
Agent Communication within a Search Engine
Architecture

M. López-Sánchez, F. Martín, J. García, X. Canals, X. Drudis, N. Ruiz, and A. Reyes+
+ iSOCO: Intelligent Software Components S.A.

Edif. Institut d’Investigació en Intel·ligència Artificial (IIIA-CSIC).
Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona

email: {maite, martín, juli, xavix, xdrudis, nax, toni}@iSOCO.com

Abstract
This paper describes some details about the
architecture of a fully implemented search engine for
the Internet. Its architecture is based on autonomous
software agents and the paper is focused on the
communication among them. Agents collaborate to
gather HTML pages from de the world wide web and
treat them in order to be able to retrieve those pages
from subsequent users’ queries. Crawling Agent
collaboration is required in order to decide the URLs
that should be first retrieved. Subsequent page
treatment consists on first filtering the pages so that
HTML format is transformed into XML and second
indexing them so that information retrieval can be
performed online.

Keywords: Search Engine, Communicating Agents,
Information Retrieval, Multi-Agent Architecture.

1 Introduction

Internet has provided users with such an enormous
amount of information that it becomes necessary to
provide tools that help in discriminating the required
information. For some years up to now, agents have
been proposed as a way of approaching some of the
problems related to dealing with information on the
World Wide Web (in this sense [5, 6] described
softbots as intelligent agents that use software tools
and services on a person’s behalf). This paper
describes the communication among agents at i-Bot, a
search engine dedicated to the web.
 i-Bot is provided with an agent-based architecture,
which is best explained in terms of its components (see
Figure 1):

• Crawling Agent Community: it can be
described as a group of crawling agents named
bots (also known as spiders or robots) that are

dedicated to download HTML (HyperText Mark-
up Language) pages from the Web.
• URL Broker Agent: this agent manages the
information about the web and provides the bots
with URL’s (Uniform Resource Locator) to
retrieve.
• Filtering Agent Community: Each time a bot
downloads an HTML page, a filter agent takes it
and extracts its contents. The agent filters the
resulting text and generates an XML (Extendable
Mark-up Language) page whose structure is
suitable for being indexed.
• Indexer Agent. Once a number of pages have
been filtered, this agent groups the XML pages
before indexing them. The Indexer agent ends up
with an index structure suitable for retrieving
purposes.
• Query Agent Community. Several query
agents can use the index to retrieve those pages
that best fit users’ queries. That is, to answer
them.
• Interface Agent Community. This module
handles the user interface: it takes the user query
and displays the pages that the Information
Retrieval System returns when answering the
users’ queries.

 Next sections describe the information that each
one of these agents handles and how do they
communicate Nevertheless, due to space restrictions,
only sections 2 and 3 describing crawler and URL
broker agents have been detailed. We end the paper by
comparing our agent-based approach to other search
engines and by providing some conclusions.

2 Crawling Agent Community

The crawling agent Community is a group of crawling
agents, known as bots, that are dedicated to download
HTML pages from the Web. Bots are not mobile
agents (that migrate from machine to machine exec

mailto:@iSOCO.com

Figure 1: iBot (Web search engine) Architecture

uting their code) but keep themselves into the
community location. Their task consist on down-
loading (i.e., crawling) HTML pages as quick as
possible and to store them in an easy-to-retrieve
structure.
 Downloaded HTML pages are stored with a name
(which corresponds to the coding of the URL of the
page: url_ID) in a tree structure of directories, which
happens to be perfectly balanced (that is, the
assignment of URL identifiers follows a uniform
distribution). Nevertheless, not all the successfully
downloaded pages are necessarily stored: the bots can
decide whether a page must or must not be stored
based on the language it is written on.
 Each bot is an autonomous agent that decides when
to ask the URL broker agent new URL’s to retrieve.
And once it has processed and stored the
corresponding web pages, it provides the URL broker
agent with the links it has extracted form the retrieved
pages.
 Bots are implemented in ansi C, and use the Hyper
Text Transfer Protocol (HTTP) both to communicate

with the URL broker agent and to request HTML
pages to the Internet servers.

2.1 Agent Communication: bot - URL broker

The communication cycle established between each
bot and the URL broker consists of three different
connections:

• Bot authentication. Before any bot can send
any information to the URL broker agent, it is
required to be authentified. This process enables
the bot to have an identifier (bot_ID) assigned so
that it can use this for further communications.
• URL request. Once a bot has been
authentified, it asks the URL broker agent for a
number N of URL’s. The URL broker uses the bot
identifier to check whether the request is done by
an authentified bot or not. In case the check is
positive, the URL broker returns to the bot N pairs
of (url_ID, URL), where url_ID are the codes for
the corresponding URL’s. It is possible to
establish a downloading policy that avoids
downloading a page if the date at the Last-

Modified value of the HTTP Header is bigger than
the date at which this page was previously
downloaded. In this case the URL broker agent is
required to include the date of the previous
successful page download in the protocol.
• URL information. For each downloaded page,
the robot returns information to the URL Server.
This information consists of the

o bot_ID,
o url_ID (which acts as page identifier),
o a HTTP response code (that is, if the page

was properly downloaded, if there was a
server error..),

o the language of the page, and
o a list of URLs that correspond to the links

that appear in the downloaded page.
If all the information is read properly, the
URL Server answers an OK message.

 We use the conversation protocol specification
introduced by [9] to describe these connections in the
following subsections.

Bot authentication

Each bot asks the URL broker for an identifier
(bot_ID), wich is computed from a combination of its
name and its PID (process identifier). These bot_ID’s
are used for subsequent communications. The
following figure 2 shows the communication establish-
hed by the bot.

Figure 2: Bot state transitions during authentication
(communicating with the URL Broker agent).

URL request

As depicted in Figure 3, an authentified bot asks the
URL broker N URL’s to download (the bot must
include its bot_ID in its request). As response, the
URL broker returns N tuples of (url_ID, URL,
last_down), where url_ID is the code for the
corresponding URL and last_down specifies the date
this URL was last downloaded.

Figure 3: Bot state transitions during URL requests
(communicating with the URL Broker agent).

URL information

Bots return a tuple for each downloaded page to the
URL broker (see figure 4). The tuples are of the form
(bot_ID, url_ID, httpd_resp, lang, (URL1,URLm))
where m corresponds to the number of links that have
been obtained from a given page i. The bot waits
afterwards for the URL broker to answer a
confirmation message.

Figure 4: Bot state transitions for providing with URL
information the URL Broker agent.

2.2 Bot – web servers’ communication

Bots connect by means of sockets to the web servers
and use the Hyper Text Transfer Protocol (HTTP) 1.0
to request HTML pages (see figure 5). The method to
perform the request is a GET method. A URL is
composed by the server, a port number, and the
resource (for example: if the URL is
http://www.isoco.com:80/people.html, the socket is
open towards the server is www.isoco.com and the

S0

S1

+Request(bot_authentification(name, PID))

S2 -Inform(bot_ID)

S4

-Inform(OK)

S5

+Inform(bot_ID, url_IDi,
 http_respi, langi,
 (URL1,…, URLm))

S4

S3

 +Request(
give_me_n(N, bot_ID))

S2

-Inform((url_ID1, URL1, last_down1),…,
 (url_IDN, URLN, last_downN))

http://www.isoco.com:80/people.html
http://www.isoco.com

port is 80. Afterwards, resource /people.html is used to
ask of the specific HTML document).

Figure 5: Bot state transitions for requesting web
pages to a given web server.

3 URL Broker Agent

URL Broker Agent (developed in Java) manages the
information about the web and communicates with the
bots at the crawling community in order to keep this
information updated. Policies for deciding which
pages will be downloaded first are applied by the URL
Broker agent. iBot is specialised on retrieving HTML
pages totally or partially written in Spanish so that it
gives more priority to those links extracted from pages
that have been detected as Spanish by the language
filter. (We have developed a filter based on the
presence of a combination of words and features that
are characteristic of Spanish but that in their
combination exclude other languages that could
contain some of these individual words).

3.1 URL Broker Information

In order to manage the information about the web as
well as to answer bots’ requests, the URL Broker
agent uses a Data Base dedicated to store information
about both, web pages and bots.

URL Stored information
• Host: the location of the internet server that
provides the page that each URL specifies.
• Port: the "logical connection place" to a
particular server program the http request must be
bind to.
• Resource: defines the remaining part of the
URL that locates the described page.
• URL_id: it encodes the URL that the previous
columns define. Its value is obtained by applying
the Message Digest Algorithm [10].
• Tsstate: As its name suggest, it is a timestamp
that records the date of insert or update operations.

• State: represents the http response code
obtained when a robot downloads the page. This
response code takes values representing whether
the page has been downloaded or not; if it has
been downloaded, it specifies the http response
code (successful responses, redirections,
errors,…). Otherwise, it specifies the origin of the
URL (the code represents the kind of page the
URL was extracted from).
• Bot2_id: It’s the identifier of the bot that
provided the URL, that is, the bot that extracted
the link from a downloaded page.
• Inlinks: it accumulates the number of links
the bots have found to be pointing to the specific
page.
• Outlinks: similarly to Inlinks, it stores the
number of links a page contains. It is worth
noticing that we only consider links to HTML
pages (ended in “.html”,”.htm”,or “/”).
• Dinit: its name stands for initial date and
corresponds to the date the URL was obtained for
the first time. This allows to keep track of the
period of time that a page lasts on the Internet (or
at least, the time that passes since its first
reference was found).
• Dlast: similarly to Dinit, Dlast represents the
date of the last time that the page was successfully
downloaded. This information can be used to treat
downloading errors and apply different policies of
retrying their downloading. Having the time when
it was successfully downloaded, it is possible to
compare the time gap with the Tsstate information
(which contains the last time this URL was
treated). Therefore, if the difference is big, this
means that the page downloading has been
returning error state codes for a long time.
Consequently, we could decide to delete the URL
from the Data Base.
• Language: the language of the page is
assigned when the language filter is applied on the
page. This filter distinguishes between Spanish
and non-Spanish pages. A page is considered to be
Spanish whenever there is some Spanish on it
(that is, we consider multilingual pages as Spanish
whenever Spanish is one of the language).
• Bot1_id: the identifier of the bot to which the
URL was given. This information has been
included in order to check that a bot is providing
the information of a page whose URL was given
to it.

S0

S1

+Request(GET (resource, HTTP/1.0))

S2

-Inform(HEAD,BODY)

Bot Stored information
• Name: This name is used to obtain the bot
identifier, and is only provided by the bot for the
first time the bot establishes contact with the URL
Server. Bots’ names in i-Bot are assigned by
concatenating the name of the bot generation
together with the PID (Process IDentifier) that
each running instance of bot has got.
• Bot_id: Bot identifier value is obtained from
applying the Message Digest Algorithm [10] over
the name of the bot.
• Dinit: corresponds to the date the bot was
authentified.
• Dlast: similarly to Dinit, Dlast represents the
date of the last time that the bot communicated
with the URL Server. This allows to keep track of
evolution of the robots, and we can decide that a
robot can be sent out of the system if it has being
a long time without communicating with the URL
Server.
• Requests: records the number of requests that
a bot has performed. This information is stored in
order to be able to monitorise bots’ performance.
The underlying idea is to be able to send a bot a
kiss when it is performing poorly.

3.2 Agent Communication: URL broker-bot

In the previous section (see 2.1), we have seen the
protocol the bots use to communicate with the URL
broker agent from the bots’ point of view. We see now
the same processes, but from the URL broker’s side.

Bot Authentication
As figure 6 shows, whenever a bot asks the URL
broker for an identifier, it returns a bot_id.

Figure 6: URL broker agent state transitions for bot
authentication (communicating with a bot).

URL Response
When a bot asks the URL broker agent a number of
URL’s, the URL broker must check if this bot has
been previously authentified. And, once this has been
done, it selects from the URL Data Base the N URL’s

the bot is asking for. This process is depicted by the
next figure:

Figure 7: URL broker agent state transitions for
responding URLs to a bot.

URL Information

Bots return a tuple for each downloaded page to the
URL broker agent. The tuples are of the form (bot_ID,
url_ID, httpd_resp, lang, (URL1,URLm)) where m
corresponds to the number of links that have been
obtained from a given page i.
 Again, the URL broker agent must confirm the
existence of the bot_ID and, once this has been
checked, it updates the information about the affected
URLs. Finally, if all the subsequent updates are
successful, the URL broker agent answers the bot with
a confirmation message (see Fig. 8).

Figure 8: URL broker agent state transitions for
receiving URL information from bots.

S0
S1

-Request(bot_authentication(name, PID))

S2

+Inform(bot_ID)

S4
S3

 -Request(
give_me_n(N, bot_ID))

S2

+Inform((url_ID1, URL1, last_down1),…,
 (url_IDN, URLN, last_downN))

+Request(check(bot_ID))

-Inform(OK)

S6
S5

-Inform(OK)

S10

-Inform(bot_ID, url_IDi, http_respi,
 langi, (URL1,…, URLm))

S7

S6

S8

+Request(check(bot_ID))

S9

+Inform(OK)

4 Filtering Agent Community

Each time a bot downloads an HTML page, a filter
agent takes it and extracts its contents. The agent
filters the resulting text and generates an XML page
whose structure is suitable for being indexed. This
structure contains the following information:

• URL of the page
• url_ID (the one given by the URL Server)
• Title (in ascii and in HTML)
• Keywords (in ascii and in HTML)
• Description (in ascii and in HTML)
• Text (in ascii and in HTML). Plain text is
stored in two ways: keeping the HTML
codification so that it can be properly visualised in
a browser, and transformed into ascii (127 bits) in
order to be indexed. For example, a word
containing an accent ‘más’ is kept as
‘más’ in the HTML format and as ‘mas’ in
ascii. In the same way, capital letters are kept in
the HTML text and are stored as lowercase in the
ascii text.

5 Information Retrieval Community

Information Retrieval [1] tasks are performed by an
heterogeneous community formed by an Indexer
Agent, the Query Agent Community and the Interface
Agent Community.
 Once a number of pages have been filtered, the
Indexer Agent groups the XML pages before indexing
them. The Indexing process [11] consists on
generating an index structure suitable for retrieving
purposes (used to retrieve those pages that best fit
users’ queries). This structure contains:

• The Lexicon (a list of all the words appearing
in the collection), which also contains, for each
word, the number of documents in the collection
that contain it, and its total number of
appearances.
• The Inverted File, which stores for each word
a list of <d,fd,t> pairs, where d is the identifier of
each document containing the word and fd,t is how
many times it appeared in this text.
• A file that contains approximations of the
weights that will be used when computing the
relevance of documents regarding a given query.

 After the building of the index structure, several
Query Agents can use it to retrieve those pages that
best fit users’ queries. That is, to answer them.
 Finally, the agents at the User Interface Agent
Community handle the user interface. Each agent takes
the user query, filters it and sends the question to a

Query Agent. And, once it answers the XML pages
that best fit users’ queries, the User Interface Agent
extracts the information to display and generates and
HTML page that will be displayed by the browser.

6 Related Work And Conclusions

From all the world wide known search engines as
Altavista, Yahoo or Inktomy, we distinguish Google
[2] and Fast [7] because of their strong academic
background. The later has been distinguished because
of their dedicated hardware [8], and the former
because it introduced the Page Rank algorithm [3]. All
search engines have a similar architecture because the
same basic modules are always required (i.e., crawling
module, indexing, retrieval,..). Nevertheless our
approach can be distinguished because of its
multiagent architecture.
 Regarding the specialization on Spanish web
pages, there are related works in a wide range of
specialization. In one side, there are general
approaches describing policies of assigning priorities
to certain URLs as the ones applied at webbase [12]
(although, since it does not contain indexing
capabilities, it is not a search engine but a web
crawler). Whilst on the other side there are concrete
policies, are as the one by [4] that only considers pages
related to specific topics. In this manner, iBot’s policy
is something in between: it indexes only Spanish pages
but extracts the links from all pages so that the URL
Broker agent is feed with all kinds of URLs and the
search is kept as wide as possible.
 This paper presents an approach to the
communication required for agents in order to gather
and retrieve HTML pages. These agents belong to
iBot, a web search engine for Spanish web pages. A
reduced version of iBot is publicly available at http://e-
bot.isoco.com.

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto
“Moder Information Retrieval” (book) Ed. Addison
Wesley. Acm press. 1999.

[2] Sergey Brin and Lawrence Page “The Anatomy of
a Large-Scale Hypertextual Web Search Engine”.
Research Report Computer Science Department,
Stanford University. 1999.

[3] Sebastien Brion, Shiv Ramamurthi and Kausal
Shah “User PageRanks: Computing PageRanks
based on user’s preferences”. Research Report

Computer Science Department, Stanford
University. December 6th 1998.

[4] Soumen Chakrabarti, Martin Van den Berg, Byron
Dom “Focused Crawling: A New Approach to
Topic-Specific Web Resource Discovery” The
Eighth International World Wide Web Conference,
May 11-14, 1999.

[5] Orien Etzioni “Intelligence Without Robots: A
Reply to Brooks”. AI Magazine 14 (4): 7-13. 1993.

[6] Orien Etzioni “Moving Up the Information Food
Chain: Deploying Softbots on the World Wide
Web”. AI Magazine, 18 (2): 11-18.

[7] Fast Software Search (http://www.alltheweb.com
or http://www.fast.no), white paper. Version 0.1,
December 1998.

[8] Fast Pattern Matching Chip and the Fast Search
Card. White Paper. December 1998.

[9] Francisco J. Martín, Enric Plaza, Juan Antonio
Rodriguez-Aguilar. “An infraestructure for Agent-
Based Systems: An Interagent Approach”.
International Journal of Intelligent Systems (John
Wiley & Sons, Inc.), vol 15, pages 217-240, 2000.

[10] R. Rivest, “The MD5 Message-Digest Algorithm”
Request for Comments: 1321
http://www.faqs.org/rfcs/rfc1321.html MIT
Laboratory for Computer Science and RSA Data
Security, Inc. April 1992.

[11] Ian H Witten, Alistair Moffat and Timothy C.
Bell. “Managing Gigabytes, Compressing and
Indexing Documents and Images” (book: second
edition). Ed. Morgan Kaufman 1999.

[12] Webbase is an internet web crawler written in C
publicly available at
http://www.senga.org/webbase/html/ (this URL
also contains a 30 pages long document that
describes the system v.5.5.0 November 1999).

http://www.alltheweb.com
http://www.fast.no
http://www.faqs.org/rfcs/rfc1321.html
http://www.senga.org/webbase/html/

