

INFORMATION SOCIETY TECHNOLOGIES

IST PROGRAMME

RTD PROJECT

Key Action II (Action line II.1.1)

SIMWEB

Exploring
Innovative eBusiness Models

Using
Agent Simulation

State-of-the-art of software tools for
agent-based simulations

Proposal Number: IST-2001-34651

July 2001

TABLE OF CONTENTS

1. INTRODUCTION.. 3
2. CRITERIA ... 4

2.1 Development facilities. ... 4
2.2 Flexibility. .. 5
2.3 Compatibility. ... 5
2.4 Portability. .. 5
2.5 Facilities to publish simulations on the Internet. .. 5
2.6 Support. .. 5
2.7 Performance and scalability. ... 5
2.8 Model availability. .. 6
2.9 Display facilities. .. 6
2.10 Data export. .. 6

3. SOFTWARE TOOLS FOR AGENT-BASED SIMULATION... 6
3.1 Swarm .. 7
3.2 RePast .. 11
3.3 Ascape.. 14
3.4 NetLogo ... 15
3.5 AgentSheets.. 19
3.6 MAML ... 21
3.7 SDML .. 22

4. CONCLUSIONS .. 23
5. BIBLIOGRAPHY .. 26
ANNEX... 27
Multi-agent simulation software I ... 28
Multi-agent simulation software II .. 29

1. INTRODUCTION

The agent-based approach to simulation endeavours to replace individual
actors or groups within any particular system with software representation of
those actors (or groups). These software agents may interact – either with one
another or with the environment in which they are placed and from the
interactions, collective behaviour(s) may emerge. A multi-agent model may be
defined as one that includes agents embedded in a simulated environment.
The agents are autonomous (they act independently of any controlling
intelligence), social (they interact with other agents), communicative (they can
communicate with other agents explicitly via some language), reactive (they
perceive and respond to changes in the environment) and pro-active (they are
goal-driven) [Wooldridge and Jennings, 1995; Ferber 1999; Gilbert and
Troitzsch, 1999].

Agent-based modelling [is] the set of techniques [in which] relations and
descriptions of global variables are replaced by an explicit representation
of the microscopic features of the system, typically in the form of
microscopic entities (“agents”) that interact with each other and their
environment according to (often very simple) rules in a discrete space-time
[Gross and Strand, 2000: 27]

Multi-agent systems have several advantages over more conventional
simulation models (such as those based on the system dynamics paradigm)
(see [Axtell, 2000]):

§ Explicit representation of the actors involved (the ‘stakeholders’). This

makes it relatively easy to validate the model against data about the
behaviour of the actors.

§ Opportunities for scaling and analysis at several levels. For example, a
model may be composed of several sub-models at the organisational level,
which in turn can be composed of objects modelling individual actors (such
nested models are sometimes called swarms, after the concept popularised
in the Swarm modelling system).

§ Ability to detect and analyse ‘emergent properties’, that is properties of
interacting entities that are not obvious from considering the behaviour of the
individual entities alone. [Epstein and Axtell, 1996]

§ Ability to model complexity: that is, behaviour of the system as a whole that
is non-linear and sensitive to initial conditions.

Other simulation methods may have some of these characteristics, but the
multi-agent approach is especially powerful because it encompasses them all.

There are a number of different tools or frameworks that can be employed to
support the implementation of agent-based simulations, avoiding the task of
programming simulations from scratch. This review is aimed at both presenting
a general survey and offering a recommendation on which agent-based
simulation tool appears to be more convenient to found subsequent

developments authored by the Simweb consortium. It is based on papers,
manuals, tests of available models, analysis of the architecture of the tool, and
discussions held with developers of the considered tools besides further
discussions with members of the concerned communities.

2. CRITERIA

In order to compare frameworks for agent-based simulation we must firstly
establish a number of comparison criteria. In what follows we introduce such
criteria intending to encompass both frameworks’ common features and
desirable features.

2.1 Development facilities.
One of the main aspects when considering choosing a particular software tool
for agent-based simulation is the variety and utility of the provided development
facilities. Next we classify and dissect such facilities along three major lines:

• Supported programming language(s). We refer to the programming

languages that the developer must know in order to build up simulation
models. Besides we must take into account whether the particular features
of the supported programming languages ease development. Thus, for
instance, whereas Java guarantees ease of programming, other languages
such as C or Objective C require a more intricate knowledge of the language
in order to achieve similar development performance.

• Availability of a simulation development framework that eases the rapid
creation of models to be subsequently run. Ideally a development framework
might allow to graphically define, in a drag-and-drop manner, new models
composed out of various pieces (pre-defined models, agents, analysis
components, etc.). In addition to this, any desired behaviour not included in
the pre-defined components could be specified using some high-level
specification language, much simpler than the supported programming
languages, particularly designed to integrate well with the embedding
software tool. Therefore, users are allowed to do most of their
implementation via some relatively easy to use graphical interface or by
employing some high-level specification language. This feature is
particularly important for users with limited programming experience whose
actual interest narrows down to using their computer simulations to obtain
results.

• Extensibility. It is not surprising that software tools for agent-based
simulation are not functionally “complete”. They may not offer some
particular functionality strongly required by users. For instance, some users
might be interested in incorporating genetic algorithms or neural networks
into the learning features of their agents. In such cases, it would be
desirable for users to be able to extend the chosen tool with additional
libraries that provide further functionality. This capability is of particular
importance for the Simweb project since it is intended to develop additional,
component-based libraries for agent-based simulation, which complement
and extend the chosen tool.

2.2 Flexibility.
Does the software tool provide an adequate way to express our model and
program the simulation? Although there is no easy way to answer this question,
a thorough analysis of publicly available models can help identify commonalities
to gain an insight into the appropriateness of the software tools under analysis.

2.3 Compatibility.
This criterion is concerned with the portability of the developed model to other
simulation frameworks. It would be valuable to have the chance to easily share
our findings, and in particular, our code. Not only is code sharing a major benefit
but also migration capability. In the latest case, we refer to the possibility of
migrating the model to a different software tool in the eventuality of coming up
against serious limitations that prevent us to successfully complete our
simulations. The ideal situation would depict all the simulation platforms utilising
the same general approach to model development. For example, if a given
software tool uses an object-oriented approach then it is easier to translate the
code to another tool which also uses an object-oriented approach than it is to
translate the code to a tool using a procedural based approach.

2.4 Portability.
Although some simulation frameworks are available for different hardware
platforms, models developed for different hardware platforms are no
interchangeable. In other words, a given model developed in a Linux might not
run on a Mac. Nowadays, most software tools tend to support the Java
programming language in order to guarantee portability to the largest number of
hardware platforms.

2.5 Facilities to publish simulations on the Internet.
Another aspect to consider is the dissemination of the simulation. In the past,
researchers have used video clips to demonstrate their simulations (e.g. making
QuickTime movies etc.). Nowadays there is an increasing trend to make
Internet simulations more interactive, allowing people to experiment with the
simulator (changing parameters, etc.). Some of the simulation tools allow the
developer to create easily interactive Internet simulations in just a few easy
steps.

2.6 Support.
An important aspect to take into account when evaluating software tools is the
sources of support (manuals, newsgroups, support groups, etc.). If the
developer gets into trouble when implementing, it is very useful to be able to
draw on outside help and examples.

2.7 Performance and scalability.
In our view, this is one of the major issues when considering choosing a
simulation framework. This issue becomes capital when attempting at

developing large models involving hundreds, or probably thousands of agents. If
this is the case it is important to count on a simulation framework that does offer
reasonable performance for large agent populations, particularly when run over
lengthy simulations. Both performance and scalability shall strongly depend on
the supported programming languages’ features (simulations for models
developed in C are expected to be faster than those for models coded in Java),
the parallelisation capabilities offered by the simulation framework (if any), and
the distribution capabilities also offered by the simulation framework. Notice that
distribution becomes appealing when dealing with models whose agents do a
large amount of independent computation without much interaction. In other
words, support for distribution is expected to be helpful to handle data intensive
instead of communication intensive agent models.

2.8 Model availability.
The availability of models contributed by community users of a given software
tool is particularly important to help developers gain understanding as to how to
develop actual models. A large variety of tested models may help developers to
find similar models from which they can depart. In addition to this, available
source code also may help ease development. Furthermore, a rich library of
publicly available models appears as a good indicator of the stability of the
software tool.

2.9 Display facilities.
Whether the software provides facilities to graphically display data generated by
the simulation. It is important for both developers and users to count on means
of graphing grids, cells, statistics, etc. Not only is important to graph the data
produced through the simulation, but also the structure, activity and evolution of
the multi-agent system defined by the model as a whole. In the latest case, it is
interesting for the modeller to count on structures such as graphs, cells, grids,
networks, etc., that mimic the model in order to better identify and understand
the activity of the system through its visual display.

2.10 Data export.
Whether the tool is capable of formatting simulation data in some sort of
standardised scientific format. This makes it possible to share data easily, and
also to build and share tools for accessing and analysing such data, particularly
via languages and environments for statistical computing and graphics.

3. SOFTWARE TOOLS FOR AGENT-BASED
SIMULATION

In what follows we dissect in detail a selected number of software tools for
agent-based simulaiton. Our selection process aimed at choosing general-
purpose multi-agent simulation frameworks currently supported by ongoing
projects, non-profit organisations or companies. By general purpose we mean

that the selected framework shall ideally support the development and
deployment of agent-based models of varying characteristics in a wide range of
application domains.

3.1 Swarm

Swarm [Swarmwww; Swarm Online Doc] is arguably the best known of all the
selected frameworks in this section. It has a long tradition, serving as inspiration
to other frameworks such as RePast and Ascape (both analysed below).
Swarm was originally developed at the Santa Fe Institute and subsequently
continued and maintained by the Swarm Development Group (SDG), a not-for-
profit organisation dedicated to advancing the state-of-the-art in multi-agent
based simulation through the continued advancement of the Swarm Simulation
System and support of the Swarm user community.

Swarm is a multi-agent software platform for the simulation of complex adaptive
systems. In the Swarm system the basic unit of simulation is the swarm, a
collection of agents executing a schedule of actions. The swarm represents an
entire model: composed of agents as well as the representation of time as
depicted in Figure 2. Swarm supports hierarchical modelling approaches
whereby agents can be composed of swarms of other agents in nested
structures. In this case, the higher-level agent's behaviour is defined by the
emergent phenomena of the agents inside its swarm. This multi-level model
approach offered by Swarm is very powerful. Multiple swarms can be used to
model agents that themselves build models of their world. In Swarm, agents can
own swarms themselves, models that an agent builds for itself to understand its
own world. Swarm allows a user to build a simulation as a state machine in
which all the changes to the state machine occur through a schedule. A
simulation program based on Swarm schematically contains three types of
objects:

• A model that creates and controls the activities of agents in the model.
• An observer that collects information from agents (observations) to

either write it out to a file or display it in real time.
• Objects corresponding to different agents in the model (firms,

consumers, producers, etc.) and for some aggregate agents (markets,
industries, economies) that regroup actions and aggregate properties
(market price, concentration index of the industry, etc.).

Swarm provides object-oriented libraries of reusable components for building
models and analysing, displaying, and controlling experiments on those models.
Swarm effectively provides a very complete set of libraries for managing agents,
the spatial structures for their environment, their activities, and the aggregation
of these activities and the analysis of their results. It is written in Objective C, a
programming language across Smalltalk and C. There is a Java Native
Interface available on which a Java-based version of Swarm has been
developed. The Java version makes Swarm developments highly portable.
Swarm has a very steep learning curve. It is necessary to have experience of
Java (or Objective C), be acquainted with the object-oriented methodology and
be able to learn some Swarm code. For this purpose there is no development

framework available to ease up the intricate task of building, running and
analysing models.

The actual model and the task of observing
the model are separated in Swarm. There
are special 'observer' objects whose
purpose is to observe other objects via the
probe interface (see Figure 2). These
objects can provide both real-time data
presentation and storage of data for later
analysis (Figure 3 and Figure 4
respectively show how to parameterise the
Artificial Stock Market model and some
real-time data produced during a
simulation). In fact, the observer objects
are swarms. Combining the observer
swarm with the model swarm gives an
observable representation of the model to
be subsequently run by the Swarm
infrastructure as depicted in Figure 1 .
Other simulation tools don’t show such
clear distinction between the actual model

and the code needed to observe and collect data from the model, making
models too sensitive to changes.

Major issues with Swarm have to do with performance and scalability [Daniels,
2000]. The Swarm community seems to agree on the capability of the Objective
C of Swarm to handle large multi-agent models. However, there is no such
agreement on the Java version of Swarm mainly due to Java rather than
Swarm. Swarm users have reportedly experienced serious Java memory
problems. It seems though that the support provided by the Swarm
Development Group and the new versions of the virtual machine are
contributing to overcoming such problems. And yet Objective C models perform
and scale much better than Java models.

As to data export, Swarm offers explicit support to store simulation data in
HDF5 [HDF5www], a general-purpose library and file format for storing scientific
data, to be subsequently processed by statistical packages (e.g. GNU R [GNU
Rwww], a language and environment for statistical computing and graphics).

In terms of support, there are excellent support mailing lists and a remarkable
amount of publicly available Swarm code1 contributed by a large community of
Swarm users which have also contributed to extend the framework with third-
party libraries (e.g. for genetic algorithms and neural networks). A distinguishing
feature for Swarm models is that they can be easily shared with users of
Swarm-like simulation frameworks such as RePast or Ascape. There is also an
annual meeting of the Swarm Users Group, the SwamFest, where researchers

1 Notice though that the number of available models in Objective C is much greater than the number of
models in Java.

Figure 1. Swarm as virtual
multicomputer

from diverse disciplines present their experience with multi-agent modelling and
the Swarm package. Swarm models can already run inside a web browser,
specifically Netscape 6. However, a future development goal is for Swarm to be
a complete interactive, browser-based development environment for agent-
based models.

Finally, the Objective C version of Swarm is available for quite a large number
of platforms, namely Windows 9x, Windows NT, Windows 2000, Debian Linux,
Red Hat Linux, SuSE Linux, and Solaris.

Figure 2. Swarm simulation structure

Figure 3. Model, agents’ and observer parameterisation for the Artificial Stock Market simulation

Figure 4. A sample of graphs produced by the Artificial Stock Market simulation

3.2 RePast

RePast [Collier; Repastwww] is a software framework developed by the
University of Chicago's Social Science Research Computing for creating agent-
based simulations using the Java language. RePast is rapidly gaining
popularity. It provides a library of classes for creating, running, displaying and
collecting data from an agent-based simulation. RePast borrows much from the
Swarm simulation toolkit and can properly be termed "Swarm-like".

RePast envisions a simulation as a state machine whose state is constituted by
the collective states of all its components. These components can be divided up
into infrastructure and representation. The infrastructure is the various
mechanisms that run the simulation, display and collect data and so forth. The
representation is what the simulation modeller constructs, the simulation model
itself. The state of the infrastructure is then the state of the display, the state of
the data collection objects, etc. The state of the representation is the state of
what is being modelled, the current values of all the agents' variables, the
current value of the space or spaces in which they operate, as well as the state
of any other representation objects. In RePast as in Swarm, any changes to the
states of the infrastructural components and the representational components
occur through a Schedule object. In short, RePast allows a user to build a
simulation as a state machine in which all the changes to the state machine
occur through a schedule. This provides clarity and extensibility both for the
simulation writer/user as well as the software designer seeking to extend the
toolkit.

Several other parts of RePast follow the Swarm paradigm and should be
familiar to users of Swarm. This feature is particularly important for compatibility
purposes. Thus models developed for RePast can be easily migrated to Swarm
and shared with Swarm developers.

Figure 5. Evolver development environment

RePast offers Evolver, a rapid simulation development environment for creating
network simulations (see Figure 5). Using a drag-and-drop model, a simulation
can be graphically composed out of various pieces (pre-defined models, agents,

analysis components, etc.). Any
desired behaviour not included in
the pre-defined components can be
specified using NQPython (Not Quite
Python), a Python-like2 language
specifically designed to integrate
well with RePast and much simpler
than Java. Notice though that the
environment is limited to supporting
the specification of network
simulations (see Figure 6).

RePast abstracts most of the key
elements of agent-based simulation
and represents them as a Java class
or classes [Repast HowTos]. These
classes cooperate to make a
framework for creating agent-based

simulations. RePast provides a
ready-to-use class or classes for
most of the common infrastructural

abstractions of an agent-based simulation (e.g., scheduling, display, data
collection, and so forth) and a variety of generic components for constructing
representational elements. These generic components include such things as
agent spaces (grids, torii, “soups,” etc.) and a few generic agent types. RePast
is particularly strong in its support for network (social and otherwise)
simulations. This support is both infrastructural (graph layouts, network
generation, saving and loading) and representational (default node and edge
classes).

One major RePast’s aim is to move beyond the representation of agents as
discrete, self-contained entities in favour of a view of social actors as
permeable, interleaved and mutually defining, with cascading and recombinant
motives. RePast is intended to support the modelling of agents, organisations
and institutions as recursive social constructions (the name RePast is an
acronym for REcursive Porous Agent Simulation Toolkit). Nonetheless the
current version does not offer explicit support for organisations and institutions
as higher-level entities, though it does fully support social networks.

Extensibility is provided by the use of Java as an implementation language.
Object-oriented languages easily lend themselves to the creation of extensible
frameworks through the use of inheritance and composition. Furthermore Java
ensures the portability of the models to all hardware platforms capable of
running the Java virtual machine.

2 http://www.python.org

Figure 6. Example of network simulation with
Evolver

http://www.python.org

RePast provides a few, well-known models
such as Sugarscape, Heatbugs, Mousetrap,
The Game of Life, etc (see Figure 7). Apart
from the models accompanying the software
distribution there are very few other publicly
available models. The community of users is
still small compared to more popular simulation
frameworks such as Swarm, and so the
number of models to resort to at development
time. However, some remarkable have been
developed with the aid of RePast. Here we
should mention the integrated model of the
electric power and natural gas markets
implemented by Michael J. North at Argonne
National Laboratory [North].

Although performance optimisations were not
part of the initial design, RePast reportedly

offers good performance according to a survey conducted among some
community users. RePast is said to support parallelisation in the future. So far,
it has proven to behave well when running large models by distributing
simulations via RMI. Although this technique is highly valuable when running
large, data-intensive models (involving agents that do a lot of individual
computation), it is not so convenient to handle large, communication-intensive
models.

As to display support, RePast includes such features as run-time model
manipulation via gui widgets. The display mechanism is responsible for the
graphical animated visualisation of the simulation as well as providing the
capability to take snapshots of the display and make QuickTime movies of the
visualization as it evolves over time. QuickTime movies can be easily published
on the Internet. It also includes support for the probing of the displayed objects.
The display mechanism also contains the graph layouts used to visualise
networks and extensible classes that can be used to build custom displays.

Although RePast offers a
complete suite of display
mechanisms, there is no
explicit support to format the
data produced by simulations
into some sort of
standardised scientific
format.

As for support, RePast has
an institutional presence
behind it. It is expected to be
supported in the future.
There are currently two

Figure 7. Sugarscape simulation.
Population map

Figure 8. Sugarscape simulation. Dynamic features of
agents

developers working on and supporting RePast, Nick Collier and Tom Howe.
They provide support through the RePast-interest email mailing list.
Furthermore, RePast is well documented with papers, user guides and javadoc-
generated API help.

3.3 Ascape

Ascape [Parker, 2001; Ascapewww] is a framework for developing and
analysing agent-based models developed by the Brookings Institute, the Center
on Social and Economics Dynamics.

Ascape is written entirely in Java and models are written in Java as well, using
the API the framework provides. Particularly, models can be programmed using
object-oriented techniques. The framework provides classes with the usual
roles, though as of this writing there is no scheduler, so communication
between agents might be somewhat limited for our purposes. Since there is no
development environment, coders use their preferred programming editor.

Tools for easy generation of graphs are provided. The framework manages
graphical views and collections of statistics for scapes and offers mechanisms
for controlling and altering parameters for scape models. Also model data can
be exported in CSV files for further analysis or visualisation.

Ascape runs in any platform for which there is an implementation of the JDK (or
just of the JRE in case of model execution). This includes Solaris, MacOS,
Win32, Linux, and the BSDs, for instance. Moreover, since the runtime engine

Figure 9. Sugarscape simulation. Agetn wealth
distribution graph

can be put in a Java applet simulations can be executed from most web
browsers.

According to the information in their home page, the Brookings Institute does
not give direct support for Ascape, but there is a mailing list more or less active.
Nonetheless BiosGroup, Inc. DC has taken over the Ascape development for
which a new release is planned. There is almost no user-level documentation.
There are better docs for developers, but in form of Javadoc: The API is
somewhat documented, there is a brief overview of how to implement models in
the documentation of the class edu.brook.ascape.model.Scape, and the
code of the model edu.brook.pd.PD2D is commented to some extent.
Besides, for about 20 models come with source code in the Ascape distribution.

Figure 10. Ascape simulation of Prisoner’s dilemma

3.4 NetLogo

NetLogo [Wilensky, 2001; NetLogowww; NetLogo Manual] is the next
generation of a series of multi-agent parallel modelling and simulation
environment developed at the Center for Connected Learning and Computer-
Based Modeling, Northwestern University. NetLogo is the multi-platform

successor of the Mac-only StarLogoT [StarLogoTwww], which in turn is a
superset of StarLogo [StarLogowww], the programmable modelling environment
developed by the Epistemology and Learning Group at the MIT Media
Laboratory.

NetLogo is written in Java hence runs in any platform for which there is an
implementation of the JDK (or just of the JRE in case of model execution). This
includes Solaris, MacOS, Win32, Linux, and the BSDs, for instance.

NetLogo can be executed standalone or as a Java applet within any Java
capable web browser, but models are coded using NetLogo's own programming
language, kind of a Logo dialect extended to support agents and parallelism,
which is appropriate for learning, but maybe too simple compared with a
general-purpose, object-oriented programming language as Objective C or
Java.

NetLogo is intended to allow non-programmers and students to develop quite
complex simulations by providing a range of end-user tools, though professional
developers would surely prefer more expressiveness in our opinion.

The framework comes with an editor with syntax highlighting (see Figure 12) for
its language, a command shell (see Figure 11), and a shapes editor (see Figure
13). Documentation is excellent. NetLogo has extensive documentation and
tutorials for all of its features. It also comes with a models library, which is a
collection of about one hundred pre-written simulations that can be used and
modified. These simulations address many areas in the natural and social
sciences, including biolog, medicine, physics, chemistry, mathematics,
computer science, economics, and social psychology.

Graphs of different kinds are easy to generate as models evolve using language
commands, the framework manages graphical views and collections of statistics
for turtle sets and offers mechanisms for controlling and altering parameters of
models. Also model data can be exported in CVS format for further analysis or
visualization.

Figure 11. Netlogo simulation of Sierpinsky's triangle

Figure 12. Netlogo's development environment

Figure 13. Netlogo shapes editor

3.5 AgentSheets

AgentSheets [Dugdale] is a commercial agent-based simulation tool specifically
aimed at non-programmers. AgentSheets users express their models with the
Visual AgentTalk tactile and rule-based language, which provides an easy to
use, visual development framework. AgentSheets uses the visual programming
paradigm meaning that there is no actual text based coding and all the
development is done via a graphical interface (dragging and dropping elements
from toolboxes, etc.). Indeed, the ease of use of AgentSheets is its greatest
advantage. Agents are created in a window called a “gallery” and have an
associated behaviour specified by sets of rules (called methods) and events.

The way that AgentSheets operates is intuitively easy to understand which
makes it very quick to develop simple simulations. For this reason, it is widely
used for teaching the principles of simulation to students. However, once the
simulation models begin to become more in-depth, then the weaknesses of
AgentSheets become apparent. With regard to simulation in the social
sciences, two particular limitations of AgentSheets may cause problems: an
agent cannot send information to another agent, being problematic when
modelling the communication of information between human agents; an agent
cannot change the attribute of another agent. No doubt, there may be ways to
work around these problems, but if we need to model frequently these situations
in our simulations, it would make the simulations complicated and inefficient. In
addition, there is no 'long distance' vision making it impossible to examine the
status of an agent elsewhere on the grid.

AgentSheets very easily generates Java applets and beans, which allow the
simulation models to be interactively run through a Java capable web browser.

AgentSheets is available for the Mac and Wintel
platform.

Figure 14. Agentsheets simulation of a predators and prey model

Figure 15. Rule-based agent behaviour definition

3.6 MAML

MAML[MAML; MAML Tutorial; Dugdale] was developed by the Complex
Adaptive Systems Lab. at the Central European University in Hungary, which it
seems it was interrupted for about a couple of years ago due to lack of funding.
Further development would be unlikely.

The language was initially developed to help social science students with limited
programming experience create agent-based models quickly. The ultimate goal
of the project is to develop an easy to use environment (complete with a
graphical interface). However, the present version of MAML is, as the name
suggests, a programming language and not an environment and, according to
MAML's web site, the current version of the language is indeed in an alpha
stage.

MAML actually sits on top of Swarm and is intended to make Swarm easier to
use by providing macro-keywords that define the structure of the simulator and
access the Swarm libraries. MAML works at a higher level of abstraction than
Swarm with clearer constructs. However, in addition to learning MAML, the
developer would need to know Objective C and also Swarm. This point
currently limits the usefulness the language to inexperienced programmers.
Indeed, experienced programmers may actually prefer the added functionality of
Swarm and the additional resources available. Programming using MAML
requires the developer to create text files using a text editor since there is no
developer's interface to MAML. Since MAML accesses the Swarm libraries, the

interface of the developed simulation model is very similar as to what would
appear if Swarm were used.

The code written using MAML is converted into a Swarm application via the
MAML compiler (called xmc), which as of this writing has just an alpha version.
The resulting application is then compiled in the same way as normal Swarm
code by gcc. Currently the MAML compiler only runs on PCs under GNU/Linux
(running the compiler on a Mac and PC/Windows NT is untested).

Some background documentation on MAML is provided: a tutorial with source
code, reference manual, and a technical manual (knowledge of Swarm is
needed). However, there is no support via mailing lists. The MAML home page
contains some fairly simple examples of common simulations. Unfortunately,
outside of the MAML home page there are very few examples of simulations
using MAML.

With respect to the suitability of MAML to social science simulation, most of the
effort in developing MAML has been devoted to simplifying the programming
effort rather than providing facilities specifically geared towards modelling social
science mechanisms.

3.7 SDML

SDML is a modelling language with the following features:

• Knowledge is represented on rule bases and databases
• All knowledge is declarative
• Models can be constructed from many interacting agents
• Complex agents can be composed of simpler ones
• Object-oriented facilities, such as multiple inheritance, are provided
• Temporal facilities are provided, including different levels of time
• Rules can be fired using forward and backward chaining

Steve Wallis implemented SDML in Smalltalk in consultation with other
members of the Center for Policy Modeling. It evolved from a non-declarative
modelling language implemented by Scott Moss.

SDML provides a simple development environment to put together the models
written in the language. SDML is a declarative language, where problems a
coded following the logic-programming paradigm. The state and behaviour is
represented by means of rule sets and databases, and the model evolves by
forward and backward chaining. Agents may be assigned rules that determine
their behaviour and which can be shared with other agents. The fact that it is
strongly grounded in logic allows formal proofs of the completeness of the
model to be constructed.

Sophisticated simulations may be built using SDML involving complex
interacting organizations, deeply nested levels of agents, and the ability for

agents to possess limited cognitive abilities. However, as the developers admit,
the language has a steep learning curve.

SDML was thought as a tool for developing simulations in the social sciences,
however, most of the available models have to do with economic and market
modelling, which is a good point for us indeed. Nevertheless, apart from the
SDML Home Page at Manchester Metropolitan University, there are very few
examples of simulations using SDML, as far as we can tell.

SDML does however provide features useful in modelling cognitive social
agents. There is no inherent theory of cognition implemented in SDML so any
agent cognition is represented as sets of rules. Communication between
agents is achieved via databases: the result of a fired rule is written to an
agent's database, which may be accessed via another agent. The accessibility
of one agent's database to another agent's database can be restricted by
assigning a status to the rule's clause (e.g. private or public). Agents may also
evaluate each other as being possible 'collaborators' and endorse other agents
as being a reliable, unreliable, successful, or unsuccessful collaborator.

SDML is available for MS Windows 3.1/95/98/2000/NT, GNU/Linux, PowerMac,
and Unix ADUX/AIX/HPUX/SGI/Solaris.

4. CONCLUSIONS

Prior to offering a recommendation we must firstly state the features of a
software tool for agent-based simulation that we deem more desirable.

§ Development facilities. Firstly, we strongly prefer to count on an object-

oriented programming language for the sake of clarity, abstraction and
flexibility. Secondly, we do not regard the existence of a simulation
development framework as compulsory. Nonetheless, such a facility
might serve as reference and inspiration when developing the graphical
simulation environments for building models that the Simweb consortium
is committed to offer. Lastly, we do require the selected framework to be
highly extensible in order to facilitate the addition of the extensions
required in order to build the models proposed by the Simweb
consortium.

§ Flexibility. Since we plan to build agent-based models it would be
interesting to count on a framework that offers explicit programming
support for the notion of agent, and eventually for higher level structures
(e.g. organisations, institutions, social networks, etc.).

§ Performance and scalability. We shall ideally require a framework
supporting both parallelisation and distribution in order to eventually run
large simulations involving thousands of agents.

§ Model availability. A large number of models, from toy models to actual
models, of varying features are desirable as a reference to programmers
at development time.

§ Compatibility. High compatibility with other software frameworks will aid
both to ease eventual migrations and to share source code.

§ Support. A widely used framework with an extensive community of active
users, good documentation, and active mailing lists will enormously help
the sound development of the Simweb models. Active development of
the framework, and the availability of the source code and the legal
possibility of introducing changes in order to fix eventual bugs, is strongly
preferred.

§ Portability. Although portability is not a must, we’d rather prefer to have
different choices when developing and deploying our models.

§ Display facilities. An ample, complete set of display facilities will help
create the most appropriate real-time visualisations to help users
graphically interpret and analyse simulations.

§ Data export. These facilities are particularly important to help us export
data from simulations in order to conduct further, subsequent numeric
analysis and visualisation.

§ Internet publishing. The publishing of models on the Internet may help
remote users to interact with the system by running their own
simulations. This feature is particularly interesting so as to organise
business games involving distributed participants.

Based on the desiderata above and the analysis compiled in Table 1 Swarm and
RePast appear as the most powerful software tools for agent-based simulation.
At this point it is tremendously hard to discard one of them as a candidate to
found the Simweb developments. Thus we propose to carry out performance
and scalability tests over: (1) common models available for both frameworks
(e.g. Heatbugs); and (2) simplified, preliminary versions of the Simweb models.

Table 1. Comparison among the analysed software tools for agent-based simulation based on the criteria in Section 1.

 Developme
nt

Facilities

Flexibilit
y

Compatibilit
y

Portabilit
y

Internet
publishin

g

Suppor
t

Performanc
e/

Scalability

Model
s

Displa
y

Data
expor

t
Swarm Medium High High High Low High Medium3 High High High
RePast High High High High High High Medium Mediu

m
High None

Ascape Low High High High High Low Medium Mediu
m

High Low

AgentSheet
s

Medium Low Low Low Low High Low Mediu
m

High Low

MAML Low High Medium Low Low Low High Low High High
NetLogo High Medium Low High High High Low High High Low

SDML Medium High Low High Low Medium Medium Low Low None

3 This valuation has been made on the Java version of Swarm. As to the Objective C version, our valuation is High.

5. BIBLIOGRAPHY

Axtell, Robert. (2000). Why Agents? On the Varied Motivations of Agent
Computing in the Social Sciences. Brookings Institute. Center on Social and
Economic Dynamics. Working Paper 17.

Epstein, J.M. and R. Axtell (1996) Growing Artificial societies: social science
from the bottom up. MIT Press, Cambridge, MA.

Ferber, J. (1999) Multi-agent systems: an introduction to distributed artificial
intelligence. Addison-Wesley, New York.

Gilbert, N. and K.G. Troitzsch (1999) Simulation for the Social Scientist. Open
University press, Milton Keynes.

Gross, D and R. Strand (2000) Can agent-based models assist decisions on
large-scale practical problems? A philosophical analysis. Complexity 5: 26-33.

Wooldridge, M and N.R. Jennings (1995) Intelligent agents: theory and practice.
Knowledge Engineering Review 10:115-152.

Collier, Nick. RePast: An Extensible Framework for Agent Simulation.

Miles T. Parker (2001). What is Ascape and Why Should You Care?. Journal of
Artificial Societies and Social Simulation vol. 4, no. 1,
http://www.soc.surrey.ac.uk/JASSS/4/1/5.html.

North, M.J. (forthcoming) .Technical Note: Multi-agent Social and
Organizational Modeling of Electric Power and Natural Gas Markets,
Computational and Mathematical Organization Theory Journal, Kluwer
Academic Publishers, Norwell, MA.

Daniels, Marcus G. (2000). Writing fast models in Swarm. SwarmFest 2000.
http://www.santafe.edu/~mgd/swarmfest2000/performance.html

Wilensky, U. (2001) Modeling Nature's Emergent Patterns with Multi-agent
Languages. Proceedings of EuroLogo 2001. Linz, Austria.

Dugdale, Julie. An evaluation of Seven Software Simulation Tools for Use in the
Social Sciences. COSI Project Technical Report.

Swarmwww. http://www.swarm.org/

Swarm Online Doc. http://www.santafe.edu/projects/swarm/swarmdocs/set/set.html

RePastwww. http://repast.sourceforge.net/

RePast HowTos. http://repast.sourceforge.net/docs/how_to/how_to.html

http://www.soc.surrey.ac.uk/JASSS/4/1/5.html
http://www.santafe.edu/~mgd/swarmfest2000/performance.html
http://www.swarm.org/
http://www.santafe.edu/projects/swarm/swarmdocs/set/set.html
http://repast.sourceforge.net/
http://repast.sourceforge.net/docs/how_to/how_to.html

MAMLwww. http://www.oasis-open.org/cover/maml.html

MAML Tutorial. http://www.maml.hu/maml/tutorial/index.html

SDMLwww. http://sdml.cfpm.org/

Ascapewww. http://www.brook.edu/dybdocroot/es/dynamics/models/ascape/

AgentSheetswww. http://agentsheets.com/

StarLogowww. http://el.www.media.mit.edu/groups/el/Projects/starlogo/

StarLogoTwww. http://ccl.northwestern.edu/cm/starlogoT/

NetLogowww. http://ccl.northwestern.edu/netlogo/

NetLogo Manual. http://ccl.northwestern.edu/netlogo/docs/

HDF5www. http://hdf.ncsa.uiuc.edu/HDF5/

GNU Rwww. http://www.r-project.org/

SDML Tutorial. http://sdml.cfpm.org/intro/html/

ANNEX

The following tables compile the resources we have made use of in order to
elaborate this survey.

http://www.oasis-open.org/cover/maml.html
http://www.maml.hu/maml/tutorial/index.html
http://sdml.cfpm.org/
http://www.brook.edu/dybdocroot/es/dynamics/models/ascape/
http://agentsheets.com/
http://el.www.media.mit.edu/groups/el/Projects/starlogo/
http://ccl.northwestern.edu/cm/starlogoT/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/docs/
http://hdf.ncsa.uiuc.edu/HDF5/
http://www.r-project.org/
http://sdml.cfpm.org/intro/html/

Multi-agent simulation software I
review platforms

name Descriptio
n

la
ng

ua
ge

m
od

el
-d

es
ig

n
gu

i

ne
w

s l
ist

s

ex
am

pl
es

Tu
to

ri
al

manual pros cons
sss us irit geneura

Li
nu

x

ot
he

r
U

N
IX

MS
Win Mac

latest
version src license

swarm libraries objective
C, Java - x x x user guide

very
extensive,
highly
tested

difficult
to learn x x

difficult to
learn;
powerful,
flexible

fastest;
difficult
for
beginners

x
irix,
solaris,
hp/ux

9x,
NT,
2k

- 2.1.1 x GNU GPL

Evo framework
for swarm

objective
C x x genetic

algorithms - - - (x) x solaris
9x,
NT,
2k

- 1.0.1 GNU GPL

MAML
"macro
language"
for swarm

objective
C

alpha
versio
n

-
gen
,
sci

x
user guide,
reference,
technical

vrml - -
objective
C needed;
no mail list

(x) x - NT - x

SDML modelling
language

Visual
Works
Smalltalk

x x x .hlp 1999? x x

few
examples;
communic
ation via
DB

- x

adux,
aix,
hpux,
irix,
solaris

3.1,
9x,
nt, 2k

Power
Mac 4.1 GNU GPL

RePast "java port
of swarm" Java x x

api doc,
diag,
howto, faq

built-in
tools,
movies

 - - few
examples

less
complete
than
ascape

1.4
(24.1.02
)

 BSD

Multi-agent simulation software II
review platforms

name description language
model-
design

gui

news
lists examples tutorial manual pros cons

sss us irit geneura Linux other
UNIX MSWin Mac

latest
version src license

Ascape
new version
of
Sugarscape

Java exploring x api web,
movies - - end-user tools;

little user doc

simplest;
more
complete
(gui)

x solaris,
unix x MacOS 1.9.1

(12.10.00) w/o fee for
non-comm

Agentsheets
generation
of Java
applets

 x x movies manual, faq - -

spreadsheet
approach; very
simple use; simple
simulations;
teaching; poor
agent interaction;
applets generation

- - - x x 1.4/2.1 comm

Starlogo * logo-like
turtles

commands
(Java) x x x x, x

getting
started,
commands

easy to use,
applets
generation

inflexible,
slow - -

no OO; applet
generation; easy to
use; lots of
examples;
inflexibility; not
for complex
models

- x solaris
9x, nt,
2k, me,
xp

x 1.2.2
(10.8.01)

StarlogoT logo-like
turtles lots only Mac - - - - - - - PPC 2001 R2

NetLogo logo-like
turtles Java x x lots x user - - - - (java) 1.0

(1.4.02)

