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Abstract

This paper analyzes how to introduce machine
learning algorithms into the process of direct vol-
ume rendering. A conceptual framework for the
optical property function elicitation process is pro-
posed and particularized for the use of attribute-
value classifiers. The process is evaluated in
terms of accuracy and speed using different off-the-
shelf classifiers (Decision Trees, Naive Bayes, and
Simple Logistic). The empirical results confirm the
classification of high-resolution time-varying com-
puterised tomography volume data as a challenging
problem where an opportunity for further research
emerges.

1 Introduction

Volume rendering has emerged as one of the
most active fields in Scientific Visualization. It
consists of rendering property values measured
at points of a 3D volumetric region. One of
the major applications of volume rendering is
the visualization of biomedical data captured
with 3D imaging devices such as high-resolution
Computer Tomographies (CT) [1, 2]. Further-
more, many biomedical studies, such as the
study of bone fractures, require the analysis
of high-resolution time-varying images, where
time-varying images are assumed to share some
similarity among them. In these applications,
the 3D region is sampled according to a regular
3D grid, by parallel image planes. For example,
a typical data set is composed by 512% or
even 10243 samples. The representation of
the volume is a voxel model consisting of a
set of parallel cubical and face-adjacent cells
called wvoxels with a property value at each



voxel vertex and such that the reconstruction
of the property inside a voxel can be done
by interpolation of the voxel vertices property
values. The property is usually tissue density,
scaled as an intensity level between 0 and 2",
being n the number of bits allocated for the
storage of the intensity:.

During rendering, the voxel model is tra-
versed. The intensity is computed at a set
of 3D positions in the volume called rendering
samples. Every rendering sample is then shaded
according to the lighting conditions and to the
optical properties of the anatomical structure to
which they belong. Finally, rendering samples
are ordered to compute the final 2D projection.

The definition of the optical properties can be
viewed as an elicitation process which extracts
user knowledge about the anatomical structures
contained in the data, the selection of the
visualization preferences and the appearance of
the different tissues structures. This elicitation
process defines the Optical Property Function
(OPF) which is a 3D continuous function de-
fined for all spatial points (z,y,z) contained
into the data voxel model to the optical proper-
ties, such as emission (R, G, B) and absorption
(a).

The elicitation process is often performed
through the user definition of transfer func-
tions. These functions directly associate optical
properties to the different data values. Thus,
the OPF at each point is computed as a map-
ping of its property value to the corresponding
optical properties.  Obviously, users should
assign coherently similar optical properties to
data values corresponding to the same regions.
Selection of the anatomical regions to be visu-
alized is accomplished indirectly by assigning
to zero the optical property of opacity, since

totally transparent samples do not contribute
to the final image.

The use of transfer functions presents a major
advantage: they can be stored as look-up
tables, directly indexed by the intensity data
values during the visualization, which signif-
icantly speeds up rendering. However, their
manual definition is complicated even for skilled
users. A lot of effort has been put on developing
user friendly interfaces that make this definition
more intuitive. Nevertheless, it is still an open
problem. In addition, it has been proven [3]
that using only one-dimensional transfer func-
tions, based on the intensity data levels fails at
accurately detecting complex combinations of
material boundaries. The use of multidimen-
sional transfer functions based on the first and
second derivative of the intensity values brings
major refinements to the classification but it
makes harder its definition and increases the
memory requirements for its storage.

The transfer function between intensity val-
ues and optical properties is often broken into
two: the Classification Function (CF) and the
Structure to Optical Properties Assignment
Function (SOPAF). CF is a continuous function
which determines, for each point inside the
voxel model, the specific anatomical structure
it belongs to. SOPAF is a function that assigns
to each anatomical structure a set of optical
properties.

In this case, the elicitation is a two-step
process. During the classification step a la-
belled voxel model is created that contains a
unique identifier of the region to which the voxel
belongs. This classified model is then used
together with the original voxel model to build
a (R,G, B,a) model to be visualized.

In this approach, the classification function



is used to skip non-selected regions, and thus
reduces the cost of model traversal. It simplifies
the edition of the transfer functions, separating
the problem of selection and classification from
the optical properties assignment problem. A
drawback of this approach is that the usage
of an intermediate labelled model increases
memory requirements, which are critical during
rendering.

On the contrary, the advantage of this ap-
proach is that, since the classification is carried
on as a preprocess before rendering, it can cope
with the usage of more complex and computa-
tionally expensive classification methods than
transfer functions. In particular, a first step
of segmentation can be applied to separate
the regions of interest, followed by a labelling
of the segmented regions which results in the
assignment of a region identifier per voxel [4].
This strategy cannot be applied if classification
is done on-the-fly, during rendering, but it is
suitable for a pre-process. Another promising
approach is the application of probabilistic
classifiers. It was early described in [5], but
has nevertheless been little addressed since
then. Its major advantage is that it can be
automatized for similar datasets. Thus, in the
case of time-varying datasets, the classification
function generated for one time-frame could be
useful for the next one. The work presented in
this paper explores this idea.

Many papers in volume rendering literature
address classification [6]. Most of them are
based on the edition of transfer functions and
specially on the design of user friendly inter-
faces for their specification. Recently, some
preliminary work based on learning methods
have been published: supervised methods such
as bayesian networks [7], neural networks [§] ,

decision trees [9] and non-supervised methods
[10]. Additionally, in [11], clustering-based su-
pervised and non-supervised learning methods
are compared for the classification of magnetic
resonance images (MRI). However, there is a
lack of a systematic comparative study of the
application of different learning methods to
classification.

In this paper, we address classification as a
data mining problem. We interpret voxels as
objects to classify and their property values,
derivatives and positions as the attributes to
evaluate. We apply different learning methods
to a subset of already classified voxels and
after that, in order to test our method, we
classify various voxel models. Our goal is three-
fold: to define an optical property function
elicitation process based on machine learning
approach; to compare the adequacy of different
learning methodologies to classify data; and
to determine the size and type of sampling
of classified subsets used for learning that are
more suitable for a posterior rendering.

2 Incorporating machine learning into the
optical property function elicitation
process

Machine learning in the most general sense
allows a computer program to learn to perform
a task by the analysis of previously solved tasks.
If we consider the most general setting for the
optical property function elicitation process,
the task that we would be interested in au-
tomating is the transformation of a data voxel
model into an optical property function. From a
formal point of view, the task has as input a set
of pairs, each containing a data voxel model and
an optical property function used to visualize it
(i.e. a problem and its solution). The output is



a function that maps a data voxel model into its
corresponding optical property function. Due
to the particular structure of this problem,
most of the machine learning techniques in the
literature cannot be applied “out-of-the-box”.
Furthermore, the possibilities for the user to
control this process are very limited.

These two problems, unsuitability of common
machine learning tools and lack of user con-
trol, can be overcome if we decide to apply
machine learning to the class based process.
The proposed resulting process can be seen
in Figure 1. In this case, learning is applied
only to the process of classification. Machine
learning methods are much easier to apply to
this process and the user gains control over the
processes of selection and assignment of optical
properties to the different classes or materials.

Figure 1 introduces the concept of classifi-
cation model. A classification model contains
the information needed to map a data voxel
model into a classification function. It can
be understood as an actionable compilation of
the information residing in the training data
provided as input to the process of learning.

In order to build a CF for an incoming data
voxel model, we use the process of classification
function construction, where the classification
model is applied. Furthermore, sometimes it
can be useful to incorporate additional infor-
mation in the form of a partial classification
function, which provides information about the
classification of a subset of the space. This
can be defined by the user by means of the
partial classification process. For example,
this gives us the possibility to ask the user
to classify several 2D slices of the data and
incorporate this information into the CF con-
struction process. The information provided by

the partial CF can also be used to improve or
refine the classification model.

2.1 Incorporating Attribute-Value
Learning

Several alternatives can be used to implement
the learning process. A common assumption
underlying many of the algorithms proposed
by the machine learning community is the fact
that the objects that are going to be classified
can be described by a set of attributes, where
each attribute can take a set of values. There
are a plethora of algorithms embracing this
assumption, and they are usually known as
attribute-value learning algorithms.

The application of these algorithms turns out
to be much easier if we divide the problem of
classifying a data voxel model into as many
independent problems as voxels contained in
the image. This assumption, however, hinders
the detection of contiguous regions, introducing
discontinuities in the classifications. In order to
alleviate this process, usually a feature extrac-
tion process is used, where for each voxel we
can incorporate information about its neighbor-
hood. In Figure 2, we can see the steps when
the learning process is adapted to attribute-
value algorithms, including a sampling step,
where a subset of all the voxels available for
learning is selected.

3 Simulations
3.1 Metrics and analyzed algorithms

In order to evaluate the accuracy of the learning
methods, we have used manually-guided expert
segmentation models as the target classification
functions of the data voxel models. From now
on, we will call reference model (RM) these
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Figure 1: The class based direct volume rendering process incorporating machine learning.

labelled models. Moreover, we have constructed
the set of classified instances, SCI, by sampling
these reference models. We have used SCT
as input for both processes, the partial and
the complete classification process. Finally,
we have compared the results of the models
classified with the learning methods with the
corresponding reference models RM.

We have chosen four different sampling meth-
ods to construct the set of classified instances
from the first time-frame image: random, sys-
tematic, slice and stratified sampling. The
random sampling selects a subset of data set
instances at a random choice.  Systematic

sampling extract a subset of instances at regular
sampling steps starting from a random initial
offset. This sampling can be used for scaling our
data sets as a 3D geometrical transformation,
and it can be interpreted as if our original
data had been captured with lower resolution.
As its name points out, slice sampling implies
to choose a few equally spaced 2D slices of
the 3D voxel model. Finally, the stratified
sampling method has the aim of generating a
sample whose class distribution is as balanced
as possible.

In the present study, we analyze three differ-
ent attribute-value learning algorithms in order
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Figure 2: The learning process adapted to use attribute value learning algorithms

to evaluate their performance and their trade-
off between time and accuracy in similar volume
data. The evaluated algorithms are:

e Naive Bayes [12]: It is a widely known,
simple but very robust algorithm that is
commonly used as a reference method.
It can only capture simple dependencies
between the non-class attributes and the
class attribute.

e Decision Trees: Induction of decision
trees [13] is one of the most used off-the-
shelf classification algorithms that provides
a good balance between accuracy, speed
and interpretability of results.

e Simple Logistic: Logistic regression
models are commonly wused by the
statistical community. The simple

logistic [14] algorithm is an up-to-date
representative of this family that uses
boosting [15] to calculate regressors.

In the original experimental design we in-
cluded a fourth algorithm based on neural
networks, but backpropagation turned out to
be much too expensive in terms of learning time
for this size of datasets.

To evaluate the quality of the classification
results, we compute the Overlap Metric (OM)
for each class. In this manner, we define the
Overlap Metric for a class C, and a learning
method A as

OM(C A) — |OUAHCURM‘
7 |C'UA U CUR]\/I |
where C,,,,, stands for the set of instances that

are classified as C, in the Reference Model and
C,, notes the set of instances that are classified
as C, by the learning method A. For each class,
this metric approaches a value of 1 for results
that are very similar and it is near 0 when they
share no similarly classified voxels.

The classification algorithm results are eval-
uated on the basis on their learning time, size



of the learned models, Overlap Metric and
classification time for a microCT slice.

Figure 3: A first week microCT slice. The
bioimplant can be indentified as the rectangular
area on the left.

3.2 Application domain

In order to compare these different learning
algorithms we have applied them to the task of
classification function construction from time-
varying high-resolution 3D microtomographies
(microCTs). These microCTs were taken by
our group at the FEuropean Synchrotron Ra-
diation Facility (ESRF) located at Grenoble
(France) within the framework of a research
project whose main objective is evaluating the
quality of different biomaterials for bone recon-
struction. In order to evaluate each biomaterial
properties, they are implanted into rabbit fe-
mur bones by means of surgery. Afterwards,
its evolution is tracked by taking microCTs

at different points in time. Those microCTs
are currently visually analized by means of
volume rendering techniques. However, the
task of identifying biomaterial inside the bone
is currently being done manually. Therefore,
our main objective is to contribute to the
automatization of this task.

Our experiments have been performed with
two microCTs, corresponding to the first and
fourth weeks respectively (see Figure 3). These
data voxel models are do have different dimen-
sions: 486 x 423 x 562 and 498 x 426 x 544
each having an approximate size of 111Mb.
Both microCTs have been manually classified
into biomaterial and non-biomaterial (which
comprises both bone and background) so they
can be used for testing different learning meth-
ods. The feature extraction process in Figure 2
composes a 5-dimensional attribute vector for
each voxel. The attributes used are the classical
features reported in literature: 3-D position,
intensity value and gradient magnitude. It is
worth noticing that no registration process has
been performed between both microCTs, and
hence, positional information is hardly trans-
ferable among them. Finally, the four sampling
methods presented before are used to construct
our Feature Enriched Voxel Bag (again, see
Figure 2). The samples taken contain a 1% of
the complete Feature Enriched Voxel Model.

We have compared the three classifiers in-
troduced above for the task of Classification
Function completion (that is, for extending a
partial classification). Furthermore, we have
also compared them for the task of classifying
the second data voxel model by using the
Classification Model previously obtained. Next
section presents an analysis of the results.
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Figure 4: Per class, Overlap Metric for each learning and sampling method over the first week

image.

Sampling NB J48 SL
random | 2.9Kb | 329Kb | 170Mb
stratified | 2.9Kb | 375Kb | 170Mb
systematic | 2.9Kb | 380Kb | 170Mb
slice 2.9Kb | 180KDb | 182Mb
Table 1: Classification Model size for each

learning and sampling method

3.3 Experimental results

When comparing different classifiers, the first
measure we analyze is the size of the Classifica-
tion Model they generate. Our results can be
seen in Table 1: NB builds the smaller model,;
J48 still keeps a reasonable model size; and SL
generates much larger models.

3.3.1 Overlap Metric analysis

Figure 4 shows the Overlap Metric for Decision
Trees (J48), Naive Bayes (NB) and Simple
Logistic (SL) when classifying 50 complete con-
secutive slices from the first week microCT.
For all methods, the Overlap Metric for non-
biomaterial outperforms the one for biomaterial
and this outperformance is especially signifi-
cant for SL. and NB methods. This difference
can be explained by the characteristics of the
classes: Non-biomaterial corresponds to a non-
anatomical region, it concentrates most of the
samples and covers a wide range of property
values. On the contrary, biomaterial class has
a smaller number of instances, making it harder
to learn. We observe in the figure that J48
has an overall higher Overlap Metric. On the
other hand, Naive Bayes and Simple Logistic
behave in a similar way. However, we must note
that Simple Logistic fails to find biomaterial
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Figure 5: Per class, Overlap Metric for each learning and sampling method over the fourth week

image.

for every sampling method except for stratified
sampling.

Regarding sampling methods, the response of
every learning algorithm is different: while J48
best results are obtained by using systematic
sampling, NB and SL obtain a more balanced
Overlap Metric with stratified sampling. In
this manner, systematic sampling increases the
Overlap Metric for the non-biomaterial class at
the cost of decreasing the one for biomaterial.
On the other hand, the reason for J48 low
performance with slice sampling is that the
classifier overfits to the provided sample and
hence it becomes unable to generalize to other
slices.

Figure 5 shows the Overlap Metric when
trying to classify the fourth week microCT
using the model learnt from a sample of the

first week microCT. As would be expected,
the difference between images causes an overall
Overlap Metric reduction with respect to the
results in Figure 4. This is mainly due to
the previously stated fact that no registration
between both microCTs has been performed. It
should be noted that the reduction in Overlap
Metric is most relevant for the biomaterial
class. Additionally, whilst in Figure 4 the best
performing combination was provided by J48
with systematic sampling, here, no combination
overperforms the rest.

In Figure 5 we can also observe that J48
is very sensitive to image changes, somehow
corroborating our hypothesis that it tends to
overfit the input data. On the other hand,
NB and SL methods, specially under stratified
sampling, seem to be more able to adapt their



classifications to a different microCT. In fact,
the behaviour of NB and SL with respect to
the different sampling methods is analogous to
the one in Figure 4. Overall, both figures show
a poor performance of the algorithms with the
slice sampling method.
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Figure 6: Learning times for each learning
algorithm and sampling method

3.3.2 Time analysis

Regarding learning time, it can be seen in
Figure 6 that NB clearly outperforms SL and
J48. However, it should also be noted that
J48 has a significantly larger Overlap Metric
than NB, so they provide us with a trade-off
between learning time and accuracy. Specially
noticeable is the large learning time of SL,
which together with its low Overlap Metric,
allows us to discard this method for the task
in the future.

With respect to the sampling methods, NB
learning time is homogeneous, which is not the
case for J48 and SL. For those two classifiers,
stratified sampling significantly increases the
learning time.
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Figure 7 shows the time spent on classifying a
microCT slice. J48 performs better than both
SL and NB. However, the difference is much
larger with respect to NB than with respect to
SL.
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Figure 7: Time to classify a 486 x 423 voxels
microCT slice for each learning algorithm and
sampling method

4 Conclusions

In this paper we have analyzed how to introduce
machine learning algorithms into the process of
direct volume rendering. We have developed a
conceptual framework for the optical property
function elicitation process and have particular-
ized it for the use of attribute-value classifiers.
We have tested the suitability of this process
through the experimental evaluation in terms
of accuracy and speed of three different learning
algorithms.

Our results regarding efficiency point out
that the process can be considered feasible when
implemented as a preprocessing step in the
visualization pipeline.



From the point of view of accuracy, it should
be noted that average accuracy is not providing
all the information needed. The Overlap Metric
is more informative since error information
relative to each class highlights which classes
are more prone to error. Under this perspective,
our classification results are still not usable for
real life applications. However, it should be
noted that all the evaluated learning methods
are general purpose classifiers. Better results
should be expected if specific algorithms are
designed. At this point we have identified two
different features that could be helpful in order
to provide a better solution to our problem.
The first one is the ability to identify textures,
because individual voxel property values have
proven insufficient for a correct classification,
even including neighborhood information in the
form of gradient values. The second one is
connectivity, since biomaterial has been im-
planted as a single piece. In addition, a richer
learning set is expected to increase classification
performance. Evaluating the relevance of the
different attributes provided to the learning
algorithms arises as future work.

Automating the process of classification has
confirmed itself as a challenging problem, re-
quiring the accurate use of all sources of data
available. In this sense, the proposed process
can benefit from integrating the information
provided by both previously classified voxel
models and the partial CFs. The former could
be embedded in the system whilst the obtention
of the latter requires the design of specific user
interfaces which should be highly intuitive and
usable.
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