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Abstract. Electronic institutions (EIs) define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to
do and under what circumstances. Autonomic Electronic Institutions
(AEIs) adapt their regulations to comply with their goals despite cop-
ing with varying populations of self-interested external agents. This pa-
per presents a self-adaptation model based on Case-Based Reasoning
(CBR) that allows an AEI to yield a dynamical answer to changing
circumstances.

1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1], where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of an autonomic system are: it must configure and reconfigure itself automati-
cally under changing (and unpredictable) conditions; it must aim at optimizing
its inner workings, monitoring its components and adjusting its processing in
order to achieve its goals; it must be able to diagnose the causes of its eventual
malfunctions and repair itself; and it must act in accordance to and operate into
a heterogeneous and open environment.

Electronic Institutions (EIs) [3] have been proved to be valuable to regulate
open agent systems. EIs define the rules of the game by fixing what agents are
permitted and forbidden to do and under what circumstances. We have defined
Autonomic Electronic Institutions (AEIs) as an EI with autonomic capabilities
that allows it to adapt its regulations to comply with institutional goals despite
varying agent’s behaviours [4]. Thus, an AEI has to self-configure its regula-
tions to accomplish its institutional goals. In previous work [4] we have learned
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those regulations that best accomplished the institutional goals for a collection
of simulated agent populations. This paper extends that work with a Case-Based
Reasoning (CBR) approach that allows an AEI to self-configure its regulations
for any agent population. Since our hypothesis is that populations that behave
similarly can be regulated in a similar manner, the CBR approach helps us iden-
tify populations that behave similarly and subsequently retrieve the “control”
parameters for an AEI to regulate it.

The paper is organized as follows. In section 2 we describe the notion of
autonomic electronic institutions. Section 3 details the learning model that we
propose and how an AEI uses CBR. Section 4 describes the case study employed
as a scenario wherein we have tested our model. Section 5 provides some em-
pirical results. Finally, section 6 summarizes some conclusions and related work
and outlines paths to future research.

2 Autonomic Electronic Institutions

In general, an EI [3] involves different groups of agents playing different roles
within scenes in a performative structure. Each scene is composed of a coordi-
nation protocol along with the specification of the roles that can take part in
the scene.

According to [3] an EI is solely composed of: a dialogic framework (DF) es-
tablishing the common language and ontology to be employed by participating
agents; a performative structure (PS) defining its activities along with their rela-
tionships; and a set of norms (N) defining the consequences of agents’ actions. We
have extended the notion of EI to support self-configuration, in the sense of reg-
ulation adaptation. In this manner in [4] we incorporate notions of institutional
goals and regulation configuration to define an autonomic electronic institution
(AEI) as a tuple: 〈PS, N, DF, G, Pi, Pe, Pa, V, δ, γ〉. Next, we only provide an
intuitive idea about the elements of an AEI (further details can be found in [4]).

We assume that the main objective of an AEI is to accomplish its institutional
goals (G). For this purpose, an AEI will adapt. We assume that the institution
can observe the environment where agents interact (Pe), the institutional state
of the agents participating in the institution (Pa), and its own state (Pi) to assess
whether its goals are accomplished or not. Since an AEI has no access whatsoever
to the inner state of any participating agent, only the institutional (social) state
of an agent (Pa) can change. Therefore, each agent (ai) can be fully characterized
by his institutional state Pai = 〈ai1 , . . . , aim〉 where aij ∈ IR, 1 ≤ j ≤ m is an
observable value of agent ai. Taking the traffic as an example of an AEI, the
speed of a car could be an example of an observable value of an agent; the
number of lanes could be an example of an observable value of the environment;
and the number of polices the institution uses to control the cars could be an
example of an observable value of the state of the institution.

Formally, we define the goals of an AEI as a finite set of constraints G =
{c1, ..., cp} where each ci is defined as an expression gi(V ) � [mi, Mi] where
mi, Mi ∈ IR, � stands for either ∈ or �∈. Additionally, gi is a function over
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the reference values V = 〈v1, . . . , vq〉, where each vj results from applying a
function hj upon the agents’ properties, the environmental properties and/or
the institutional properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q. In this manner,
each goal is a constraint upon the reference values where each pair mi and
Mi defines an interval associated to the constraint. Continuing with the traffic
example, an example of an institutional goal could be to minimize the number
of accidents. Thus, the institution achieves its goals if all gi(V ) values satisfy
their corresponding constraints of belonging (at least to a certain degree) to their
associated intervals. This is measured by means of a satisfaction function that
computes the goal satisfaction degree (see [4] for further details).

The AEI definition includes the mechanisms to support the adaptation with
the normative transition function (δ), and with the PS transition function (γ).
An AEI employs norms to constrain agents’ behaviors and to assess the conse-
quences of their actions within the scope of the institution. We focus on norms
describing prohibitions parametrically. So that each norm Ni ∈ N , i = 1, . . . , n,
has a set of parameters 〈pN

i,1, . . . , p
N
i,mi

〉 ∈ IRmi . In fact, this parameters cor-
respond to the variables in the norm transition function that will allow the
institution to adapt. Continuing with the same traffic example, an example of a
norm could be to stop always before to enter in an intersection and it norm can
be parametrized by an associated fine applied if a car does not fulfill it. Notice
that our AEI can not learn new norms, it only can adapt its norms by changing
their parameters. On the other hand, adapting a PS involves the definition of a
set of parameters whose values will be changed by the PS transition function. We
define each scene in the performative structure, Si ∈ PS, i = 1, . . . , t, as having
a set of parameters 〈pR

i,1, ..., p
R
i,qi

〉 ∈ INqi where pR
i,j stands for the number of

agents playing role rj in scene Si. Thus, changing the values of these parameters
means changing the performative structure.

The AEI definition includes the mechanisms to support the adaptation with
the normative transition function (δ), and with the PS transition function (γ).
We propose to use learning methods to learnt the normative transition function
(δ), and the PS transition function (γ). Next section details the learning model
used to adapt the AEI by changing those parameters.

3 Learning Model

Our aim is that at run-time an AEI could adapt its regulations to any population.
We propose to learn the norm transition function (δ) and the PS transition
function (γ) in two different steps in an overall learning process. In previous work
[4] we have approached the first learning step, which corresponds to learn the
best parameters for a set of predefined populations. In this work we focus on the
second learning step: how to adapt the parameters to any population. As shown
in Figure 1, in an initial step our AEI learns by simulation the best parameters
for a collection of different agent populations. For each population of agents (A),
the algorithm explores the space of parameter values (I1, .., Ik) in search for the
ones that lead the AEI to best accomplish its goals (G) for this population of
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Fig. 1. Learning Model in two steps

agents. Afterwards, we propose to use a Case-Based Reasoning (CBR) approach
as a second step because it allows the AEI to solve situations that have been
learned previously. We assume that agent populations that behave in similar way
caused similar situations that may require similar solutions. Thus, at a second
step an AEI identifies, in run-time, those situations for which its goals are not
accomplished and uses CBR to retrieve a solution (regulation parameters) from
the most similar situation in the knowledge base.

3.1 Applying CBR

Case Based Reasoning (CBR) [5] is based on learning from experience. The idea
is to search in the experience (memory) of the system for similar situations,
called cases, and using the corresponding solution to solve the current problem.
In general, a new problem in a CBR system is solved by retrieving similar cases,
reusing the case solution, revising the reused solution, and retaining the new ex-
perience. In this work we focus our attention in the first step of the CBR cycle,
namely the retrieve process. Nevertheless, before addressing it, it is necessary to
choose a representation for cases.

Case Definition. The representation of cases is central to any CBR system.
Cases must be represented based on the knowledge of the problem domain in
order to choose the main features that better describe the case and thus that
better help the processes involved in the CBR cycle. As to AEIs, we differentiate
the following main features to be considered to represent cases:

– AEI parameters’ values. They represent the parameters’ values of some
institution, namely the norm parameters’ values and the performative struc-
ture parameters’ values that an AEI uses for regulating agents.

– Runtime behaviour. They represent the global behaviour of the institution
at runtime for some agent population when the institution uses the AEI
parameters’ values.

– Best AEI parameters’ values. They represent the learned parameters’
values of the institution for the previous agent population. In other words:
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the solution. Thus, they correspond to the parameters that the institution
must apply in order to accomplish its institutional goals given both previous
AEI parameters’ values and runtime behaviour.

More precisely, regarding AEIs, we propose the definition of a case as a tuple
(Np,PSp,V,pop,Np∗,PSp∗), where:

– (Np,PSp) stands for the AEI parameters’ values:
• Np stands for the current norm parameters’ values;
• PSp stands for the current performative structure parameters’ values;

– (V,pop) stands for the runtime behaviour:
• V stands for the current set of reference values;
• pop stands for statistic data that characterises the behaviour of the

agents’ population at runtime1;
– (Np∗,PSp∗) stands for the best AEI parameters’ values:

• Np∗: represents the best values for the norm parameters given the current
norm parameters values (Np) and the runtime behaviour (V,pop); and

• PSp∗: represents the best values for the performative structure param-
eters given the current performative structure parameters values (PSp)
and the runtime behaviour (V,pop).

Thus, a case represents how an AEI (using Np as norm values and PSp as perfor-
mative structure values) regulating a population of agents (showing the runtime
behaviour described by pop and V) should change its regulations (to the Np∗

and the PSp∗ values). Notice that each case is an entry of the normative transi-
tion function (δ) and the PS transition function (γ). That is, the set of all cases
approximate both transition functions.

Similarity Function. In order to compare two cases we must define an appro-
priate similarity function based on our representation of cases. We use aggregated
distance function to compute the degree of similarity between a new case Ci and
a case Cj in the case base:

S(Ci, Cj) = w1 · s AEI(Ci, Cj) + w2 · s V (Ci, Cj) + w3 · s pop(Ci, Cj) (1)

where s AEI corresponds to the distance of the AEI parameters’ values (Np,
PSp), s V and s pop correspond to the distance of the runtime behaviour
(V,pop), and w1, w2, w3 ≤ 0 are weighting factors such that w1+w2+w3 = 1. The
s AEI, s V and s pop distance functions are computed as the distance average of
their attributes. To assess the distance between the values of an attribute we use:

sim(attri, attrj) =
|attri − attrj |

max(attr) − min(attr)
(2)

where min(attr) and max(attr) correspond to the limits of the interval of values
of the attribute considered in the domain.

1 Notice that this data corresponds to reference values.
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The Retrieval Process. In order to retrieve the most similar case to the
problem case Ci without comparing all cases in the case base, we propose to
perform this process in two steps:

1. Compare the AEI parameters’ values, (Np,PSp), of the problem case Ci with
the collection of all the AEI parameters’ values in the case base using s AEI
and select the set of AEI parameters’ values that best match.

2. Access the set of examples in the case base with these AEI parameters’
values. Afterwards, we compare case Ci with these examples and select the
case that best matches it based on distance function S.2

We use the first step with the idea that the most similar case must have similar
AEI values because the runtime behaviour depends a lot of the AEI parameters’
values. In fact, this is our hypothesis since we want to change the AEI param-
eters’ values to change in some way the population behaviour and thus modify
the runtime behaviour in order to achieve the institutional goals. The first step
makes easy and fast the access to the most similar cases because we concentrate
on only comparing the cases with similar AEI parameters’ values. Thus, we do
not need to compare all the cases of the case base. Moreover, we only need to
compute once the distance function s AEI for all cases with the same values of
AEI parameters’ values.

4 Case Study: Traffic Control

In order to test our model, we have considered and implemented the Traffic
Regulation Authority as an Autonomic Electronic Institution, and cars moving
along the road network as external agents interacting inside a traffic scene. Get-
ting into more detail, we focus on a two-road junction where no traffic signals are
considered. Therefore, cars must only coordinate by following the traffic norms
imposed by the AEI. Our case study considers the performative structure to be
a single traffic scene with two agent roles: one institutional role played by police
agents; and one external role played by car agents.

We assume institutional agents to be in charge of detecting norm violations
so that we will refer to them as police agents. The performative structure is
parametrized by the number of agents playing the police role. Each police agent
is able to detect only a portion of the total number of norm violations that
car agents actually do. Norms within this normative environment are related to
actions performed by cars. We consider two priority norms: the ‘right hand-side
priority norm’, that prevents a car reaching the junction to move forward or
to turn left whenever there is another car on its right; and the ‘front priority
norm’, that applies when two cars reaching the junction are located on opposite
lines, and one of them intends to turn left. Additionally, norms are parametrized
by the associated penalties that are imposed to those cars refusing or failing
2 Notice that we use a distance function as similarity function where low values imply

high similarity.
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to follow them. Cars do have a limited amount of points so that norm offenses
cause points reduction. The institution forbids external agents to drive without
points in their accounts.

In this work we focus on homogeneous populations where all agents in the
population share the same behaviour. We propose to model each population
based on three parameters (henceforth referred to as agent norm compliance
parameters): 〈fulfill prob, high punishment, inc prob〉; where fulfill prob ∈
[0, 1] stands for the probability of complying with norms that is initially as-
signed to each agent; high punishment ∈ IN stands for the fine threshold that
causes an agent to consider a fine to be high enough to reconsider the norm
compliance; and inc prob ∈ [0, 1] stands for the probability increment that is
added to fulfill prob when the fine norm is greater than the fine threshold
(high punishment). Car agents decide whether to comply with a norm based on
their norm compliance parameters along with the percentage (between 0 and 1)
of police agents that the traffic authority has deployed on the traffic environ-
ment. To summarise, agents decide whether they keep on moving –regardless
of violating norms– or they stop –in order to comply with norms– based on a
probability that is computed as:

prob =
{

police · fulfill prob fine ≤ high punishment
police · (fulfill prob + inc prob) fine > high punishment

(3)

The institution can observe the external agents’ institutional properties (Pa)
along time. Considering our road junction case study, we identity different ref-
erence values, V = 〈col, off, crash, block, expel, police〉 where col indicates
total number of collisions for the last tw ticks (0 ≤ tw ≤ tnow), off indicates the
total number of offenses accumulated by all agents for the last tw ticks, crash
counts the number of cars involved in accidents for the last tw ticks, block de-
scribes how many cars have been blocked by other cars for the last tw ticks, expel
indicates the number of cars that have been expelled out of the environment due
to running out of points for the last tw ticks, and finally, police indicates the
percentage of police agents that the institution deploys in order to control the
traffic environment.

The institution tries to accomplish its institutional goals by specifying the
penalties of both priority norms and by specifying how many police agents should
be deployed in the traffic scene. In this work we focus on four institutional goals:
(i) minimize the number of collisions; (ii) minimize the number of offenses; (iii)
minimize the number of expelled cars; (iv) and minimize the percentage of police
agents to deploy to control the traffic environment. Notice, though, that these
offences do not refer to offences detected by police agents but to the real offences
that have been actually carried out by car agents.

5 Empirical Evaluation

As a proof of concept of our proposal in section 3, we extend the experimental
setting for the traffic case study employed in [4]. The environment is modeled as
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a 2-lane road junction and populated with 10 homogeneous cars (endowed with
40 points each). Cars correspond to external agents without learning skills. They
just move based on their random trajectories and the probability of complying
with a norm (based on the function defined in (3)). During each discrete simu-
lation, the institution replaces those cars running out of points by new cars, so
that the cars’ population is kept constant.

The four institutional goals, related to the col, off , expel and police reference
values, are combined in a weighted addition, with weights 0.4, 0.4, 0.1 and 0.1
respectively. Thus, the first two goals are considered to be more important. The
goal satisfaction is measured by combining the degree of satisfaction of these
four institutional goals.

Table 1. Agent populations employed to generate the case base

Populations Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 Pop. 6 Pop. 7

fulfill prob 0.5 0.5 0.5 0.5 0.5 0.5 0.5

high punishment 0 3 5 8 10 12 14

inc prob 0.4 0.4 0.4 0.4 0.4 0.4 0.4

fine∗right 2 5 8 11 13 14 15

fine∗front 1 4 6 9 12 13 15

police∗ 1 1 1 1 1 1 1

As mentioned in section 3, (during training period) an AEI generates an initial
base of cases from simulations of a set of prototypical populations. Following the
tuple case definition introduced in section 3.1, (Np, PSp, V, pop, Np∗, PSp∗), we
define a case Ci in this scenario as follows:

– Np = (fineright, finefront) are the values of both norms’ parameters;
– PSp = (police) is the value of the performative structure parameter;
– V = (col, crash, off , block, expel) are the reference values;
– pop = (mean off , median off , mean frequency off , median frequen-

cy off) contains the mean number of offenses, the median number of of-
fenses, the mean of the frequency of offenses, and the median of the frequency
of offenses carried out by agents for the last tw ticks (0 ≤ tw ≤ tnow);

– Np∗ = (fine∗right, fine∗front) are the best values for both norms’ parameters;
– PSp∗ = (police∗) is the best value for the parameter of the performative

structure.

Table 1 shows the seven populations we have considered to generate the case
base. They are characterized by their norm compliance parameters, being
fulfill prob = 0.5 and inc prob = 0.4 for all of them, whereas high punishment
varies from 0 to 14. The fine∗right, fine∗front and police∗ values in Table 1 are
taken to be the best AEI parameters’ values (Np∗, PSp∗).
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5.1 Similarity Function

We use the aggregated distance function defined in (1) to compute the degree of
similarity between two cases. We have set the weights as follows: w1 = 0.1,
w2 = 0.5, and w3 = 0.4. Regarding the attributes of the AEI parameters’
values, the finefront and fineright values are in the interval [0, 15], and the
police values are in the interval [0, 1]. However, the attributes of the runtime
behaviour have not known limited values. We have established limits based
on the values of the initial generated cases. Thus, we have established that
the col values are in the interval [0, 300], crash ∈ [0, 400], off ∈ [0, 500],
block ∈ [0, 200], expel ∈ [0, 900], mean off ∈ [0, 30], median off ∈ [0, 30],
mean frequency off ∈ [0, 2], and median frequency off ∈ [0, 2]. Since the
values of these attributes can be out of the proposed interval, we force distance
to be 1 when |attri − attrj | > max(attr) − min(attr).

First of all, we have tested whether the distance function and the weights
selected are suitable for the traffic domain. For this purpose, we have generated
a little case base of only seven cases by simulating each population in Table 1. In
order to create this case base, all seven populations have been run with the same
AEI parameters: fineright = 12, finefront = 6 and police = 1. Afterwards, in
order to test the distance function, we have created seven new cases simulating
another time each population in Table 1 using the very same AEI parameters’
values and have compared each one with the seven cases in the case base. Notice
that two simulations of the same population using the very same AEI parameters’
values do not create the very same case, because the runtime behaviour in both
simulations may be similar but not exactly the same.

Figure 2 shows the results of testing similarities for the seven new cases with
the seven ones in the base case. These seven new cases could be grouped by the
population behaviour regarding the norm compliance. Since population of first
three cases have an high punishment lower than both norms’ fines, cars fulfill
both norms (with probability 0.9). However, populations with high punishment
8 and 10 fulfill the right norm with probability 0.9 and the front norm with
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probability 0.5. Whereas, populations with high punishment 12 and 14 fulfill
both norms with probability 0.5. Figure 2 shows three charts corresponding to
cases grouping by this behaviour. Thus, chart 2(a) shows the distance for the
three first cases whose cars fulfill both norms with probability 0.9. We can see
how these three cases are similar when compared with the seven cases in the
case base, and also that the distance among them is less than with respect
to other cases. Chart 2(b) shows the distance for cases using populations with
high punishment 8 and 10 whose cars fulfill the right norm with probability
0.9 and the front norm with probability 0.5. Chart 2(c) shows distance for cases
using populations with high punishment 12 and 14 whose cars fulfill both norms
with probability 0.5. In the three charts we can see how distances are similar
among cases created with populations that have similar behaviour. This figure
also shows that if two different populations regulated by the very same norms
behave in very similar manner, an AEI cannot differentiate them. This effect is
because the AEI can only observe the external behaviour of populations. In any
case, these results allow us to conclude that the proposed distance function is
suitable. Next step is to test at run-time the proposed CBR approach.

5.2 Case Base

With the aim that at run-time the AEI could adapt its regulations to any popu-
lation, we create a case base using populations in Table 1 and the corresponding
best AEI parameters’ values. In order to create the case base we have con-
sidered as AEI parameters’ values fineright ∈ {0, 3, 6, 9, 12, 15}, finefront ∈
{0, 3, 6, 9, 12, 15}, and police ∈ {0.8, 0.9, 1}. Overall we have considered 108 dif-
ferent AEI parameters’ values, as the result of combining fineright, finefront,
and police values. To create cases for our case base, we have simulated each
population in Table 1 with all 108 AEI parameters’ values, so we have generated
a total of 756 cases for the seven agent populations. To create each case, we have
simulated the traffic model during 2000 ticks. Once finished the simulation, we
generate a case by saving the AEI parameters’ values (Np, PSp) used in this
simulation, the runtime behaviour for the 2000 ticks (V, pop), and the best AEI
parameters’ values (Np∗, PSp∗) corresponding to the population used in this
simulation.

5.3 Retrieving

We have designed an experiment to test the retrieval process and therefore our
approach. That is, we want to test if at run-time the AEI is able to self-configure
its parameters for different agent populations by using the proposed CBR ap-
proach. Since we are testing our approach and we are not interested in efficiency
issues, we employ the traffic simulator to recreate a run-time execution. We
launch simulations of 2000 ticks during 20 times, namely steps (overall 40000
ticks). At each step, once the simulation finishes, we check the goal satisfaction
degree and change the AEI parameters’ values using the CBR approach when
required. Although this allows us to change the population of agents at any step
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we have run the experiments using the same population in 20 simulations. For
all experiments, the AEI starts with (0,0,0.8) parameters, that correspond to no
fine for both norms and a deployment of 80% of police agents. Thus, we expect
that the AEI starts with a low goal satisfaction degree (caused by the parameters
it is using) and it will be able to retrieve a similar case with whose parameters
that do increase the goal satisfaction degree.

At each step, we launch a simulation with a certain population of agents and
when the simulation finishes, the AEI decides, based on the goal satisfaction, if
it has to retrieve a case or not. If the goal satisfaction is greater than a thresh-
old the AEI continues with the same parameters for a new simulation in the
next step. Otherwise (when the goal satisfaction is lower than the threshold) we
launch the CBR engine to retrieve a case of the case base (see section 5.2) in
order to adapt the AEI parameters, namely to adapt the institution, its regula-
tion. The threshold is computed as a desired goal satisfaction value G∗ minus an
epsilon value ε. In our experiments, we have set ε = 0.03 and G∗ = 0.65, which
corresponds to the minimum of the best goal satisfaction degrees for our popu-
lations. The problem case is generated from the AEI parameters’ values used in
the last simulation and the runtime behaviour in the last 2000 ticks. The CBR
system retrieves the most similar case and uses the best AEI parameters’ values
of the retrieved case for next simulation. Thus, the goal satisfaction degree can
be computed again to check if it is necessary to define a new problem case.

We have used fifteen different populations to test our approach. Each popula-
tion is characterized by their norm compliance parameters, being fulfill prob =
0.5 and inc prob = 0.4 for all of them, whereas high punishment varies from 0
to 14. Notice that seven of them are the ones used for generating cases3 (when
high punishment ∈ {0, 3, 5, 8, 10, 12, 14}) whereas the AEI has no prior cases
about of the other eight populations (when high punishment ∈ {1, 2, 4, 6, 7,
9, 11, 13}). Figure 3 shows the results for fifteen populations, where each chart
shows five populations. Each population is run three times. Thus, overall we
have performed 45 experiments. For each experiment, the figure shows the goal
satisfaction every 2000 ticks during 20 steps. On chart 3(a) we can see that at
initial step the goal satisfaction is low (around 0.2) and how the AEI quickly
rises it up and maintains it constant during the rest of steps (between 0.6 and
0.7). On chart 3(a) we can see how the goal satisfaction degree starts at 0.2 and
quickly rises up to 0.6 − 0.7 with the initial case retrievals. This effect repeats
on charts 3(b) and 3(c) on figure 3. That is, the AEI is able to adapt quickly
its parameters in all experiments. However, we observe that for some popula-
tions (when high punishment is 6, 10 and 12) the goal satisfaction does not
remain constant. In particular, the goal satisfaction for one of the populations
with high punishment = 6 goes down three times (steps 8, 10 and 11) to values
close to 0.2. These oscillations happen because given a population regulated by
the very same AEI parameters’ values there is a variability on the behaviour
in different simulations, that causes a variability in goal satisfaction. Thus, it

3 Notice that use the same population does not mean use the same case because the
runtime behaviour may be similar in both cases but not exactly the same.
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Fig. 3. Goal satisfaction for fifteen populations. (a) Populations with high punishment
∈ {0, 1, 2, 3, 4}; (b) Populations with high punishment ∈ {5, 6, 7, 8, 9}; and (c) Popu-
lations with high punishment ∈ {10, 11, 12, 13, 14}.

sometimes occurs that because of this variability the goal satisfaction drops be-
low the threshold and causes to restart the retrieval process. After this, the AEI
stabilizes quickly again the goal satisfaction degree.

In order to estimate the error caused by these oscillations we have computed
the percentage of simulations with a goal satisfaction greather than the thresh-
old (0.62). At first step all experiments have a goal satisfaction less than the
threshold. At second step a 52% of experiments (23 of 45) have a goal satisfac-
tion greather than it. The percentage goes up to 89% (40 of 45) at third step
and to 95% to the fourth. That is, in our experiments, the AEI needs four simu-
lations to adapt itself in a correct manner to a 95% of new cases. At the rest of
simulations (from simulation 5 to simulation 20) the average of the percentage of
experiments with a goal satisfaction greather than the threshold is around 98%.
That is, there is an error arround the 2% caused by the oscillations. In any case,
we can conclude that the AEI is able to adapt to the populations, that is with
the initial cases retrievals the AEI is able to adapt its parameters to accomplish
its goals for each population.

6 Discussion and Future Work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability where agents learn how to reorganise themselves. Along
this direction, in [6] Gasser and Ishida present a general distributed problem-
solving model which can reorganize its architecture; and Horling et al. [7] propose
an approach where the members adapt their own organizational structures at
runtime. The fact that adaptation is carried out by the agents composing the
MAS is the most significant difference with the approach presented in this pa-
per. On the other hand, it has been long stated [8] that agents working in a
common society need norms to avoid and solve conflicts, make agreements, re-
duce complexity, or to achieve a social order. Most research in this area consider
norm configuration at design time [9] instead of at run-time as proposed in this
paper. Regarding the traffic domain, MAS has been previously applied to it.
For example, Camurri et al. [10] propose two field-based mechanisms to control
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cars and traffic-lights in order to manage to avoid deadlocks and congestion.
Additionally, Case-Based Reasoning has been applied before in multi-agent sys-
tems where agents use different CBR approaches to individual learning and to
cooperative learning for distributed systems [11,12].

This paper presents a Case-Base Reasoning approach as an extension of previ-
ous work which allows an AEI to self-configure its regulations. We have presented
the initial step towards a Case-Based Reasoning system, centering our work on
the retrieval and usage processes. We have propposed a case description and
the distance function to be used by a generic AEI. We have tested the retrieval
process of our approach in the traffic AEI case study, where the AEI learns two
traffic norms and the number of institutional agents in order to adapt the norms
and the performative structure to dynamical changes of agent populations.

Preliminary results in this paper are promising but they show some oscillations
of the goal satisfaction degrees for some populations. Although, the computed
error is low (around 2%), currently we are tuning the function used to compute
the goal satisfaction and the threshold value in order to reduce the error and
do it less sensitive to the variability. Once solved this, we plan to continue our
experiments on the retrieval process by changing the populations between simu-
lations. We also plan to continue on finishing the learning by focusing our work
in the other CBR processes. As future work, and since this basically represents a
centralized scenario, we plan to develop a more complex traffic network, allowing
us to propose a decentralized approach where different areas (i.e., junctions) are
regulated by a distributed institution.
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