nally measure the new values of the observation variables.

As such, the equation and its evaluation are replaced by the

simulation code and therefore the proposed method consti-

tutes a bridge between classical numerical analysis and mi-

croscopic (e.g. agent-based) simulation.

The described macroscopic time-stepper can be used to

accelerate the simulations significantly. Figure 3 illustrates

the basic idea. First an initial value x1 for the measured

variable is chosen by the analysis algorithm. Using this

value, a simulation is initialised with microscopic value(s)

X1 (i.e. init in figure 3), consistent with x1, and executed

for a certain duration. At some points in time, one meas-

ures the new value for the variable that is analysed (i.e.

measure in figure 3). This is repeated a number of times,

such that enough successive values xk are available for the

analysis algorithm to make the extrapolation step that skips

m time steps of simulation. This means that a new value

xk+1+m is estimated with extrapolation, using a number of

measured values (xk and xk+1 in figure 3). Starting from

this new value the process is repeated by initialising with

microscopic value(s) Xk+1+m. This acceleration over time

is called a projective integration algorithm. For a detailed

stability analysis, which allows to answer questions such

as how many observation values xk are needed to skip m

steps, we refer to [7]. Note that if the observation variables

behave stochastically, k may need to be increased to avoid

amplification of the statistical noise.

Simulations can also be accelerated in other ways. Sup-

pose we want to obtain the steady state behaviour, so we

look for values of the observation variables that remain con-

stant as time evolves. Instead of computing the time evolu-

tion until the system reaches this steady state, one can use

numerical methods that determine steady states in a more

direct and efficient way. Denote the macroscopic time-

stepper starting from an initial condition xi and perform-

ing a simulation for a fixed duration by Φ(xi). Denote the

initialisations

.....

simulation results

.....

simulate

simulate

xi

init

measure

analysis algorithm

code

parametersanalysis results

xi+1

MACRO

MICRO

Figure 4. Equation-Free Accelerated Simula-

tion guided by the analysis algorithm

value of the observation variable after this simulation as

xi+1 = Φ(xi). The steady state x∗ can then be computed

by solving the equation

Φ(x∗) − x∗ = 0 (6)

numerically, e.g. by Newton’s algorithm [16]. This iterat-

ive method generates consecutive approximations for the

steady state, which typically converge much faster to the

steady state than computing the time evolution through con-

secutive time steps.

Figure 4 summarises a more general view on the ap-

proach. First we supply to the analysis algorithm (e.g.

Newton’s algorithm) initial values (xi) for all the system-

wide variables under study. Then the init operator ini-

tialises a number of simulations accordingly, i.e. measuring

the system-wide variables after initialisation should equal

the given initial values. Because there are multiple ways to

initialise a simulation for the same value of a system-wide

variable, we need to initialise these “degrees of freedom”

randomly in multiple initialisations. Then the simulations

are executed for a predetermined duration. This duration

can be fixed or supplied by analysis algorithm. At the end,

one measures the averages of the values of the system-wide

variables (xi+1), which are given to the analysis algorithm

as a result. Then the analysis algorithm processes the new

results to obtain the next initial values (e.g. Newton: a guess

for the steady state). The cycle is repeated until the ana-

lysis algorithm has reached its goal (e.g. Newton: the steady

state). The algorithm decides on the configuration of the

simulations such as the initial conditions and the duration

of the simulations. Following the same principle, e.g. in the

presence of parameters, more general tasks, such as para-

meter optimisation or control can be performed as well [11].
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As such, a more focussed and accelerated simulation-based

analysis approach, guided by the analysis algorithm’s goal,

can be used to obtain more reliable results than mere obser-

vation of simulation results.

4.3 Road Map for Equation-Free Macroscopic
Analysis

There are a number of steps that have to be performed

for the equation-free approach to work. In this section we

give an overview of those steps:

1. Identification of observation variables. In the context

of self-organising emergent systems, the challenge is

to find variables which measure the system-wide prop-

erties under study. The properties to study are derived

from the system requirements. In other words, first a

quantification of the required emergent properties in

terms of measurable variables is needed.

2. Related system-wide variables. Are there other vari-

ables for system-wide properties that influence the

system-wide property under study? If so, then these

variables have to be incorporated into the analysis pro-

cess. Otherwise, the evolution of the system is not cor-

rectly and completely represented and analysed. The

underlying assumption of the equation-free analysis

approach is that a set of measurable variables can be

found that offer an adequate description of the macro-

scopic system dynamics. This means that the chosen

measurement variables are indeed the variables that

would appear in the macroscopic evolution equation.

In other words, when choosing system-wide variables,

we strive to reach a set of variables that reflect the mac-

roscopic degrees of freedom.

3. Micro-variables. For each system-wide variable, the

corresponding variables of the simulation at the level

of the individual entity in the system, that influence

this system-wide variable need to be identified.

4. Measurement operator. We need to know how to

calculate the system-wide variables from the micro-

variables in the simulation.

5. Initialisation operator. We need to define an operator

that allows to initialise the microscopic variables of the

simulation or multiple simulations to reflect the given

values for the system-wide variables. When there

are degrees of freedom in the initialisation, these are

initialised randomly and multiple simulation are con-

sidered to average this randomness.

6. Check the micro-macro scale separation. For the

equation-free approach to work and to be efficient, the

microscopic variables should evolve on a much faster

timescale than the macroscopic variables that determ-

ine the macroscopic evolution. Thus, changes in the

state of the individual entities in the system should be

fast compared to the evolution of the overall system

behaviour. If this would not be the case, then any error

introduced by our initialisation procedure could signi-

ficantly influence the results and hence create errors.

7. Define the different steady scenarios to analyse. As

explained earlier, we need to consider the possible

steady scenarios separately to allow systematic and

useful analysis. This step identifies system paramet-

ers that need to be modified in order to cover the range

of possible operational conditions for the system.

8. Choose an analysis algorithm. Once the previous steps

are successfully completed, an analysis algorithm can

be chosen. Depending on the kind of data and the

goals, e.g. finding steady state behaviour, optimising

values of system parameters, controlling the opera-

tional modus, one selects a suitable analysis algorithm

(e.g. projective integration, Newton’s method).

4.4. Underlying Assumptions

An important issue is if the analysis approach is gener-

ally applicable to decentralised autonomic computing sys-

tems. A thorough study of this issue is outside the scope

of this paper. However, at this moment, it seems that only

a separation of time scales between the macroscopic and

microscopic evolution is needed (see step 6 in road map).

When this assumption is valid, it implies that re-initialising

and restarting a simulation at arbitrary points produces res-

ults that are comparable to a single long simulation. Indeed,

in the presence of time-scale separation, initialisation errors

disappear quickly compared to the evolution of the system-

wide behaviour. For a review of the mathematical principles

that support this intuitive explanation, we refer to [12].

The main practical issue in applying the road map to

an arbitrary self-organising emergent system is to find a set

of macroscopic variables that correctly reflect the evolution

of the system-wide properties. This is far from trivial be-

cause an open issue for emergent systems is to understand

how the macroscopic behaviour is accomplished by the in-

dividual entities. Finding macroscopic variables, and how

they are measured from the microscopic state, requires de-

tailed knowledge of both the system under study and the

system-wide requirements. Besides a measurement oper-

ator, an initialisation operator is required that initialises

a microscopic simulation consistently with a macroscopic

variable. However, when these issues are resolved, a suc-

cessful application of the road map also results in new in-

sights on how the macroscopic behaviour is related to the

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE



behaviour of the individual entities. Moreover, in section

5.3, we show how to check if a set of macro-variables com-

pletely captures the evolution of the system-wide property.

5. Equation-Free Macroscopic Analysis of the

AGV System

5.1. Preliminary simulations
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Figure 5. E in one AGV simulation run.

We first have to define which system-wide variables are

suited for macroscopic analysis (step 1 of road map). This

requires some preliminary simulations. We consider the

AGV case as described in section 3. The initial condi-

tion is given by an equal distribution of AGVs over the

two zones, and none is holding a packet. Since there

are 10 AGVs in total, the initial distribution is given by

NBANP = NBBNP = 5 and NBAP = NBBP = 0.

This results in an entropy E = 0, and a normalised sum

S = 0.5. (See formulas (1) and (3).) We perform a simula-

tion over 2500 time steps and measure E and S at each time

step. The simulator is written such that one time step cor-

responds to a logical duration of 1 second. The result for E
is shown in figure 5. We see a clear non-deterministic effect

in this variable, which is also true for S. Moreover, there

are discontinuous jumps, because the variable can only take

a discrete set of values.

However, if we perform the same simulation a large

number of times and average the results, we see that this

randomness smoothes out. Consider the same system, and

the same initial condition. Now, we perform N = 1000
simulation runs instead of just one, and we report on the

values averaged over all runs, i.e. Eavg and Savg in figures

6(a) and 6(b). It is clear that, despite the non-deterministic

nature of one simulation, the averaged behaviour evolves

rather smoothly. Therefore, it is possible to make state-

ments about the average long-term values of entropy and
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Figure 6. Eavg, Savg, and NBPT,avg of a set of

N = 1000 runs of the AGV case as a function
of time.

normalised sum with numerical methods. In the rest of

our analysis, the average entropy Eavg and normalised sum

Savg are the system-wide observation variables.
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5.2. Macroscopic time-stepper

Once we have identified the system-wide variables of in-

terest, here Eavg and Savg , we need to determine other vari-

ables that might influence their values (step 2 from road

map). To achieve a one-to-one correspondence between

E, S and the variables NBAP , NBANP , NBBP and

NBBNP , we add the number of packets in transport NBPT

to the set of system-wide variables. Recall that a packet

is in transport if it is held by an AGV. The simulations

from section 5.1 show that the average of NBPT , denoted

by NBPT,avg, is also smooth (see figure 6(c)) and thus

suitable for our algorithms. Therefore, we add the aver-

aged variable NBPT,avg to our set of observation variables.

Note that the total number of AGVs is chosen to be constant.

So, for a set of N runs, these macroscopic variables are

completely determined by the variables NBAP , NBANP ,

NBBP and NBBNP , averaged over all runs. The precise

positions and internal states of each AGV are degrees of

freedom (steps 3 and 4 from road map).

We recall that the current state of each individual run

is limited to a discrete set of values for the entropy E,

the normalised sum S and the number of packets in trans-

fer NPBT , because changes in these values reflect that

one AGV has changed zone, or has picked up or de-

livered a packet. We denote all possible states by xi =
(Ei, Si, NBPT,i). A complete initialisation operator (step

5 from road map) consists of two steps: first we need a

procedure to find the values of NBAP , NBANP , NBBP ,

NBBNP , given a particular state xi; and second, when av-

erage values Eavg , Savg , NBPT,avg and a number of runs

N are given, we need to find numbers Ni that indicate how

often state xi will be chosen as initial condition so that the

averages over all N runs equal the given average values

Eavg , Savg , and NBPT,avg. For a realistic simulation, the

distribution of the initial conditions over the possible states

should reflect the probability for the occurrence of that state.

Initialisation of one simulation. From equation (3) and

(5) one can derive:

E =
−pBP log pBP − (1 − pBP ) log [1 − pBP ]

log 2
(7)

It can easily be checked that this equation has two pos-

sible solutions for pBP , i.e. pBP1 and pBP2 = 1 − pBP1.

However, only one will fulfill the required constraints:

• NBPT = NBBP + NBAP

• NB = NBAP + NBBP + NBANP + NBBNP

• NBi ≥ 0(i ∈ {ANP,AP,BNP,BP})

• equation (1) and equation (3).

One solution pBP can be found numerically. If this solu-

tion does not comply with the constraints, then the other

solution, given by pBP2 = 1 − pBP1 will. Using the com-

plying solution for pBP and pANP = 1 − pBP , we can

calculate the NBi values:

NBBP = pBP ∗ NB ∗ S (8)

NBANP = pANP ∗ NB ∗ S (9)

NBAP = NBPT − NBBP (10)

NBBNP = NB − NBBP − NBANP

−NBAP − NBBNP (11)

Equation (10) assigns the remaining packets to the AGVs

in zone A that hold a packet. Then equation (11) just as-

signs the number of remaining AGVs to the last variable

NBBNP . Once the NBi values are calculated, there are

multiple initialisations possible because the exact AGV po-

sitions and the AGVs holding a packet are not determined.

These degrees of freedom are initialised randomly.

Initialisation of a set of runs. To define the initialisation

operator init completely, we need to solve the following

inverse problem: given values for Eavg , Savg , NBPT,avg,

find a set of N states, such that the averages are as specified.

In general, there are many solutions to this problem. For a

correct “equation-free” simulation, it is important to pick a

solution that is as realistic as possible.

First, we determine the probability of occurrence of each

state xi. To this end, we perform a long simulation of 50000
steps. At each time step, we record the current state xi, and

obtain a histogram of occurrences. Then, the probability pi

of the system being in one of these states is approximated

by the number of occurrences of state xi, divided by the

number of time steps. These pi can be assumed to be the

fractions of time that the system is expected to be in state

xi. We then obtain a probability distribution for the macro-

scopic states. Note that we assume that the states xi cover

the whole spectrum of possible states and that, as time ap-

proaches infinity, the probabilities pi converge to a constant

limit. Our simulations confirm this as a valid assumption.

We need to choose the initial conditions for a simula-

tion as closely as possible to this distribution; otherwise,

we probably do not capture the true average behaviour. In-

deed, suppose that we initialise with a set of runs that has

the correct average, but that is initialised mainly with states

that are improbable. The results would be biased towards

the improbably initialised behaviour and thus meaningless

to interpret the real average behaviour. Therefore, we com-

pute weights wi, associated to each of the possible states of

the system, as follows. We require that the weights wi are

chosen such that they are as close as possible to the probab-
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ilities pi. This can be written as a minimisation problem,

min
wi∈[0..1]

∑

i

|wi − pi|,

which is subject to the following constraints,

∑

i

wiEi = Eavg;
∑

i

wiSi = Savg

∑

i

wiNBPT,i = NBPT,avg;
∑

i

wi = 1.

These constraints indicate that the weighted averages

should be consistent with what we prescribed, and the

weights should be normalised. Then, we have assured that

we have a fraction wi of initial conditions for each of the

possible discrete states, such that both the distribution of

initial conditions is close to the pi-distribution, and the aver-

age initial entropy, sum and number of packets in transport

are as prescribed. Next, we need to assign initial conditions

to N number of runs. This is done by assigning Ni runs

with each initial condition/state xi such that

min
Ni

∑

i

|Ni − wiN |,

subject to the constraint

∑

i

Ni = N.

The minimisation requires that the fraction of runs initial-

ised with each state Ni/N is as close as possible to the frac-

tion wi, while fulfilling the constraint that their sum equals

N . Finally, in order that this set of runs has the correct av-

erages exactly, we weigh them with a factor αi = wiN/Ni.

This is easily seen by combining the constraints from the

two above minimisation problems. The two minimisation

problems can easily be solved using standard linear pro-

gramming methods [17].

Separation of scales. It is important for the equation-free

approach that the randomly initialised microscopic proper-

ties of the system, evolve much faster than the system-wide

variables (step 6 from road map). In our case, these vari-

ables include the exact position each AGV, whether they are

holding a packet or not, as well as the pheromone gradient

from the source and destination locations. It is clear that the

AGV movement, their pick ups and drop offs occur faster

than changes in Eavg , Savg, or NBPT,avg. We also ex-

pect the pheromone gradient to evolve quickly to its natural

state, so that this indeterminacy does not create artifacts.

5.3. Simulation with Re-initialisation

We will now check the validity of the macroscopic time-

stepper, i.e. validate that the chosen macroscopic variables

completely reflect the evolution of the system-wide beha-

viour. To this end, we perform a simulation using N =
1000 runs, which have been initialised such that Eavg = 0,

Savg = 0.5 and NBPT,avg = 0. Note that all simulations

in this paper use the steady scenario described in section 3

(step 7 from road map). The simulation is performed over

250 time-steps, after which Eavg , Savg and NBPT,avg are

measured. To reduce the statistical noise, we measure these

variables as being averaged over the last 50 time-steps as

well as over all runs. We then re-initialise the simulation

immediately, following the lines of the previous section.

To compare with the preliminary results of section 5.1,

we performed 10 of these macroscopic time steps, such

that the total simulated time is again 2500 seconds, such

as in section 5.1. We remark that, at this stage, the sim-

ulations are not yet accelerated. The only difference with

the simulations in section 5.1 is that after each 250 time-

steps the simulation has been re-initialised. Figures 7(a),

7(b), and 7(c) show that these re-initialisations do not affect

the results significantly compared to the preliminary simu-

lation results (figures 6(a), 6(b), and 6(c)). The figures show

the values of Eavg, Savg and NBPT,avg at each time-step.

After each re-initialisation, we first see a steep transient.

This is due to the fact that the re-initialisation only ensures

that the macroscopic variables have been initialised consist-

ently. The microscopic states that are not accounted for are

initialised randomly. Therefore, an artificial fast evolution

of Eavg , Savg , and NBPT,avg is introduced which equilib-

rates quickly. This results in a sharp initial transient, which

disappears well before the end of the macroscopic time step

of size 250. Therefore, we conclude that the values of the

variables Eavg , Savg and NBPT,avg suffice to predict the

evolution of the system. This confirms that the macroscopic

time-stepper as constructed above accurately simulates the

system-wide behaviour.

5.4. A First Accelerated Result

We accelerate the simulations by using projective integ-

ration as an analysis algorithm (step 8 from road map). The

macroscopic variables that we introduced vary smoothly

over time, such that the extrapolation step can be done re-

liably. Due to the extrapolation steps, the computational

effort is reduced. We consider the following set-up: we per-

form a simulation run of 250 time-steps, as in the previous

section, after which we obtain the new values of the vari-

ables Eavg , Savg and NBPT,avg by averaging the simula-

tion results over the last 50 time steps (steps 201 to 250). We

also measure the macroscopic variables after 200 time-steps
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Figure 7. Eavg, Savg, and NBPT,avg of a set
of N = 1000 runs obtained with simple re-
initialisation (re-init) and with projective in-

tegration (accelerated).

by averaging over steps 151 to 200. It is clear from figure 7

that the macroscopic time-step of 250 seconds is sufficiently

large, such that these measurements are not contaminated

by the re-initialisation transient. Using these two measure-

ments, we extrapolate over a time interval of length 250 and

re-initialise. This way, we have halved the computational

effort, since the simulations will now only be performed in

half of the time interval for which we obtain results. The

accelerated results are shown in figure 7.

Several observations can be made. First, it is clear that

the increased efficiency comes at a penalty in the accuracy.

In an extrapolation step, some accuracy is lost. It is im-

portant to note that this extrapolation error is mainly due to

the non-deterministic nature of the underlying simulation.

We expect that advanced techniques for variance reduction,

e.g. [18], can significantly improve these results, and we are

actively pursuing research in this direction. However, even

with this simple averaging strategy, we are already able to

halve the simulation time.

Second, as can be seen from the measurements in fig-

ure 6(a), the macroscopic variables approach a steady state.

This indicates that a numerical algorithm to determine this

steady state directly is preferably used (step 8 from road

map). The Newton algorithm (see section 4.2) is such an al-

gorithm which takes an arbitrary initial guess for the steady

state as input and converges to the real steady state. How-

ever, due to the rather large variance on the measurements,

we were unable to converge successfully, unless the error

tolerance for the Newton algorithm was set very low (2

digits of accuracy). The reason is that the extrapolation

steps used in Newton’s algorithm require a higher degree of

smooth behaviour than a projective integration over time as

described previously. We expect to remedy this in the near

future by using a suitable variance reduction technique, and

will report on this in a future publication.

6. Conclusion and Future Work

This paper describes a promising analysis approach that

allows to address a fundamental engineering issue for auto-

nomic decentralised systems, i.e. assessing the system-wide

behaviour of self-organising emergent systems. Due to the

complex, dynamic, and non-deterministic nature of such

systems, a formal or analytic proof and even predictions

of the exact behaviour are not feasible. Therefore, an al-

ternative road map to study trends in the system-wide be-

haviour is proposed, based on so-called ”equation-free”

macroscopic analysis techniques. Numerical analysis al-

gorithms are used to steer and accelerate the simulation pro-

cess. The main assumption is the presence of a separation in

time scales between the microscopic and macroscopic evol-

ution. Initial steps in the AGV case study show that this

technique can yield more reliable results about the system-

wide behaviour, compared to mere simulation observation

results, at an affordable computational cost.
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Several questions remain open, and constitute the basis

for future work. First, it is a challenge to alter the numerical

procedure in such a way that it uses suitable variance reduc-

tion techniques to obtain the level of smoothness that the

numerical algorithms require. This is necessary to success-

fully apply more advanced algorithms, such as bifurcation

tools to study parameter sensitivity. For example, the influ-

ence of a specific parameter on the system-wide behaviour,

e.g. the number of AGVs on the factory floor can signific-

antly influence the guarantees that can be given. Such a

parameter can then be used to control the system-wide be-

haviour by making sure that it stays in the range of values

that lead to desired behaviour. Secondly, additional steady

scenarios to analyse need to be considered (e.g. low utilisa-

tion load, frequent failure of AGVs, frequent occurrence of

obstacles, etc.). In general, one needs to identify the para-

meters that determine the conditions in which a system is

used, and analyse steady scenarios to cover the full range

of possibilities. Thirdly, we are actively investigating how

additional system-wide properties in the AGV case, such as

throughput, can be incorporated in the analysis. The iden-

tification of a set of problem-specific “key variables” still

needs to be done on a case-by-case basis. Once the pro-

cedure has been successfully applied to a range of systems,

we expect to obtain a set of useful guidelines for this cru-

cial step. Finally, the biggest challenge for the future is to

see to which extent this analysis approach can be integrated

into a systematic engineering approach for self-organising

emergent systems.
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