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Abstract. Humans usually use information about previous experiences to solve
new problems. Following this principle, we propose an approach to enhance
a multi-agent system by including an authority that generates new regulations
whenever new conflicts arise. The authority uses a unsupervised version of clas-
sical Case-Based Reasoning to learn from previous similar situations and gener-
ate regulations that solve the new problem. The scenario used to illustrate and
evaluate our proposal is a simulated traffic intersection where agents are travel-
ing cars. A traffic authority observes the scenario and generates new regulations
when collisions or heavy traffic are detected. At each simulation step, applicable
regulations are evaluated in terms of their effectiveness and necessity in order to
generate a set of regulations that, if followed, improve system performance. Em-
pirical evaluation shows that the traffic authority succeeds in avoiding conflicting
situations by automatically generating a reduced set of traffic rules.

1 Introduction

In any society, composed by humans or software agents, individuals continuously inter-
act among them, and sometimes conflicts raise naturally. It has been proven that regu-
lations are useful to enhance the urning of societies by regulating individual’s behavior
and by solving conflictive situations. For instance, within juridical contexts, humans
have developed Jurisprudence as the theory and philosophy of law, which tries to obtain
a deeper understanding of general issues such as the nature of law, of legal reasoning,
or of legal institutions 1. Within it, Normative Jurisprudence tries to answer questions
such as ”What sorts of acts should be punished?”. In the Anglo-American juridical
system, when a new conflict arises it is usual to gather information about similar cases
that where solved in the past to solve the current problem. Furthermore, when humans
solve a new problem, sometimes they generate regulations in order to avoid that prob-
lem in the future. MAS societies, like human societies, can be enhanced by including
specific regulations that promote a desired system’s behavior. However, there are some
key questions: “When to generate new regulations?”, “How to generate them?” and
“How to know if the generated set of norms is correct?”.

1 Jurisprudence definition extracted from Black’s Law Dictionary:
http://www.blackslawdictionary.com
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In a previous work [9] we answered these questions by proposing a computational
mechanism that generates norms with the aim to improve the performance of the sys-
tem. The aim of this paper is to present the resulting norm life cycle that defines the
creation, maturing and establishment of sets of norms, as well as a more complete set
of experiments.

2 Related work

Research on norms in MAS is quite an active area. Campos et al. [4] have proposed
norm adaptation methods to specific network scenarios; Boella and van der Torre have
done relevant contributions [2] in norm characterization. Savarimuthu et al. [10], Grif-
fiths and Luck [6], as well as Kota. et al. [8] work on norm emergence. Within this area,
norm generation has been studied less frequently. Shoham and Tennenholtz [11] focus
on norm synthesis by considering a state transition system: they explore the state-space
enumeration and state it is NP-complete through a reduction to 3-SAT. Similarly, Hoek
et al. [7] synthesize social laws as a model checking problem –again NP-Complete–
that requires a complete action-based alternative transition system representation. Fol-
lowing this work, Agotnes and Wooldridge [1] extend the model by taking into account
both the implementation costs of social laws and multiple (possibly conflicting) design
objectives with different priorities. In this setting, the design of social laws becomes
an optimization problem. Our approach does not explore the complete search space. In-
stead, we just explore a small portion of the search space by just expanding encountered
conflictive states. Moreover, CBR has the advantage that, although cases are meant to
cover the entire search space, they do not need to be exhaustive, since they can be
representatives of a set of similar problems requiring similar solutions. Furthermore,
our approach generates norms at run-time. This has the additional advantage of being
able to regulate situations that may not be foreseeable at design-time. CBR allows the
application to a wide range of domains, in particular to those where (i) experiences
can be continuously gathered and evaluated, and where (ii) similar social situations re-
quire similar regulations (i.e., the continuity solution assumption). Within the MAS area
Multi-Agent Reinforcement Leaning [3] is quite widely used for individual agent learn-
ing. Nevertheless its usage is much more scarce for organizational centered approaches.
Regarding Case Elicitation, in [2] an Unsupervised CBR system is used to solve new
situations by learning from experience in a checkers game scenario;

Finally, regarding the traffic scenario, we highlight the MAS approach in [5], where
an intersection agent assigns priorities to traveling cars according to pre-designed poli-
cies. They follow a control approach that implies a much tighter agent coordination than
the one induced in our regulative approach.

3 The traffic scenario

The scenario represents an orthogonal two-road intersection discretized in a square grid
of 20 × 20 cells. It is divided into five (disjoint) adjacent areas (see left of Fig.1) cov-
ered by monitor agents. Cars are external agents with basic driving skills that enter
into the scenario from four possible start points (dark/red points in left of Fig.1), and
travel towards randomly chosen destinations (exit points, depicted in light/green in left
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of Fig.1). Time is discrete (measured in ticks), and cars perform a single action ∈
{MoveForward, Stop, TurnLeft, TurnRight} per tick. Cars move at constant speed
of 1 cell per tick. More details about the scenario can be found in [9].

Fig. 1. Left: Zoom of the scenario. Right: Architecture of our system

4 Norm Life Cycle

We enhance our MAS with a regulatory authority (traffic authority) that, for new con-
flicts, generates norms by using the experience of previous similar cases. In the life
cycle of a norm there are several stages.

Norm Generation stage: As depicted in Figure 1, the traffic authority is permanently
observing and gathering information from the scenario through five monitor agents
(see label 1 in Fig. 1). When a new conflictive situation is detected, a description of
it (probl = 〈problt−1, problt〉) is sent to the CBR system (2 in Fig. 1), where problt−1
(see Fig. 2.a) is the situation previous to the conflict and problt is the conflictive situa-
tion (see Fig. 2.b). Then, CBR searches into the case base for cases that have a similar
description. Cases are described as Case = 〈probl, {soli, scorei}〉, where probl is the
case description and {soli, scorei} corresponds to a list of possible solutions, each one
with its associated score ∈ [0..1]. Similarity between two casesA andB is computed as
the inverse of the distance between their case descriptions. It is computed as the aggre-
gation of distances of the cells of probl, comparing each cell in case A (cAi ∈ problA)
with the corresponding cell in case B (cBi ∈ problB):

dist(problA, problB) =

nCells∑
i=1

dist(cAi , c
B
i )

Differences between two cells are considered to be 1 if their occupancy state is
different, and 0 else (notice that this similarity function is commonly used for nominal
attributes):

dist(cAi , c
B
i ) = 1 if state(cAi ) 6= state(cBi ) 0 else, where

state(cki ) = {empty, car(heading,moving), collision}
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Since we may encounter symmetric cases, CBR applies rotations of α degrees to
cases (where α ∈ {0◦, 90◦, 180◦, 270◦}) while retrieving similar problems. When a
case has been retrieved the system adapts its best solution to solve the new problem (see
Fig. 2.c). The adaptation process is done by rotating the solution the same α degrees
than the retrieved case was rotated. Then, this new solution is added to the retrieved
case. If the system lacks experience and no similar case was retrieved, a new pseudo-
random solution is generated, assigning a stop obligation to one of collided cars.

Car agents may not be familiar with case syntax and so they may not be able to
interpret case solutions. Hence, the Norms Manager translates case solutions into norms
that agents can understand (3 in Figure 1). Norms are described as ”IF cond THEN
obl(action)”, where cond is the condition for the norm to be applicable and obl(action)
is the action to perform. The norm condition corresponds to the scope of this car, and
the consequence of the norm is the obligation for that car to stop. Once a new norm is
generated, its score is initially set to 0. Figure 2.d depicts the resulting norm from the
case example. Top part shows its graphical representation and bottom part its textual
form. Generated norms are then communicated to the agents (see label 4 in Figure 1).

Fig. 2. Norm generation example: Case description in terms of a) problt−1 and b) problt; c) the
set of generated solutions, and the resulting translated norm in d), where p() is the position of the
car and h() is its heading.

Norm Growth stage: At each step cars use a rule engine to interpret which norms
are applicable and decide whether to apply or violate them (5 in Figure 1). The traf-
fic institution continuously gathers information about norm applications and violations
so to evaluate norms (6 in Figure 1) and their associated case solutions in terms of a
score. At each tick, the traffic institution detects which norms are applicable and eval-
uates them with respect to to system goals considering their effectiveness and necessity.
Specifically, norm applications are used to compute the effectiveness of a norm, check-
ing whether a conflict arises (ineffective norm) or not (effective norm) after agents ap-
ply it. Norm violations are used to evaluate the necessity of a norm, checking whether
a conflict arises (necessary norm) or not (unnecessary norm) after agents violate it.
Therefore, norms are evaluated using the following formula:

eval = effective− ineffective+ necessary − unnecessary

= KE ×ApE −K¬E ×Ap¬E +KN × V iolN −K¬N × V iol¬N

where ApE /Ap¬E are the number of applications that were effective/ineffective, and
V iolN /V iol¬N denote the number of times a violation did/did not lead to a conflict.
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Specifically, the value for each dimension is calculated by multiplying the number of
occurrences of that kind by a constant factor Ki which is established by the designer
and should be regarded as the importance given to that kind of situations.

Our current scenario considers two different goals, G = 〈Gcols, GflTraff 〉 which
are directly related and contradictory. First goal (Gcols) is to avoid car collisions and
second goal is to have fluid traffic (GflTraff ). On the one hand, optimizing Gcols re-
quires cars to occasionally reduce speed or to stop in order to avoid collisions, causing
heavier traffic and decreasing the performance of GflTraff . On the other hand, opti-
mizing GflTraff requires car not to stop, which decreases the performance of Gcols.
Both goals are evaluated together in order to reach a trade-off between them. Since in-
effective norms may cause collisions, the effectiveness of norms is directly related to the
optimization of Gcols. Unnecessary norms cause unneeded stops and so heavier traffic,
being prejudicial for GflTraff . We can therefore instantiate the evaluation formula as:

eval = (KE × nCAppNoCol)− (K¬E × nCAppCol)+

(KN × nCV iolCol)− (K¬N × nCV iolNoCol)

where nCAppNoCol is the number of cars that applied the norm and did not collide,
nCAppCol is the number of cars that applied the norm and collided, nCV iolCol is the
number of cars that violated the norm and collided, and nCV iolNoCol is the number
of cars that violated the norm and did not collide. Once eval is computed, it is added
to the history of evaluations of the norm, which comes down to be a window with
size = szwin. Finally, the score of the norm is computed by:

score = posEvals
|negEvals|+posEvals

where posEvals is computed by adding all the values eval >= 0 of the evaluation his-
tory, and negEvals is computed by adding all the negative evaluation values (eval < 0)
of the norm. Notice that with this method, the norm is evaluated in an iterative manner.

Norm Consolidation/Deactivation stage: After norms have been evaluated a mini-
mum number of times (minEvals), they are considered to have accumulated experi-
ence enough to determine if they must remain active or not. In case the score value
becomes under a certain threshold, the norm is deactivated and removed from the set
of norms. Thus, it will not be applied any longer, unless it is generated again in another
conflictive situation. Otherwise, if the norm remains active and its score is stable during
the simulation, it is consolidated and considered as part of the optimal set of norms that
optimize the running of the system.

5 Experiments

In order to evaluate our method and to compare its efficiency with standard coordina-
tion mechanisms (that is, with traffic lights) we have designed 4 different experiments.
All experiments have been executed over the same simulator of the traffic scenario de-
scribed in section 3. Since we evaluate norms, we just consider those collisions caused
when norms are applied (instead of also including collisions coming from norm vio-
lations). The average of collisions is inversely proportional to the accomplishment of
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Gcols. Similarly, the performance of GflTraff is inversely proportional to the number
of car stops. Therefore, these goals can be regarded as the minimization of the number
of collisions and car stops respectively. Goals of our scenario (Gcols and GflTraff ) are
dependent and conflicting.

Due to the intrinsic randomness of the simulation, each experiment has been re-
peated 100 different times. Each simulation lasts 10000 ticks, and every 2 ticks, 3
new cars are added to the scenario. Thus, during simulations, the number that simul-
taneously populate the scenario can vary from 23 to 27. When norms are applica-
ble, car agents have a probability P (V iolate) = 0.3 of violating them. The size of
the evaluations window is sizewin = 50. Norms are deactivated when their score
is under a threshold = 0.3 and they have been evaluated a minimum of 10 times
(minEvals = 10) (see section 4).

Fig. 3. Different configurations for traffic lights: a) 4 green light turns (1-East, 2-South, 3-West,
4-North) b) 2 green light turns (1-East & West, 2-North & South)

Experiment 1 uses our norm generation method to regulate the intersection. This
experiment just considers Gcols in order to test if the system is able to accomplish
one goal when no other factors are taken into account. For this aim, in this experiment
constants are KE = 1, K¬E = 5 and KN = K¬N = 0. In order to compare our
method with standard methods established by humans, in experiment 2 the scenario is
regulated by traffic lights situated before entering the intersection, and there is no norm
generation method. This approach is also used by K. Dressner and P. Stone in [5]. There
are 4 lights, one for each lane. Traffic lights change their lights in 4 turns, as depicted
in Figure 3.a. Thus, they give pass to the cars of one only lane at the same time.

Figure 4 depicts the results of both experiments 1 and 2. In experiment 1, using our
norm generation method, the number of car stops is always lower than in experiment 2
(about 26 car stops per tick with traffic lights, and 4 car stops per tick with our method).
This is due to the fact that, with traffic lights, cars are forced to stop following fixed
patterns (i.e, time frequencies) regardless the actual traffic situation or traffic flow. On
the other hand, with our approach norms describe situations and force cars to stop de-
pending on a finer detail (the position of other cars). Thus, our method obtains a better
performance for GflTraff . In experiment 2 the traffic lights configuration totally avoid
collisions since traveling cars never find cars from another lane into the intersection. In
experiment 1, collisions are eradicated from tick 550 on, optimizing the performance of
Gcols. Since the system has one only goalGcols, all norms that can eventually avoid col-
lisions are included regardless the fact that they may be causing unneeded stops. Thus,
the system rapidly converges to a stable set of 10 active norms that prevent collisions.
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Fig. 4. Comparison of the results of experiments 1 and 2. Experiment 1: Norm generation with
the goal of minimizing collisions. Experiment 2: Traffic light configuration of Figure 3.a.

In order to study how norms can be generated when considering multiple conflicting
goals, we have conducted a third experiment that applies our norm approach and con-
siders both conflicting goals Gcols and GflTraff . Specifically, constants are KE = 1,
K¬E = 5 and KN = 1 and K¬N = 2. We compare the results of this experiment 3
with a fourth experiment, where an alternative setting of traffic lights improves the per-
formance of fluid traffic. This is done by giving pass to two lanes simultaneously (see
Figure 3.b), with the associated penalty that collisions may happen into the intersection.

As depicted in Figure 5, the number of car stops per tick has decreased (' 19) with
respect to experiment 2. In experiment 3, using our method, the number of car stops has
also decreased since now they are also part of the system goals (GflTraff ). Moreover,
our method also optimizes fluid traffic much better than traffic lights, while collisions
are relatively controlled (' 0.2 per tick). In experiment 4, the average of collisions
remains always higher than in experiment 3. Hence, our method optimizes both Gcols

and GflTraff in a better way than traffic lights. Experiment 3 has conflicting goals, so
the system is continuously activating and deactivating norms to find a trade-off between
the performance ofGcols andGflTraff . Hence, the system does not converge to a stable
number of active norms. However, resulting norms partially fulfill both goals.

Two typical norms that always appear in all the performed simulations are:

1) IF (car(pos(left), heading(east))) THEN obl(Stop)
2) IF (car(pos(front), heading(north))) THEN obl(Stop)

Where pos() is the position of a car and heading() is its heading. Norm 1 corre-
sponds to the left-hand side priority (see Fig. 2). In all performed simulations this norm
(or its counterpart, the right-hand side priority) is always generated. This norm requires
the car agent to stop if there is a car heading east to his left. In experiment 1, that uses
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Fig. 5. Results for experiments 3 and 4. Experiment 3: Norm generation with both goals of min-
imizing collisions and to have fluid traffic. Experiment 4: Traffic light configuration of Figure
3.b.

our norm generation method and takes into account only Gcols, this norm is generated
and finally consolidated, but never deactivated. Thus, it is always part of the final set
of norms. This is due to the fact that this norm is necessary, since its violations always
lead to a collision. In experiment 3, that uses our approach and takes into account Gcols

and GflTraff , norm 1 is also always generated and consolidated. Since it is necessary,
the norm also contributes to improve the performance of GflTraff , being considered
as part of the final set of norms that improve the running of the system.

Norm 2 can be regarded as a security distance norm. It is typically generated and
applied in road areas out of the intersection (i.e., areas 1, 2, 4 and 5 in the left of
Fig. 1). This norm requires the car agent to stop if there is a car in front of him with
its same heading. Since it is preventive, sometimes cars violate it and collide, while
some other times cars violate it and do not collide. In experiment 1, GflTraff is not
taken into account and so this norm, that may seem unnecessary from the point of
view of GflTraff , is always included regardless the fact that it sometimes may cause
unnecessary stops. Then, in this experiment it is generated and finally consolidated
since it helps to minimize collisions (accomplishment of Gcols). In experiment 3 this
norm, that goes against one of the goals (GflTraff ), is continuously being activated and
deactivated because the system is trying to find a trade-off between the optimization of
Gcols and GflTraff . Specifically, this norm is always generated and occasionally it is
deactivated because it is unnecessary from the point of view of GflTraff . However,
since the norm is necessary from the point of view Gcols, the norm is later generated
again in another case and its life cycle starts again. As a consequence, collisions are not
completely eradicated, but the number of car stops is reduced with respect to experiment
1.
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6 Conclusions

This paper proposes a method to generate new regulations for multi-agent systems.
Specifically, regulations are generated by a regulation authority using an unsupervised
variation of Case Based Reasoning (CBR), when a conflictive situation arises. Gener-
ated norms are evaluated in an iterative manner in terms of their efficiency and necessity
according to system goals. We thus claim that this innovative approach can be highly
relevant for normative MASs, since, to the best of our knowledge, no general norm
generation methods have been established yet that are capable to adapt the set of regu-
lations during the execution of the system. Although norms are evaluated individually,
their evaluation depends on the state reached each time they are applicable, and this
state depends on all applicable norms. Applicable norms are then evaluated as a set of
norms. If the application of a set of norms leads to a non-conflictive situation, the score
of each norm would increase, while if their application leads to a conflictive situation,
norms score would decrease.

This paper empirically evaluates our approach in the simulation of a simplified traf-
fic scenario, where car collisions and traffic jams represent the conflictive situations and
norms establish which circumstances a car must stop. Presented experiments compare
our approach with standard traffic regulation methods like traffic lights. Results show
how our method is capable to generate effective regulations taking into account single
or multiple goals, improving the performance of system goals in a higher level than
traffic lights.

Other scenarios requiring agent coordination –e.g. P2P networks, Robosoccer, etc.–
may well benefit from our approach by avoiding conflictive situations —such as net-
work saturation or teammate blocking in previous examples. As future work, we may
consider the application our approach in other scenarios like these ones that have been
just mentioned, and the application of other learning techniques such as Reinforcement
Learning.
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