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ABSTRACT
The specific organization used by a multi-agent system is crucial
for its effectiveness and efficiency. In dynamic environments, or
when the objectives of the system shift, the organization must there-
fore be able to change as well. In this paper we propose using
a general diagnosis engine to drive this process of adaptation, us-
ing the TÆMS modeling language as the primary representation of
organizational information. Results from experiments employing
such a system in the Producer-Consumer-Transporter domain are
also presented.

Keywords: Organization and social structure, organization self-
design.

1. OVERVIEW
As the sizes of multi-agent systems grow in the number of their

participants, the organization of those agents will be increasingly
important. In such an environment, an organization is used to limit
the range of control decisions agents must make, which is a nec-
essary component of scalable systems. Are agent agents arranged
in clusters, a hierarchy, a graph, or some other type of organiza-
tion? Are the agents‘ activities or behaviors driven solely by lo-
cal concerns, or do external peers or managers have direct influ-
ence as well? Is communication between agents active, via mes-
saging of some sort, or passive, using observations or engineered
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assumptions? These and other characteristics define the organiza-
tional structure of a multi-agent system - the rules which define the
roles agents play and the manners in which they interact with other
agents in the system.

Clearly the characteristics described above will have an impact
on the efficiency and responsiveness of both large and small multi-
agent systems. It should also be intuitively clear that the effective-
ness of the organization is dependent on the agents, environment,
and goals involved in the system. The problem then, is how to
derive such a structure given a particular situation. The simplest
option is to statically define the organization when the system is
developed. This has the benefit of being a simple and direct solu-
tion, but can become impractical when the sets of agents and goals
are large and diverse. Static solutions also suffer when elements
of the multi-agent system are dynamic, since characteristics of the
environment, organizational goals, or member agents may change
such that the initial organization becomes inefficient. Members of
the agent pool may become deactivated or compromised in some
way, making it impossible for the system to function correctly, or
other agents may not be used effectively when they are added. In
this sense, the organization is a set of assumptions that the system
works by. As these assumptions become invalid, the organization
must be able to adapt to keep the system viable.

The term Organizational Self-Design (OSD) has been used pre-
viously [2] to describe the general technique of employing the mem-
bers of a multi-agent system to generate or adapt their own orga-
nizational structures at runtime. Earlier work in this area tended
to focus on adapting specific qualities of the organization, such as
task allocation [9] or load balancing [6, 8]. Organizational struc-
ture generation has also been proposed as arising from local [6],
global [2], and hybrid [11] perspectives. Each of these systems
demonstrated specific techniques that worked well and efficiently
in their respective environments, but they were not general solu-
tions to the problem. In this paper we propose a more general ap-
proach, using diagnosis, to detect deficiencies in the organizational
model and assist in the creation of solutions to those deficiencies;
the eventual goal being to create a reusable organizational adapta-
tion engine. We will show how a general diagnosis engine, coupled
with a powerful representation of that organization, can be used
to effect change in a wide range of characteristics from arbitrary
perspectives.

To help make this notion of organizational adaptation more con-
crete, we will look at an example from the Producer, Consumer,
Transporter (PCT) domain [4]. In this domain, there are concep-
tually three types of agents: producers, which generate resources;
consumers, which use them; and transporters, which move resources
from one place to another. In general, a producer and consumer
may actually be different faces of a factory, which consumes some
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Figure 1: The initial (L) and revised (R) transporter organizations.

quantity of resources in order to produce others. There are several
characteristics of this domain where alternatives exist for the fac-
tories and transporters - the choices made at these points by or for
the PCT agents make up the organizational structure of the system.
Examples of such characteristics include the types and quantities of
resources a producer should generate, the set of potential sources a
consumer should obtain required resources from, and what paths a
transporter may choose to follow as it moves about.

In this example, consumers F2 and F3, shown in Figure 1, re-
quire some amount of resource X . In the initial organization, each
is being supplied withX by producer F1. X is then supplied to F2
and F3 by transporters T1 and T2, respectively, each of which oper-
ates at 50% capacity. Factory F4 is initially idle, but at some future
point in time it obtains production request, which requires resource
Y to be satisfied. Fortunately, F3 produces Y , but in the initial
organization, no additional transporters are available to deliver the
needed goods. With a diagnostic system in place, the transporters
could determine that their initial organization, while functional un-
der the initial conditions, included under-loaded transporters and
was therefore potentially suboptimal. Instead of using two trans-
porters running at 50% capacity, just one at 100% capacity could
satisfy the original requirements for X expressed by F2 and F3,
albeit at a slight time penalty because of the extra stop. Thus, if
instantiated, the revised organization would leave T2 free to per-
form the transportation required by F4. More quantitative results
from this domain will also be covered in section 4. Related work,
using diagnosis to learn coordination rules in an intelligent home
scenario, can also be seen in [5].

Figure 2 shows at a high level how we propose organizational de-
sign can be situated and integrated in an agent. In this architecture,
critical components within the agent, such as those responsible for
problem solving, negotiation and scheduling, obtain the vast major-
ity of their information from an organizational design layer. This
layer abstracts and filters elements of the operating environment in
a manner consistent with the agent’s role in the organization. The
abstraction is composed of one or more information sources, such
as TÆMS structures or MQ values [12], capable of encoding the
various aspects of the organization. TÆMS a task and interaction
modeling language, will be discussed in detail in a later section.
MQ (motivational quantity) values, which give the agent a more
powerful way to reason about the utilities of its tasks, will not be
covered in this paper. To permit adaptation, the organizational de-
sign layer is maintained by a diagnostic subsystem, which attempts
to repair faults and inefficiencies by adjusting elements of the or-
ganizational structure. This diagnostics process can itself be driven
by a number of sources, including observations of the environment,
conditions monitored within the agent, and discourse with other
agents. The direct effects of these diagnoses typically take place
within a relatively small group of agents, so one can think of this
technique as being a search process for the correct organization
through local adaptation. The organization will go through a set of

distribution adaptations, each involving a series of local adaptations
by individual agents.

Going back to the previous PCT example, we can see how this
technique would work in practice. The initial organizational struc-
ture would be encoded in TÆMS structures in both the transporters
and factories. They would indicate such characteristics as what
goals the factories and transporters should work towards and how
they could be accomplished. Initially, the organization would be
unconstrained, permitting the type of interactions seen in Figure 1L.
Diagnosis running on the transporters or factories would determine
that while the transporter loads were well balanced in the initial
state, the arrangement was not necessarily the most efficient use of
their abilities. F2 could use this information to add a constraint to
it’s local organizational representation, indicating that it should use
T1 for its transportation needs. Later, when F4 requests the use of
a transporter, T2 will then be available.

In the next section we will give more details about our view of the
actual knowledge used by an agent to represent the organizational
information that makes up the abstraction layer shown in Figure 2.
Following this, we will cover our diagnostic system, shown in the
middle of this same figure, and how it is integrated into and used
by our agents. In section 4 results from an experiment in the PCT
domain will be covered, and in section 5 we will present our con-
clusions.

2. ORGANIZATIONAL KNOWLEDGE
As mentioned in the previous section, the range of information

that comprises an organizational structure can be quite broad. It
is our opinion that there is no single, comprehensive set of char-
acteristics that might make up the definition of an organizational
structure. Instead, the set is dependent more on what alternatives
are possible within a particular multi-agent system and which of
those alternatives can have an impact on the system’s behavior and
effectiveness. Given that, we will present in this section our or-
ganizational representation, called TÆMS (Task Analysis, Envi-
ronmental Modeling, and Simulation), which is flexible enough to
model a wide range of organizational characteristics.

2.1 TÆMS
The primary representation of the organizational structure is done

with the domain-independent TÆMS task modeling language [3]
(see Figure 3 for a simple example). A TÆMS task structure is es-
sentially a goal decomposition tree, where leaf nodes represent exe-
cutable primitive methods and internal task nodes provide a hierar-
chical organization. Root level tasks (those with no supertasks) are
known as task groups, and conceptually represent high level goals
that might be achieved. Associated with each task is a quality-
accumulation function (QAF), which indicates how the quality of
the task is calculated from that of its subtasks. Associated with each
method is a distribution-based description of its expected quality,
cost and duration measures. Together, the probabilistic method de-
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Figure 2: Role of organizational knowledge within an agent.

scriptions and QAFs allow a scheduler to effectively reason about
the traits and tradeoffs of a wide range of possible schedules. A
third type of element, interrelationships, which arise between in-
ternal tasks, methods and resources can be used to indicate a wide
range of interactions, such as enables, facilitates, hinders and pro-
duces (e.g. performing a task will enable the execution of another,
or a task will produce some amount of resource, as seen in Figure
3). Interrelationships may also span task structures between agents,
and tasks and methods performed by remote agents may be repre-
sented locally. Combined, the capabilities give developers using
TÆMS the flexibility to model a wide range of traits, from low-
level performance characteristics of a single action to a high-level
representation of the system’s control hierarchy.

TÆMS task structures are typically used to encode the different
mechanisms for achieving a goal, and the constraints and tradeoffs
associated with each potential plan. They are also used to describe
both the potential capabilities of an agent and the subset of those
capabilities it should employ given its place in the organization. To
do this, each agent will have two different versions, called views, of
its local task structure: subjective and conditioned. The subjective
view contains what the agent believes to be the complete model of
its local execution alternatives1. The conditioned view is a copy of
the subjective which has gone through a process of conditioning - it
may contain task, method or interrelationship deletions, modifica-
tions or insertions. The conditioned view is normally used for plan
construction, so these modifications indirectly allow the problem
solver performing the conditioning process to focus the attention
of the scheduling and coordination mechanisms. As we will see
below, the conditioned view can also represent the instantiation of
the role assigned to it by the organizational structure.

2.2 Task and Goal Representation
Since the general purpose of TÆMS is to facilitate plan genera-

tion, it is well suited for representing the different task alternatives
available to an agent in an organization. In an agent’s subjective
view we can represent (or dynamically generate) structures describ-
ing each of the high level goals the agent can achieve. Each of these
structures would in turn describe the various alternate ways that a

1There is also an omniscient objective view, inaccessible to agents,
which defines the real execution alternatives. In simulation, one can
engineer differences between the objective and subjective views to
create scenarios where the agent’s expectations are not met.

particular goal might be achieved. The subjective view would then
be, in this light, a complete description of all the possible roles an
agent might be assigned to, and how the agent might act to satisfy
that role.

Within a particular organizational structure, however, an agent
will typically (but not necessarily) be working toward just a sin-
gle or limited set of goals. Thus, in the conditioned view there
will be a single task group representing that goal. The subtree un-
derneath that task group might be further pruned to reflect other
decisions within the organization. For example, in the subjective
view there might be two possible ways to complete a task, one lo-
cal solution and another using a remote contract, whereas an or-
ganizational constraint could remove the remote option from the
conditioned view. So, using this representation we can encode all
the tasks a particular agent might be working on, and also the spe-
cific task(s) they have chosen or been assigned. These techniques
are used in the experiment shown in section 4 to control the path
selection done by transporter agents.

2.3 Specifying Interactions
As mentioned above, TÆMS allows the agent to represent tasks

and methods that other agents may perform. This capability allows
TÆMS to model potential interactions between agents very effec-
tively. Consider the case where agent C1 requires resource X as
part of its manufacturing process, as seen in Figure 3. Here, C1

has a method Get-Materials, which consumes some amount of re-
source X . In the subjective view we can see that C1 knows of
three other agents that can produce X for it: P1, P2, and P3, each
of which is represented by a shaded, nonlocal method that has a
produces interrelationship to X . In the conditioned view only P2
is represented, which indicates that in this organization, C1 should
obtain X from P2. A less restrictive organization might allow C1

to choose probabilistically from either P1 or P2, which could be
represented by adding P1’s produces interrelationship to the con-
ditioned view. In this new model, the local scheduler would select
from the two each time the resource is needed, based on the charac-
teristics that differentiate the two produces interrelationships. This
type of probabilistic usage relationship will be discussed further in
the example in section 4.

Other interrelationship types might inform the agent that another
agent’s actions could enable, disable, facilitate or hinder local ex-
ecution. Assuming the agent needs to interact, explicitly or not,
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Figure 3: Subjective (left) and conditioned (right) views of C1’s task structure.

with those remote agents to exploit these interrelationships, they
then indicate a point of potential coordination. For instance, if a
remote agent’s method enables one at the local agent (i.e. there is
an enables interrelationship between them), the local agent must
ensure that the remote method has successfully completed before it
can succeed at its local method. This implies that some sort of co-
ordination must take place to cause the correct ordering of events.
Thus, an agent using this type of model can succinctly encode what
sort of coordination is needed (based on the interrelationship type),
with what other agents it should take place, and given a schedule of
execution, when it should occur.

2.4 Other Organizational Details
Data concerning particular agents, existing commitments, and

execution schedules are also stored within TÆMS models. In-
evitably, however, there are some details particular to a given or-
ganization that do not directly fit into this representation. For these
situations, all elements in a TÆMS model can be associated with
an arbitrary set of attributes, where one could specify such things as
preferred communication medium, optimal load measurements, or
interaction history with a particular agent. Also stored here are per-
formance characteristics, such as result thresholds and tolerances
and expected frequency statistics, which the diagnosis subsystem
can use to help identify potential failures.

With this information, we can now return to the questions posed
in the overview section. The arrangement of agents can be ex-
pressed and derived locally by using the complete structure and
owning agent tags of tasks and interrelationships. Commitments
can exhibit potential influences on agent activities, or by explicitly
modeling the task of obtaining goals from remote agents. Interre-
lationships can denote communication alternatives among agents,
and their presence in the conditioned view determines if they should
be explicit or implied. Our subjective view represents all the pos-
sible roles and responsibilities the agent may hold in the organi-
zation, while the conditioned view indicates its currently assigned
position. The organizational search space is therefore specified by
the range of possible conditioned structures. To adapt its role in the
organization, the agent must develop an appropriate mapping from
the subjective to conditioned. The TÆMS knowledge representa-
tion thus serves as a reasonable representation of the organizational
structure; the task now is to use diagnosis to find the appropriate
mapping.

3. THE DIAGNOSTIC SUBSYSTEM
Figure 4 shows the architecture of the diagnostics subsystem we

currently employ. It uses a blackboard-based design, separating the
process into three distinct layers: symptoms, diagnoses, and reac-
tions. This type of system offers several advantages. It promotes
a clear chain of reasoning, since the diagnoses supporting a given

reaction can easily be identified, as can the symptoms that sup-
port a particular diagnosis. Each layer is also subdivided by time,
so a history of activity on each level is readily accessible. The
blackboard layers also clearly define the separation of responsibil-
ities. This modularity allows any of the layers to be accessed at
any time, enabling arbitrary components or even remote agents to
asynchronously use and add to elements on the blackboard. The
different layers of the blackboard, and the components which make
use of them (excepting the effect monitor), will be discussed below.
In our current systems, each agent uses this subsystem to perform
local diagnosis, although it is quite feasible that in other systems a
specialized “diagnosis” agents would be responsible for monitoring
small groups of their peers.

The lowest level of the blackboard contains symptoms, elements
that contain observations about such things as the environment,
agent activities and commitments. Two classes of components cur-
rently generate symptoms: observers and modelers. Observers
work by simply monitoring different aspects of the agent, and gen-
erating symptoms when appropriate. Modelers take a more proac-
tive approach by building or learning models, and then using these
models as a basis for comparison, an approach similar to that used
in conventional model-based diagnosis. As models are updated, or
predictions derived from the models fail, appropriate symptoms de-
scribing these instances are noted on the blackboard. We have ex-
perimented with modelers that learn interrelationships in TÆMS ob-
jects [7] and others that predict environmental resource usage.

Diagnosis is a well-researched field, with many different meth-
ods and techniques already available to the system designer. Our
goal was to use a technique that offered great flexibility in the in-
formation it could use and the diagnoses it could generate, with-
out sacrificing subject scope or domain independence. It is not
clear from the outset, however, that any single diagnostic technique
(e.g., model-based, symptom-directed, collaborative) is suitable for
the entire range of faults exhibited by multi-agent systems. It was
therefore desirable to use a system or framework capable of incor-
porating different diagnostic techniques. In such an architecture we
can make use of a variety of different methods, given the types of
failures they best address, and the performance characteristics they
exhibit (e.g. convergence time, scalability, efficiency, etc.).

Expanding on work first researched in [10], we chose to organize
our diagnostic process using a causal model. The causal model is
a directed, acyclic graph that organizes a set of diagnosis nodes.
Figure 5 shows an example of such a graph; more examples of
graphs addressing broader topics can be found in [1]. A more ap-
plied model used in the PCT domain can also be seen in Figure 6.
Each node in the causal model corresponds to a particular diagno-
sis, with varying levels of precision and complexity. As a node pro-
duces a diagnosis, the causal model can determine what other, more
detailed, diagnoses may further categorize the problem. Within the
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Figure 5: Causal model for diagnosing action- and coordination-based faults.

diagnosis system, the causal model then acts as a sort of road map,
allowing diagnosis to progress from easily detectable symptoms to
more precise diagnostic hypotheses as needed. A more advanced
technique can also use the same structure to help validate diag-
noses, by using backward chaining through the branches to deter-
mine the state of other potentially related diagnostic nodes.

It is worth mentioning that nodes in the causal model do not
necessarily produce single-shot diagnoses. Some nodes, such as
UnexpectedActionDuration, simply produce a diagnosis and stop.
Others, such as PeriodicCoordination, can produce a diagnosis and
monitor it over time to determine if conditions change or more ev-
idence is found. Thus, a node could pose an initial diagnostic hy-
pothesis when confronted with a particular situation. Since it only
has limited evidence (presumably one data point), the confidence
on that diagnosis would be low. The node can persist, however,
and either passively watch for related evidence, or actively gather
new information that either contradicts or corroborates the initial
diagnosis. Furthermore, since other diagnoses or reactions may be
based on that initial diagnosis, a change may also affect their con-
fidence, causing a ripple effect throughout the blackboard as the
original diagnosis accumulates new information.

The reactions level contains descriptions of the potential solu-
tions to diagnoses found on the previous level. In some sense, then,
these reactions are the effectors of organizational change. As di-
agnoses are hypothesized, and their confidence reaches a certain
threshold, the reaction generator will pose solutions to those diag-
noses. For instance, if the causal model determines that insufficient

resources were available for a particular action because their us-
age was not coordinated over, a potential reaction would modify
the conditioned view of the agent’s TÆMS model so that coordi-
nation would take place for that action in the future. A different
reaction for that problem might remove the offending method from
the view altogether. Similarly, if a diagnosis determined that an
agent’s actions were predictably periodic, a reaction could set up
default commitments to reduce the need for explicit communica-
tion during each of those cycles. Like diagnoses, reactions can also
be long-lived, providing incremental change in response to updated
diagnoses or to slowly test new organizational changes.

Organizational changes for higher level characteristics work the
same way. For instance, in Figure 3, a consumer’s choice of pro-
ducers limited is by the organization. A reaction could implement
this change by removing the methods and interrelationships that
describe those extra producers from the conditioned view. In the
initial PCT organizations seen in Figure 1, a reaction would mod-
ify the conditioned view of F3 to indicate it should use T1. When
this change is made, T2 would be free to accept the transportation
request from F4.

Similar methods can drive more large scale reorganizations, al-
though additional safeguards should be present to protect against
the likely larger cost of failure. In these cases, local reactions
can directly implement sophisticated reorganization techniques like
those seen in [6, 8, 11, 9], or they can direct the local agent con-
troller or problem solver to do so. For instance, local diagnosis
could first determine that the control hierarchy for the current orga-
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nization is inefficient or overwhelmed, because one or more high-
level managing units was unable to cope with its workload. Be-
cause resolving such an issue can result in an interruption of ser-
vice, this diagnosis would first cause a more detailed view of the
situation to be analyzed, by evaluating different metrics, analyzing
trends, or gathering additional evidence from remote sources. If
this more advanced diagnosis also determines a problem exists, a
reaction can be generated which prompts a more sophisticated di-
rect, distributed search for a more appropriate organizational struc-
ture.

The task of selecting from among several potential reactions lies
with the inducer. Our current inducer simply instantiates any reac-
tion it sees on the blackboard. In future versions this component
would be more complex, able to differentiate between reactions,
analyze the potential benefits and drawbacks of each, and deter-
mine the best reaction given the agent’s current context and prior
history.

4. EXPERIMENTAL RESULTS
A specific system using the architecture outlined in the previous

sections has been implemented and tested using scenarios from the
PCT domain. In this section, we will outline one of those experi-
ments, examining the effects of organizational changes in a small,
eight member multi-agent system.

In this scenario, there are four factories and four transporters op-
erating in the environment shown in Figure 1. As shown in that
figure, there are also four “doorways”, or potential points of con-
tention along the lengthwise transporter routes. These doorways
only allow one transporter through at a time, which transporters
must be aware of as they select their routes. The objective for
transporters is then to deliver their cargo on time, given the poten-
tial vagaries of factory production and the need to avoid collisions
on travel pathways. Factories in the environment have different
production capabilities and resource requirements, summarized in
Table 1, and they must also select one or more transporters to de-
liver materials to them. Each factory is capable of producing both
a simple resource, one that requires no external elements to build,
and a complex resource, which requires other resources to produce.
F4 can also produce an even more complex resource Q, which is
the combination of four other resources.

Factory Simple Complex
F1 ø! A B + C ! X

F2 ø! C B +D! Y

F3 ø! D A+C !W

F4 ø! B A+D! Z
A+ C +X + Y ! Q

Table 1: Production rules for factories in PCT example.

In the initial phase of the scenario, the goal of each factory is
to produce seven of each type of complex resource by time 700.
After time 700, the objective shifts so that the system as a whole
should produce as much Q as possible by time 1200. To provide
further context, the round trip duration from F1 to F3 is around
forty time units (barring path contention), and resource production
can take five time units. Two organizational characteristics have
alternatives as part of this scenario - the transporter selected for a
particular transportation task, which is decided by the consuming
factory, and the path the transporter selects to perform that task.
Each consumer then chooses one of the four available transporters
to satisfy its delivery needs. Each transporter has a choice of two
different viable paths for any given delivery task. This latter selec-
tion is implemented probabilistically, so a given transporter might
have a 70% chance of selecting path A, and a 30% of path B. Three

runs were performed, the first employed an arbitrary static organi-
zation, the second used diagnosis with only task allocation nodes
from the causal model shown in Figure 6, and the third used the
entire causal model, which added path selection diagnosis to the
second trial. The objectives behind most of the nodes in the model
should be intuitive: DeadlineMissed fires when action’s deadline
has not been achieved, TransporterOverloaded is true when a trans-
porter’s task load is disproportionate to those of it’s peers, and
OverCoordination determines when excessive coordination activ-
ity has been detected, as would occur when a particular route is
highly contended. Organizational change occurs under two circum-
stances. A TransporterOverloaded diagnosis will result in the trans-
porter attempting to shift some of its current delivery tasks to alter-
nate transporters. This will also induce change in the consumer’s
organizational model such that future requests will go to the alter-
nate transporter. An OverCoordination diagnosis associated with
the route coordination protocol (which prevents transporters from
colliding along a common path) will cause the transporter to adjust
its local route selection probabilities.

Table 2 shows the results from the experiments; average delay
is the average amount of time from when a factory begins gather-
ing materials for resource production to when the resource is com-
pleted. As shown in the table, the results from the static organiza-
tion are quite poor, except those for resource X , which benefitted
from using relatively underloaded transporters in the organization.
The delays during production ofQ are particularly bad, being more
than three times those in other runs. Clearly this performance is
dependent on the organization that was initially chosen, but more
important to this discussion is the fact that an initial poor organi-
zation was greatly improved with the addition of diagnostic-based
adaptation, as shown by the results from the second and third runs.

Average Delay
Adaptation W X Y Z Q

None 261.9 94.5 253.6 252.0 422.0
CM (Tasks) 97.8 88.4 90.3 98.4 118.9

CM (Full) 93.0 90.0 92.5 96.5 99.6

Table 2: Results from three trials in the PCT scenario.

In the results from the second run we see that the average pro-
duction delay for each resource was reduced by nearly two-thirds
in most cases. These gains were obtained by using load statistics,
which can be generated from the transporter’s conditional TÆMS view,
to more efficiently allocate transporters to the various tasks avail-
able. Reallocation was performed by adding or removing interrela-
tionships from a factory’s conditional view, which constrained the
set of transporters the factory could potentially use. Initially, the
consumers chose from all transporters available in the environment,
which was quite inefficient because transporters working on long-
haul (diagonal) runs were selected as often as those on shorter runs.
Through incremental changes to their conditional views, reacting
to transporter performance and load, consumers in the second trial
settled into an organization where more lightly-loaded transporters
were selected more frequently, producing a more efficient alloca-
tion. The allocation for the initial phase settled around time 240,
after four task reassignments. When the second phase started, after
time 700, additional task reallocations took place every 100 pulses
or so until the system completed.

With the introduction of path selection diagnosis in the third
run the delays dropped again, especially that of resource Q, which
due to its larger component set has the most potential for conflict-
ing transporter routes. Diagnosis relevant to path selection was
performed by the TooManyConflicts and OverCoordination nodes,
which determined if a transporter encountered excessive conflicts
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Figure 6: Causal model structure used in the PCT scenario.

when coordinating with other transporters over route usage. In this
trial, the transporters’ options regarding path selection were im-
proved by constraining them in such a way to reduce the possibility
of conflict. This was also implemented through local incremental
change, this time by the transporters themselves, as they experi-
mented with varying path probabilities (the chance that a particu-
lar route will be chosen) until one was found which incurred few
conflicts. By lowering the potential for conflicts, the path proba-
bilities reduced the overhead spent on both control decisions and
coordination, which left more time for the actual act of transport-
ing. Interestingly, despite similar final results, the organizational
changes with both techniques available were very different than
those of the previous trial. Periodic task reallocations were done
every 100 pulses or so until time 800. Additionally, two to three
path probability changes were made before time 200 for each of
the transporters, and one or two more after time 700. These differ-
ences are caused by the fact that the adaptations were performed au-
tonomously by individual agents in response to different efficiency
metrics. Because no central authority governs the organizational
changes, it is probable that the agents will adapt differently to the
different metrics, but eventually settle on a similar result. There-
fore, the various states the organization as a whole will go through
towards this result will vary depending on the type of diagnosis
being performed.

5. CONCLUSION
Generating an effective organizational structure for a multi-agent

system is a crucial part of making them efficient, especially for
large systems where global control is impractical. Adapting these
organizations at runtime therefore becomes important when the en-
vironment, goals, or participants are liable to change. Several spe-
cific techniques have been offered by previous work in this area;
we propose a more general solution to the problem by organizing
such activity under the umbrella of diagnosis. A general diagnos-
tic engine such as that shown in this paper is capable of detecting
and diagnosing a variety of faults and inefficiencies, which can be
used to drive organizational change. The organization itself is rep-
resented using models, such as TÆMS structures, which abstract
the relevant portions of agents’ capabilities and interactions in a
way that facilitates both its use by agent control components and
its adaptation by diagnosis. In this architecture, the methods driv-
ing change, and the characteristics affected by adaptation, can then
be simplified to general techniques updating a domain independent
representation, which can be reused from one system to the next.

A number of issues remain to be researched in this area. How
efficient are the resulting organizations? How long does it take to
discover a problem, and then to converge on a viable solution? Can
one guarantee that the reactions will do no harm, and avoid oscil-
lations? Our use of a blackboard structure, which can be searched
for historical reactions, can help avoid these pitfalls. How much

of the diagnostic engine can be domain independent, and how are
reaction values and thresholds calculated. Of these these latter is-
sues, can some sort of learning technique be used to automate value
selection? We hope to address these areas in future work.
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