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ABSTRACT
This paper introduces a machine learning approach into
the process of direct volume rendering of biomedical high-
resolution 3D images. More concretely, it proposes a learn-
ing pipeline process that generates the classification func-
tion within the optical property function used for rendering.
Briefly, this pipeline starts with a data acquisition and se-
lection task, it is followed by a feature extraction process,
to be ended with sequence of supervised learning steps.
Learning comprises Gentle Boost and CRF (Conditional
Random Fields) classifiers. The process is evaluated in
terms of accuracy and overlap metrics so that we can mea-
sure how performance increases along the whole pipeline
process. Empirical results confirm that, even though the
classification of high-resolution computerized tomography
volume data poses a challenging problem for single-run
classifiers, it can be significantly improved by subsequent
learning steps and refinements.
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1 Introduction

Volume rendering has emerged as one of the most active
fields in Scientific Visualization. It consists of rendering
property values measured at points of a 3D volumetric re-
gion. One of the major applications of volume rendering
is the visualization of biomedical data captured with 3D
imaging devices such as high-resolution Computer Tomo-
graphies (CT) [1, 2]. In these applications, the 3D region is
sampled according to a regular 3D grid, by parallel image
planes. The representation of the volume is a voxel model
consisting of a set of parallel cubical and face-adjacent cells
called voxels with associated property values that usually
correspond to tissue density scaled as an intensity level. A
typical data set is composed by 5123 voxels.

During rendering, the voxel model is traversed. The
intensity is computed at a set of 3D positions in the vol-
ume called rendering samples. Every rendering sample is
then shaded according to the lighting conditions and to the

optical properties of the anatomical structure to which they
belong. Finally, rendering samples are ordered to compute
the final 2D projection.

The definition of the optical properties can be viewed
as an elicitation process which extracts user knowledge
about anatomical structures and visualization preferences –
such as the appearance of different tissue structures–. This
elicitation process defines the Optical Property Function
(OPF), which is a 3D continuous function defined for all
spatial points (x, y, z) contained into the data voxel model
to the optical properties, such as emission (R,G,B) and
absorption (α).

The elicitation process is often performed through the
user definition of transfer functions. These functions di-
rectly associate optical properties to data values. Thus, the
OPF is computed at each point as a mapping of its prop-
erty value to the corresponding optical properties. During
visualization, transfer functions can be stored as look-up
tables, indexed by the intensity data values. This presents
the advantage of speeding up rendering significantly. How-
ever, it has been proven [3] that only using intensity-based
one-dimensional transfer functions fails at accurately de-
tecting complex combinations of material boundaries. This
problem becomes harder for rich textures in gray-scale im-
ages, where a given gray intensity value does not uniquely
correspond to a specific anatomical structure, tissue or ma-
terial. Multidimensional transfer functions –based on first
and second derivatives of the intensity values– tend to im-
prove classification but at the cost of increasing both com-
plexity and memory requirements.

Transfer functions can be broken into two: the Clas-
sification Function (CF) and the Structure to Optical Prop-
erties Assignment Function (SOPAF). CF is a continuous
function which determines, for each point inside the voxel
model, the specific anatomical structure, tissue or mate-
rial it belongs to. On the other hand, SOPAF assigns a
set of optical properties to each anatomical structure, tissue
or material. Therefore, the elicitation becomes a two-step
process. Firstly, during the classification step, a labeled
voxel model is created containing, for each voxel, a label
of the region it belongs to. Secondly, this classified model
is used, together with the original voxel model, to build a
(R,G,B, α) model suitable for visualization.



During rendering, this CF is used to skip non-selected
regions, thus reducing the cost of model traversal. The us-
age of an intermediate labeled model increases memory re-
quirements. Nevertheless, since classification is carried on
as a preprocess before rendering, it can cope with the usage
of more complex and computationally expensive classifica-
tion methods than transfer functions [4].

Although many papers in volume rendering litera-
ture address classification [5], most of them are based on
the edition of transfer functions and on the design of user
friendly interfaces for their specification. Some prelimi-
nary work based on learning methods have also been pub-
lished: supervised methods such as bayesian networks [6],
neural networks [7], decision trees [8] and non-supervised
methods [9] . Additionally, in [10], clustering-based super-
vised and non-supervised learning methods are compared
for the classification of magnetic resonance images (MRI).

In this paper, we address classification as a machine
learning problem. We interpret voxels as objects to classify
and extracted image features around them as the attributes
to evaluate. In previous work ([11]) we evaluated the per-
formance of several well-known attribute-value classifiers
for the same problem. Here, we train a pipeline of clas-
sifiers with manually classified voxels and test its perfor-
mance by classifying different ones. Our main goal is thus
to define an CF in a way that is suitable for a posterior high-
resolution rendering.

The rest of the paper is organized as follows. Next
section presents the learning pipeline process, describing
the machine learning techniques that we propose to apply
for each step in the pipeline. Then, Section 3 characterizes
the methodology used in the experiments and presents the
obtained results. Finally, Section 4 concludes the paper.

2 Learning Pipeline Process

Generally speaking, machine learning processes involve
both a training and a testing phases. Training is the most
important and is structured in three main tasks:

• Data Acquisition and Selection. Initially, we must se-
lect a subset of our acquired data to be used for train-
ing purposes.

• Feature Extraction. Afterwards, this data must be
characterized in a way that includes enough infor-
mation to learn the classification function (its accu-
racy strongly depends on the input instance represen-
tation).

• Learning. Finally, a specific learning method is cho-
sen –or defined– to learn the model and is subse-
quently applied to classify.

This section describes this training process providing
the details of how can it be applied to large datasets such as
high-resolution images.

First task, data acquisition and selection, depends on
the algorithm learning type. We focus on supervised learn-
ing applied to 3D volume data classification, and therefore,
training data is defined as a set of voxel-classification pairs,
were voxels are provided together with their corresponding
classification. Due to our experimental learning settings
(see Section 3.1), provided voxels are required to define
slices in the 3D image, so that they have an implicit neigh-
borhood relation in two out of the three dimensions.

Second task corresponds to feature extraction. Our
previous work ([11]) used classical features reported in the
literature such as the 3D voxel position, its intensity value,
and a gradient magnitude. Positions were considered be-
cause intensity values and gradients are not enough for
characterizing complex gray-scale textures. Nevertheless,
positions are not appropriate when textures do not corre-
spond to anatomical structures but to materials or tissues
whose global position could vary from image to image. In-
stead, we propose to use Gabor filters, a well established
feature extraction method. Briefly, a Gabor filter can be
defined as a linear filter whose impulse response is defined
by a harmonic function multiplied by a Gaussian function
[12]. Psycho-physical observations in textures conclude
that histograms of a set of Gabor filters may be sufficient
statistics in texture perception, i.e., two textures cannot be
told apart in early vision if they share the same histograms
of Gabor filters [13, 14]. Furthermore, Gabor filters allow
to incorporate neighborhood information for each voxel
without depending on global coordinates. Therefore, since
voxels within a 3D image should not be considered to be
independent from its neighbors, it is appropriated to use
them in this feature extraction task.

The definition of the learning algorithm constitutes
the main design decision in the learning process. In our
context of high resolution 3D images, we assume that a
few 2D slices can be manually classified by human experts,
so that supervised learning becomes feasible. Among the
plethora of supervised learning methods, we propose the
use of discriminative models instead of generative models.
The main reason is that generative models do have very
strict independence assumptions on the data that can not be
ensured in our image domain. In fact, we do not propose
the use of a single learning method, but a process pipeline
that comprises the following steps:

• Attribute-value classifier. As an initial learning pro-
cess we propose the use of a Gentle Boost classifier
[15]. Gentle boost is a boosting algorithm ([16]) that
performs an ensemble of weak classifiers, typically
using regression stumps, to minimize the training er-
ror. For our task, Gentle Boost provides good clas-
sification rates, but leaves spurious points that do not
seem to comply with physical intrinsic locality.

• Spatial coherence model. A second learning step is
then proposed to deal with classification locality. For
this purpose, we use another discriminative model:
Conditional Random Fields [17] (CRF, see next sub-



section 2.1), which assumes locality not only in the
extracted features but also on the resulting classes. In
this manner, a voxel surrounded by voxels of a given
class is most likely to belong to this same class. Much
like a Markov random field, a CRF is an undirected
graphical model in which each vertex represents a ran-
dom variable whose distribution is to be inferred, and
each edge represents a dependency between two ran-
dom variables. The distribution of each random vari-
able in the graph is conditioned on the input image.
Moreover, given this input data, CRF has a single ex-
ponential model for the joint probability of the entire
mesh of class labels.

• Refinement. Although CRF is able to remove spuri-
ous classified voxels, the certainty of a class assign-
ment is not always as high as desired, specially for
those voxels laying on class boundaries. Therefore,
our proposal is to refine the resulting classification by
focusing only on class boundaries. In this manner, we
propose to select those areas where voxels belong to
different classes (or do have a weak membership cer-
tainty), to afterwards add its assigned classification
as an extra feature, and, finally, to repeat the Gen-
tle Boost learning method for these selected voxels.
Refinement considers far less input data than the first
learning process, so we consider refinement’s compu-
tational cost to be affordable regarding the obtained
classification improvement (see Section 3).

2.1 Conditional Random Fields

As a conditional (discriminative) model, CRF specifies the
probability of possible label sets given an observation set.
It allows arbitrary, non-independent features on the obser-
vation set X.

Definition Let X be a random variable over the in-
put data set to be labeled, and let Y be a random variable
over the corresponding label sets. Let G = (V,E) be a
graph such that Y = (Yv)v∈V , so that Y is indexed by
the vertices of G. Then (X, Y ) is a conditional random
field in case, when conditioned on X , the random variables
Yv obey the Markov property with respect to the graph:
p(Yv|X, Yw, w 6= v) = p(Yv|X, Yw, w ∼ v), where w ∼ v
means that w and v are neighbors in G.

In our case, we used a two dimensional grid as the
graph that provides structure to the set of labels and obser-
vations.

Learning a CRF model [18] requires to determine
the parameters T = (λ1, λ2, . . . ;µ1, µ2, . . .) from inde-
pendently and identically distributed training data D =
{(x(k), y(k))} with empirical distribution p over (x, y).
These T parameters correspond to the logistic regression
parameters that maximize the overall probability distribu-
tion on the graph. In our settings, we propose to con-
sider SG (Stochastic Gradient [19]) descent method to es-
timate T . Additionally, parameter estimation requires to
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Figure 1. Illustration of boundary selection parameters.

be combined with an inference process. We propose to
use the GBP (Generalized Belief Propagation [20], [21])
method for inference, because Belief Propagation fails to
converge for two dimensional grids. Henceforth, once the
CRF model has been learnt, this same inference method
will be applied over it in order to classify (i.e., label) new
incoming data.

2.2 Class Boundary Selection for the Refinement Step

Let V be the output of the spatial coherence model, which
contains, for each voxel1, a certainty measure about its clas-
sification. Assuming a problem with two classes (+, -), for
each voxel we will have the probability of the voxel be-
longing to class + (which also implies the probability of
belonging to class -).

V can be ordered considering an ascending order re-
lation over the probability of belonging to class +(2) (i.e.,
first voxel in V has the lowest probability of being class +).
From here, we define two thresholds p+, p− and classify
each voxel into one of three sets (see Figure 1):

I+ = {x | px ≥ p+}, I− = {x | px ≤ p−}, IB =
{x | p− ≤ px ≤ p+}

I+ and I− correspond to the voxels with higher cer-
tainty of belonging to class + and class - respectively, and
IB can be seen as the boundary voxels, for which the clas-
sifier was less certain about its class. In fact, IB provides
us with the set of boundary voxels that require further re-
finement.

Thresholds p+ and p− are defined, in our case, as bi-
ased α−quantiles around p|, being p| equal to 0.5. Notice
that p| provides us with a partition of V that separates the
set of voxels having a probability of belonging to class +
higher than p| = 0.5 from those voxels whose probability
is lower than that.

Additionally, since the cardinality of IB fixes the
amount of voxels in the image to be refined, we need to
parameterize it so we gain control over the computational
resources to devote. Thus, we define α as the percentage
(between 0 an 1) of voxels to be refined, and then, we de-
fine thresholds p+ and p− to be dependent on α so that we

1Voxels here are treated as 2D pixels. We keep using this notation for
coherence purposes only.

2The overall process presented here would be equivalent for class -
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Figure 2. Consecutive classification results for a single 2D slice (shown in a)): b) Gentle Boost; c) CRF; d) refinement; and e)
manual (reference). Classification binary images are displayed combined with the original a) in order to facilitate comparison.

can guarantee that |IB | = α · |V |. In our experiments, α
has been set to 0.1.

Therefore, we define
p+ = {px | ||{y | py < px}|| = n− + α · n+}
p− = {px | ||{y | py < px}|| = n− − α · n−}

where n+ = |{x | px ≥ p|}|, n− = N−n+, and N = |V |.
Defining the boundary interval IB in V in such a way

allows us guarantee that the class distribution will be main-
tained because the number of voxels moved to IB from the
initial class partitions are proportional to the obtained dis-
tribution.

As an implementation remark, it is worth to mention
that output V of the spatial coherence model contains three
components for each voxel: the label of the class it be-
longs to (lV ) together with the confidences about each class
(conf+, conf−). As expected, the label value corresponds
to the class having the highest confidence. When these two
confidence values sum 1, it means that they correspond to
probabilities and that the learning process converged prop-
erly.

V = {(lV , conf+, conf−) where
lV ∈ {+1,−1} and
conf+, conf− ∈ [0, 1] and
conf+ + conf− = 1 and
lV = +1 if conf+ > conf−}

Since convergence is a strong condition to impose to
the proposed algorithms, we handle conf+ + conf− 6= 1
cases by forcing confidence values to comply with it. In
order to do it, we assign: conf+ = conf++(1−conf−)

2 and
conf− = 1− conf+

3 Results

3.1 Application domain

As previously stated, this paper focuses on the task of clas-
sification function construction from high-resolution 3D
micro-tomographies (microCTs). These microCTs were
taken by our group at the European Synchrotron Radia-
tion Facility (ESRF) located at Grenoble (France) within
the framework of a research project whose main objective
is evaluating the quality of different biomaterials for bone
reconstruction. In order to evaluate each biomaterial prop-

erties, they are implanted into rabbit femur bones by means
of surgery. Afterwards, its evolution is tracked by taking
microCTs, which are currently visually analyzed by means
of volume rendering techniques. However, the task of iden-
tifying biomaterial inside the bone is currently being done
manually. Henceforth, our main objective is to contribute
to the automatization of this task.

Our experiments have been performed with a mi-
croCT that corresponds to a rabbit femur with a one-week-
old bioimplant (see Figure 2 a) for a 2D slice). The dimen-
sions of this data voxel model are 486× 423× 562, having
an approximate size of 111Mb. This microCT has been
manually classified into biomaterial and non-biomaterial
(which comprises both bone and background).

3.2 Metrics

To evaluate the quality of the classification results, we com-
pute, in addition to the accuracy, the Overlap Metric (OM )
for each class. We define the Overlap Metric for a class Ci

and a learning method A as

OM(Ci, A) =
|CiA

⋂
CiRM

|
|CiA

⋃
CiRM

|

where CiRM
stands for the set of instances that are classi-

fied as Ci in the Reference Model and CiA
notes the set of

instances that are classified as Ci by the learning method
A. For each class, this metric approaches a value of 1 for
results that are very similar and it is near 0 when they share
no equally classified voxels.

3.3 Learning Process and Testing Results

In order to test the proposed learning pipeline process, we
consider the micro-CT image described above as the in-
put voxel model and its manual annotation as the classi-
fication label reference model. More concretely, we have
performed the proposed learning process by taking one 2D
slice as training data so that, we can afterwards test the
classification with nine other 2D slices (i.e. using them as
testing datasets). This experiment has been repeated and
averaged over 10 different slices, so that our results corre-
spond to a 10-fold cross validation. Considering the learn-



ing process tasks detailed in section 2, this selection of the
training slice is done for the data acquisition and selection
task. Thus, our training data are voxel-classification pairs,
where voxels belong to a single 2D slice and are provided
together with their manual classification.

Second task in the process –that is, feature extraction–
is afterwards performed by applying Gabor Filters with 6
different orientations and 4 scales. As a consequence, this
results in 24 different features per voxel. Furthermore, we
need features to belong to the Real domain so we take the
module of Gabor complex numbers. Let FV and LV be the
features and the labels corresponding to the training slice.

Along the third task, we concatenate the learning of
three different classifiers. Firstly, we use both FV and LV

to train the Gentle Boost classifier along 100 iterations.
Once the classifier is obtained, we use it to classify FV so
that we obtain new labels L̂V . Secondly, we use both LV

and L̂V to train the CRF classifier, so that L̂V can be after-
wards classified. As a result, we obtain not only a new L̃V

but an associated confidence C̃onf V . Finally, the refine-
ment step will use this C̃onf V to select the voxel features
that require further treatment, so that they can be used (to-
gether with their corresponding labels in LV ) to train the
third classifier. As an implementation detail, just mention
that CRF process requires a downsizing of the data, so that
refinement needs to take this into account and to resize ac-
cordingly.

Once all three classifiers have been trained, we can
use a second slice for testing purposes. Analogously to the
training process, we extract the Gabor features FT . Thus,
we use the first Gentle Boost classifier to classify FT into
L̂T labels, which are the input for the CRF classifier. This
classification results in L̃T and C̃onf T so that refinement
uses C̃onf T to select boundary voxels from the original FT .
Selected voxels are then classified –by means of the third
classifier– so that resulting labels can substitute the corre-
sponding labels in L̃T . Henceforth, the new L̃T becomes
the final classification that can be compared with the man-
ual LT .

Table 1 shows how classification performance is in-
creased along the process. Accuracy is raised from 0.889
with the Gentle Boost classifier up to 0.972 when the over-
all pipeline process is performed. Nevertheless, biomate-
rial and non-biomaterial classes in this domain are highly
unbalanced – their proportion is 1 to 8– and therefore, high
accuracy results hide the fact that biomaterial classification
is in fact much more difficult than labeling non-biomaterial
voxels. Henceforth, we also consider the Overlap Metric
given in 3.2, which is more informative than average ac-
curacy, since error information are relative to each class.
In fact, Gentle Boost only classifies correctly a proportion
of 0.236 of biomaterial voxels. The CRF classifier greatly
increases this figure, which reaches a 0.757. Finally, re-
finement still improves boundary voxels and, therefore, an
overall proportion of 0.786 biomaterial voxels are correctly
classified. As Figure 2 d) shows, the significance of last re-
finement can be visually appreciated in rendering. On the

other hand, as it can be seen in Table 1, the Overlap Metric
of non-biomaterial class also improves so that an overall
0.970 is reached.

Metric Gentle Boost +CRF +Refinement
Accuracy 0.889±0.001 0.967±0.004 0.972±0.004

OM+ 0.885±0.002 0.964±0.013 0.970±0.013
OM− 0.236±0.034 0.757±0.064 0.794±0.068

Table 1. Learning performance metric averages and 95%
confidence intervals. OM+ and OM− correspond to the
Overlap Metric for non-biomaterial and biomaterial classes
respectively.

As described in Section 1, the aim of this paper is to
introduce machine learning techniques into the process of
direct volume rendering. Therefore, visualization results
are key to validate our approach. Figure 3 shows a direct
volume rendering of 50 consecutive central slices. For this
example, learning has been performed having as training
data the 2D slice obtained from fixing z coordinate to 250.
On the other hand, testing data corresponds to slices z =
225 to z = 275.

4 Conclusions

To summarize, this paper proposes a machine learning
pipeline process to be introduced into the direct volume
rendering of biomedical high-resolution 3D images. This
pipeline process concatenates three different classifiers.
Initially, an attribute-value Gentle Boost classifier provides
a rather good classification whose spurious labels are re-
moved by the application of a spatial coherence model (i.e.,
the CRF classifier). And finally, those voxels in the class
boundaries are refined by the third classifier. This pipeline
process has proven to greatly improve both the accuracy
and the overlap metrics, specially for the classification of
unbalanced classes.
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