
NormLab hands-on Tutorial

Javier Morales (IIIA-UB), Maite López-Sánchez(UB), Juan A. Rodríguez-
Aguilar (IIIA-CISC), Michael Wooldridge (UO), Wamberto Vasconcelos (UA)

1

 1. NormLab (Introduction)

NormLab is a framework to support research on norm synthesis for Multi-Agent Systems.

NormLab allows to:

• Perform MAS simulations. It incorporates two different MAS simulators: a traffic

simulator, and an on-line community simulator.

• Perform on-line norm synthesis on MAS simulations. NormLab incorporates different
state-of-the-art on-line norm synthesis strategies that can be tested on MAS
simulations.

• Develop and test custom norm synthesis strategies. NormLab allows to develop
custom on-line norm synthesis strategies to be tested on the MAS simulations.

2

NormLab hands-on tutorial Outline

An introduction to NormLab
1. (Introduction to NormLab)
2. NormLab architecture.
3. Norm Synthesis Machine.
4. Traffic simulator.

Configuration of the working environment

5. NormLab download and installation.

NormLab execution:
 6-8. Execution examples.
 9-14. Guided development of different norm synthesis strategies.

3

 2. NormLab architecture

MAS Simulators

On-line community
simulator

Norm synthesis
settings

Domain-
dependent
functions

Simulator
settings

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategies: IRON, SIMON, …

NormLab

MAS events
Norms (NS)

4

 3. Norm Synthesis Machine

 MAS Simulator

Norm synthesis
settings

Domain-
dependent
functions

Simulator
settings

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events
Norms (NS)

5

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events

1.- Agents
behave

Norms (NS)

6

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events 2.- Agents
are

observed

Norms (NS)

7

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events

3.- New
norms

required?
Norms (NS)

8

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events
Norms (NS) 4.- Provide

Normative
System

9

• Based on Repast Simphony 2.2
• Agents are cars, and conflicts are car collisions
• The goal is to synthesise normative systems that avoid collisions between cars.

 4. Traffic simulator

10

NormLab hands-on tutorial Outline

An introduction to NormLab
1. (Introduction to NormLab)
2. NormLab architecture.
3. Norm Synthesis Machine.
4. Traffic simulator.

Configuration of the working environment

5. NormLab download and installation.

NormLab execution:
 6-8. Execution examples.
 9-14. Guided development of different norm synthesis strategies.

11

NormLab is multi-platform. You can use it either in Windows, MacOS or Linux

Requirements

• Java JDK 1.6 or later http://www.java.com
• Eclipse IDE (just for Linux users) http://www.eclipse.org/downloads
• Repast Simphony 2.2 http://repast.sourceforge.net

Downloads

To use NormLab you need to download:

• NormSynthesisMachine: http://normsynthesis.github.io/NormSynthesisMachine

Implements an API that allows to perform norm synthesis for MAS.
• NormLabSimulators: http://normsynthesis.github.io/NormLabSimulators

Code of two MAS simulators: traffic and on-line community.

Download both projects in a ZIP or TAR.GZ file.

 5. NormLab download

12

http://www.java.com/
http://www.eclipse.org/downloads
http://repast.sourceforge.net/
http://normsynthesis.github.io/NormSynthesisMachine
http://normsynthesis.github.io/NormLabSimulators

 5. NormLab installation

Preparing the working environment

1. Unzip NormSynthesisMachine and NormLabSimulators projects to your HOME folder.
• For instance… «/Users/Javi/NormLab»

2. Both projects will be unzipped as NormSynthesis-«project_name»- «numbers». For
instance…

• NormSynthesis-NormLabSimulators-34d43o
• NormSynthesis-NormSynthesisMachine-1847fje

3. Rename both projects, removing the «NormSynthesis» part and the numbers. After

renaming them they should look like this:

• NormLabSimulators
• NormSynthesisMachine

 13

 5. NormLab installation

Preparing the working environment

1. Open the Repast Symphony IDE (in Linux, open Eclipse IDE with Repast installed on it).
2. Select Java view in Eclipse
3. Import both projects NormSynthesisMachine and NormLabSimulators in Eclipse.

1. File>New>Java Project.
2. Uncheck «Use default location» and click on «Browse».

14

 5. NormLab structure

Before starting you need to know:

NormLabSimulators project is structured as follows:

src/traffic: The code of the traffic simulator.
(src/onlineComm: The code of the on-line community simulator)
launchers: The launchers that allow to run the two simulators.
repast-settings/TrafficJunction.rs: Basic Repast settings for the traffic junction simulator.
(repast-settings/OnlineCommunities.rs: Basic Repast settings for the on-line community simulator)

15

NormLab hands-on tutorial Outline

An introduction to NormLab
1. (Introduction to NormLab)
2. NormLab architecture.
3. Norm Synthesis Machine.
4. Traffic simulator.

Configuration of the working environment

5. NormLab download and installation.

NormLab execution:
 6-8. Execution examples.
 9-14. Guided development of different norm synthesis strategies.

16

 Tutorial outline

NormLab execution:

6-8. Execution examples:
6. Example strategy 1: Normlab execution: Returns an empty set of norms.
7. Example strategy 2: Returns a fixed set of 1 norm.
8. Example strategy 3: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies:

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

17

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Returns a fixed set of 1 norm.
8. Example strategy 3: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

18

 6. NormLab Execution: Example 1

TrafficJunction norm synthesis example 1

We are going to execute the TrafficJunction simulator with the simplest norm synthesis strategy:

  Everytime the strategy is executed, return an empty normative system.

Consequences: No norms are given to the agents  collisions are never avoided.

Note: This execution assumes that file parameters.xml (in directory repast-settings/TrafficJunction.rs

within NormLabSimulators project) has parameter «NormSynthesisExample» with field
«defaultValue» set to «1»

 19

 6. NormLab Execution: Example 1

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.

20

 6. NormLab Execution: Example 1

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.
5. Click on button to start the simulator. Cars will appear as coloured balls. Collisions will appear

as red stars. Cars will start to drive and they will collide.
6. You can pause the simulation with button and stop it with button

21

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Using norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

22

IF left(>) & front(-) & right(-) THEN prohibition(go)

prh(go)

Graphical representation

 7. Using norms: Example 2

Reference car

Car perception

In the traffic simulator, cars‘ perceptions correspond to the three cells in front of them:

Norms are…

• IF … THEN… rules.
• Norm precondition: Set of predicates with one term each.

• Three predicates (left, front, right).
• Terms {<, ^, >, v, -, w, *} represent: cars with {<, ^, >, v} headings; nothing (-), wall (w) ; and

anything (*)
• Norm postcondition: A modality.

23

 7. Using norms: Example 2

TrafficJunction norm synthesis example 2

We will execute the TrafficJunction simulator with a norm synthesis strategy that returns a normative
system with only one left-side-priority norm:

It avoids some (but not all) collisions.

IF left(>) & front(*) & right(*) THEN prohibition(go)

prh(go)

Norm 1

* *

24

 7. Using norms: Example 2

TrafficJunction norm synthesis example 2

1. In Eclipse, in NormLabSimulators project, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample».
4. Set the field «defaultValue» to «2». This will indicate NormLab to launch example 2, which uses a

norm synthesis strategy that always returns a normative system with the left-side-priority norm.
5. Save the file.

25

 7. Using norms: Example 2

TrafficJunction norm synthesis example 2

6. Do right click on the file TrafficJunctionSimulator.launch.
7. Click on «Run As» > «TrafficJunctionSimulator».
8. Run the simulation with button
9. Update the norm synthesis inspector. Observe how now the normative system contains norm N1,

and cars occasionally stop to conform to it.

Green cirle:
Norm 1 applies
and car c1 stops
(c3 has priority)

Red circle:
Norm 1 applies but car

c5 does NOT stop

Tick i

Tick i +1
Non regulated

collision
(between c1 - c2) Regulated collision (between c4 - c5)

c6 complies with N1 (stops)

c1 c2

c4

c5

c3

c6

26

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Using norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

27

 8. Removing collisions: Example 3

TrafficJunction norm synthesis example 3

Let’s define a norm synthesis strategy that avoids all possible collisions by always returning this
Normative System:

Set NormSynthesisExample defaultValue=«3» in parameters.xml (in NormLabSimulators project,
repast-settings/TrafficJunction.rs)

N1: IF left(*) & front(^) & right(*) THEN prohibition(go)
N2: IF left(>) & front(-) & right(*) THEN prohibition(go)
N3: IF left(<) & front(<) & right(*) THEN prohibition(go)

Tick i Tick i+1

28

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

29

 9. Developing your own strategy

How are all these examples implemented? We will now develop our own norm synthesis strategy as
the one from example 1, which returns an empty normative system.

To do so, we first parameterise NormLab to use a custom norm synthesis strategy:

1. In Eclipse (NormLabSimulators project), go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«0». This will

indicate NormLab that we do not want to load a pre-designed example.
4. Search for the parameter «NormSynthesisStrategy» and set the field defaultValue=«0». This will

indicate NormLab that we will provide a custom norm synthesis strategy.
5. Save the file

30

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

31

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

 2.- Adding interface
 es.csic.iiia.nsm.strategy.NormSynthesisStrategy

32

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

 2.- Adding interface
 es.csic.iiia.nsm.strategy.NormSynthesisStrategy

3.- Cheking the constructor creation

33

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

 2.- Adding interface
 es.csic.iiia.nsm.strategy.NormSynthesisStrategy

3.- Cheking the constructor creation

4.- Creating inherited abstract method execute()
 (check “Inherited abstract methods”)

34

 9. Developing your own strategy

And implement the norm synthesis strategy class:

1. In the class, add a Normative Network attribute :
 private NormativeNetwork normativeNetwork;

The Norm Synthesis Machine contains the Normative Network which includes the Normative System:
• Normative Network: contains all synthesised norms.
• Normative System: set of (active) norms
 given to the agents.

35

 9. Developing your own strategy

And implement the norm synthesis strategy class:

1. In the class, add a Normative Network attribute :
 private NormativeNetwork normativeNetwork;
2. In the constructor, add the parameter es.csic.iiia.nsm.NormSynthesisMachine nsm and use it to

initialize (to empty) the Normative Network attribute:
 this.normativeNetwork = nsm.getNormativeNetwork();

The Norm Synthesis Machine contains the Normative Network which includes the Normative System:
• Normative Network: contains all synthesised norms.
• Normative System: set of (active) norms
 given to the agents.

36

 9. Developing your own strategy

And implement the norm synthesis strategy class:

1. In the class, add a Normative Network attribute :
 private NormativeNetwork normativeNetwork;
2. In the constructor, add the parameter es.csic.iiia.nsm.NormSynthesisMachine nsm and use it to

initialize (to empty) the Normative Network attribute:
 this.normativeNetwork = nsm.getNormativeNetwork();

The Norm Synthesis Machine contains the Normative Network which includes the Normative System:
• Normative Network: contains all synthesised norms.
• Normative System: set of (active) norms
 given to the agents.

3. Strategy execution: return the empty
 Normative System in method execute():

return this.normativeNetwork.getNormativeSystem();

37

 9. Developing your own strategy

Congratulations! You have created your first norm synthesis strategy, which returns an empty
normative system. Your code should now look like this:

38

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Invoking your strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

39

 10. Invoking your strategy

But, how does NormLab invoke our new norm synthesis strategy?
The Traffic Simulator includes (in package es.csic.iiia.normlab.traffic.agent) an agent
DefaultTrafficNormSynthesisAgent whose:

A. Constructor creates the Norm Synthesis Machine and configures it to use our strategy
B. step() method invokes our strategy at every simulation tick.

A

B

40

 10. Invoking your strategy (A)

Specifically, the constructor (A) DefaultTrafficNormSynthesisAgent() is in charge of:
1. Creating the norm synthesis machine.
2. Adding a set of sensors to the norm synthesis machine in order to perceive the scenario.
3. Setting the norm synthesis strategy.

1

2

3

A

41

 10. Invoking your strategy (A.1)

The invocation to the constructor of the NormSynthesisMachine (A.1) requires :

i. NormSynthesisSettings: The settings for the norm synthesis machine.
ii. PredicatesDomains: Agents’ language: predicates and terms describing the scenario from the

agents’ local point of view.
iii. DomainFunctions: Some domain-dependent functions that the Norm Synthesis Machine requires

to synthesise norms (e.g., conflict detection, norm applicability).

1

A

i ii

iii

42

 10. Invoking your strategy (A.1.i)

NormSynthesisSettings (A.1.i) : An interface to be implemented (located in package
es.csic.iiia.nsm.config in NormSynthesisMachine project)

• getNormSynthesisStrategy(): Returns the norm synthesis strategy to use.
• getSystemGoals(): A list of system goals. In traffic, the only goal is “to avoid collisions”.
• isNormGenerationReactiveToConflicts(): True if NSM tries to add a new norm upon the detection of each non-

regulated conflict. False if it creates the nom but does not add it to the Normative System immediately.
• getNormsDefaultUtility(): Norms’ default utility (0.5 by default).
• getNormEvaluationLearningRate(): The α rate in IRON and SIMON to evaluate norms (0.1 recom.).
• getNormsPerformanceRangesSize(): The size of the window to compute norms’ performance ranges.
• getNormGeneralisationMode(): SIMON’s norm generalisation mode (Shallow/Deep).
• public int getNormGeneralisationStep(): SIMON’s norm generalisation step: number of norm predicates that can

be simultaneously generalised.
• getGeneralisationBoundary(Dimension dim, Goal goal): Minimum value of effectiveness/necessity that a norm’s

performance must reach to be generalised. It corresponds to the threshold αgen in [1].
• getSpecialisationBoundary(Dimension dim, Goal goal): Value of Effectiveness/necessity under which a norm

can be specialised. It corresponds to the threshold αspec described in [1].
• getSpecialisationBoundaryEpsilon(Dimension dim, Goal goal): LION’s epsilon to create, together with the

specialisation boundaries, a norm deactivation band.
• getNumTicksOfStabilityForConvergence(): Number of simulation ticks without conflicts nor changes in the

normative system to converge.

An implementation of these settings for the traffic simulator is located in (NormLabSimulators project,
src/traffic) package es.csic.iiia.normlab.traffic.normsynthesis, in class TrafficNormSynthesisSettings

[1] Minimality and Simplicity in the On-line Automated Synthesis of Normative Systems. Javier Morales; Maite López-Sánchez; Juan A.
Rodríguez-Aguilar; Michael Wooldridge; Wamberto W. Vasconcelos. AAMAS '14:, p.109-116 (2014) 43

 10. Invoking your strategy (A.1.ii)

PredicatesDomains (A.1.ii) : Contains the predicates and terms that the agents employ to describe
the MAS from their local point of view. Located in package es.csic.iiia.nsm.agent.language
(NormSynthesisMachine project, src/).

The traffic simulator creates predicates and their domains in class TrafficSimulator
(NormLabSimulators project, src/traffic) from package es.csic.iiia.normlab.traffic, method
createPredicatesDomains().

• Three different predicates (l, f, r) that represent the left, front and right positions in front of a car.
• Seven different terms {<, ^, >, v, -, *, w} representing: cars with different headings {<, ^, >, v},

nothing (-), anything (*), and wall (w).

Reference car

Car perception:
 l(>)&f(-)&r(-)

left front right

44

 10. Invoking your strategy (A.1.ii)

PredicatesDomains (A.1.ii) : class TrafficSimulator, method createPredicatesDomains():

45

 10. Invoking your strategy (A.1.iii)

DomainFunctions (A.1.iii) : An interface to be implemented. Located in package
es.csic.iiia.nsm.config (NormSynthesisMachine project, src/).

• isConsistent(SetOfPredicatesWithTerms agentContext): Returns true if a set of predicates with

terms is consistent with the domain scenario. E.g.: (left(>),front(-),right(-)) is consistent (possible)
but (left(>),front(<),right(-)) is not consistent, since two cars can not drive in opposite directions in
the same lane.

• agentContextFunction(long agentId, View view): Returns the local perception of a given agent
(i.e., its context) from the observation (view) of the state of the simulated scenario.

• agentActionFunction(long agentId,ViewTransition viewTransition): Returns a list of actions
performed by an agent in the transition from a state st to a state st-1

• getConflicts(Goal goal,ViewTransition viewTransition): Receives a transition between two states, a
system goal (e.g., to avoid collisions) and returns the conflicts that have arisen in that transition
with respect to the system goal (e.g., returns the collisions).

• hasConflict(View view, long agentId, Goal goal): Returns true if a given agent is in conflict in a
given system state (i.e., View).

An implementation of the domain functions for the traffic simulator is located on
(NormLabSimulators project, src/traffic) es.csic.iiia.normlab.traffic.normsynthesis,

TrafficDomainFunctions class.

46

 10. Invoking your strategy (recap)

The Traffic Simulator includes DefaultTrafficNormSynthesisAgent agent whose:
A. Constructor

1. Creates the Norm Synthesis Machine (NSM).
2. Adds a set of sensors to SNM to perceive the scenario.
3. Sets the norm synthesis strategy in the NSM.

B. step() method invokes our strategy at every simulation tick.

B

1

2

3

A

47

 10. Invoking your strategy (A.3, B)

The Traffic Simulator includes DefaultTrafficNormSynthesisAgent agent whose:
A. Constructor

1. Creates the Norm Synthesis Machine (NSM).
2. Adds a set of sensors to SNM to perceive the scenario.
3. Sets the norm synthesis strategy in the NSM: Method SetNormSynthesisStrategy() invokes

 method createCustomNormSynthesisStrategy()
 (located in the same class DefaultTrafficNormSynthesisAgent):

• Implement this method by creating and returning your norm synthesis strategy:

B. step() method invokes our strategy at every simulation tick.

• Execute the simulation as you did for examples 1, 2 and 3 (NormLabSimulators project,
launchers/: TrafficJunctionSimulator.launch > Run As …)

Congratulations! You are using your own strategy!

48

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

49

 11. Adding norms to your strategy

Let’s now add some norms. We will add the left-side-priority norm from example 2.

1. Crate a new norm synthesis strategy MySecondStrategy.java by Copying (cut&paste+rename)

your first strategy MyFirstStrategy.java
 Your code should look like this:

50

 11. Adding norms to your strategy

2. Implement a method createNormativeSystem() in MySecondStrategy.java to create norms with:
• Preconditions: a set of predicate-term pairs and
• Postconditions: a modality (prohibition/obligation) over an action
i. Create a new norm precondition: IF l(>) & f(*) & r(*)

left front right
any-
thing

any-
thing

51

 11. Adding norms to your strategy

2. Implement a method createNormativeSystem() in MySecondStrategy.java to create norms with:
• Preconditions: a set of predicate-term pairs and
• Postconditions: a modality (prohibition/obligation) over an action
i. Create a new norm precondition: IF l(>) & f(*) & r(*)
ii. Create a new norm n1 with this precondition and as postcondition: THEN Prohition(Go)

left front right
any-
thing

any-
thing

52

 11. Adding norms to your strategy

2. Implement a method createNormativeSystem() in MySecondStrategy.java to create norms with:
• Preconditions: a set of predicate-term pairs and
• Postconditions: a modality (prohibition/obligation) over an action
i. Create a new norm precondition: IF l(>) & f(*) & r(*)
ii. Create a new norm n1 with this precondition and as postcondition: THEN Prohition(Go)
iii. Add norm n1 to the Normative Network and activate it so it becomes part of the Normative

System

left front right
any-
thing

any-
thing

53

 11. Adding norms to your strategy

3. Invoke method createNormativeSystem() at the end of MySecondStrategy constructor

At each tick, the strategy will return the
norms that are active in the normative
network (i.e., the normative system).

54

 11. Adding norms to your strategy

4. Change method createCustomNormSynthesisStrategy() from DefaultTrafficNormSynthesisAgent
(in package es.csic.iiia.normlab.traffic.agent, NormLabSimulators project, src/traffic) to use your
new strategy.

• Recall that the traffic norm synthesis agent in the traffic simulator creates the norm

synthesis machine and executes the strategy at every simulation tick.

5. Execute the Traffic Simulator (NormLabSimulators project, launchers/: TrafficJunctionSimulator.launch > Run As …)

 to observe that this second strategy works as example 2.
• The normative system contains a single norm N1.

55

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with automatic norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

56

 12. Your strategy with automatic norm generation

How can we automatically generate norms on-line?

Example 4 (TrafficNSExample4_NSStrategy in package es.csic.iiia.normlab.traffic.examples.ex4,
NormLabSimulators project) uses operators (methods defined in TrafficNSExample4_NSOperators) to
create, add and activate norms the Normative Network:

• Activate (norm): sets the state of norm to «Active»

• Add (norm): adds norm into the Normative Network and activates it.

• Create (Conflict, Goal):

 - Applies Case-Based Reasoning (CBR) to create a norm aimed at avoiding future conflicts.
 - If the norm does not exist in the Normative Network, then it adds (and activates) it.

Otherwise, if the norm is not active (nor represented) in the NN , then it activates it.

57

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

2. Returns the Normative System.

58

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

1. Perceives the scenario

2. Returns the Normative System.

ViewTransition: description
of partial scenario transition

from time t-1 to time t
(current tick)

59

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

1. Perceives the scenario
2. Detects non regulated conflicts

2. Returns the Normative System.

Conflict detection through
getConflicts() domain function

Each conflict has a
ViewTransition with a conflict

at tick t and an involved
(responsible) agent.

60

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

1. Perceives the scenario
2. Detects non regulated conflicts
3. Creates norms for each conflict.

2. Returns the Normative System.

61

 12. Your strategy with automatic norm generation

Execute the strategy:
1. Set NormSynthesisExample defaultValue=«4» in parameters.xml (in NormLabSimulators project,

repast-settings/TrafficJunction.rs) and save the file.
2. Execute the simulator

• NormLabSimulators project, launchers/: TrafficJunctionSimulator.launch > Run As …
3. Observe how, as long as cars collide, it generates norms to avoid these collisions

• Norms are never evaluated (select a norm and click on button Show performance ranges).

Example:

• 16 norms generated so
far (4943 ticks)

• Current tick: norms 7, 8,
9, and 11 apply.

62

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with automatic norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

63

 13. Automatic norm generation + evaluation

Are generated norms good enough?

Let’s see example 5: TrafficNSExample5_NSStrategy (in NormLabSimulators project,
src/traffic es.csic.iiia.normlab.traffic.examples.ex5 package) :

Whenever the strategy is executed:

• It generates norms (as example 4)
• It evaluates norms: how?

64

 13. Automatic norm generation + evaluation

For each viewTransition,

normReasoner computes the
norms that apply to each agent

by using DomainFunctions

Norm Evaluation (TrafficNSExample5_NSStrategy) :

1. Retrieve the norms that applied to each agent in the simulation at time t-1:

65

 13. Automatic norm generation + evaluation
Norm Evaluation (TrafficNSExample5_NSStrategy):

2. Norm compliance: Did agents complied with their applicable norms? Did that lead to conflicts?

normReasoner.
checkNormComplianceAndOutcomes

66

 13. Automatic norm generation + evaluation
Norm Evaluation (TrafficNSExample5_NSStrategy):

3. Update norms’ utilities based on norm compliance

evaluate(…) method in

TrafficNSExample5_NSUtilityFunction
(in NormLabSimulators project, src/traffic

es.csic.iiia.normlab.traffic.examples.ex5 package)

67

 13. Automatic norm generation + evaluation
Norm Evaluation (TrafficNSExample5_NSStrategy):

3. Update norms’ utilities based on norm compliance

Evaluates each norm in terms of system goals: Is it useful to avoid conflicts?
(e.g. traffic: avoids car collisions?). Two dimensions:

• Effectiveness: when complied, is it effective to avoid conflicts?
• If complied + no conflicts  Effective
• If complied + conflicts  Ineffective

• Necessity: when infringed, did some conflicts actually arise?
• If infringed + no conflicts  Unnecessary
• If infringed + conflicts  Necessary

68

 13. Automatic norm generation + evaluation

Execute the strategy:
1. Set NormSynthesisExample defaultValue=«5» in parameters.xml (in NormLabSimulators project,

repast-settings/TrafficJunction.rs) and save the file.
2. Execute the simulator

• NormLabSimulators project, launchers/: TrafficJunctionSimulator.launch > Run As …
3. Observe how it generates norms and evaluates them.

• Effectiveness and necessity of each norm change along time (select a norm and click on
button Show performance ranges).

69

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with automatic norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

70

 14. SIMON: generation + evaluation + refinement

SIMON is a complete norm synthesis strategy that uses norm evaluation to refine norms

SIMONStrategy (in NormSynthesisMachine project, src es.csic.iiia.nsm.strategy.simon package) :

Whenever the strategy is executed:

• It generates norms
• It evaluates norms
• It refines them : how?

step(…) method in
SIMONNormRefiner

(in NormSynthesisMachine project, src
es.csic.iiia.nsm.strategy.simon package)

71

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised

if their (effectiveness and
necessity) > threshold.

72

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised

if their (effectiveness and
necessity) ≥ gen. threshold.

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars

NN0

n3 n1

Normative system
NS0={n1, n2, n3}

n2

 emergency

ambulance fire-brigade police-car

73

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised

if their (effectiveness and
necessity) ≥ gen. threshold.

 emergency

ambulance fire-brigade police-car

NN0

n3 n1 n2

NN1

n3 n1

New Normative
system NS1={n4}

n2

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

Increases
Compactness

74

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised
2. Norms are specialised

if their (effectiveness or
necessity) < esp. threshold

75

 14. SIMON: generation + evaluation + refinement

Increases Compactness

Norm refinement:

1. Norms are generalised
2. Norms are specialised

if their (effectiveness or
necessity) < esp. threshold

NN1

n3 n1 n2

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

Normative
System

NS1= {n4}

76

 14. SIMON: generation + evaluation + refinement

Removes
Under-performing norms

Norm refinement:

1. Norms are generalised
2. Norms are specialised

if their (effectiveness or
necessity) < esp. threshold

Normative
System

NS1= {n4}

NN1

n3 n1 n2

n4 NN2

n3 n1 n2

New Normative
System

 NS2={n1, n2}

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

77

 14. SIMON. A complete norm synthesis strategy

Execute SIMON strategy:
1. In parameters.xml (in NormLabSimulators project, repast-settings/TrafficJunction.rs) set:

• NormSynthesisExample defaultValue=«0»
• NormSynthesisStrategy defaultValue=«2» (2 stands for SIMON strategy)
• NormGeneralisationMode defaultValue=«1» (Deep norm generalisation)
• NormGeneralisationStep defaultValue=«1» (generalises 1 predicate at a time)
• Save the file.

2. Execute the simulator
• NormLabSimulators project, launchers/:
TrafficJunctionSimulator.launch > Run As …

3. Observe how it generates norms, evaluates,
 and refines them.

• Compact Normative System.

Normative System: 6 norms
Normative Network: 55 norms
Generalisations: 98 relationships
• Ex: n41 generalises n38, n10, n7 and n39
Covergence at tick 9428

78

	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 28
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	Número de diapositiva 34
	Número de diapositiva 35
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Número de diapositiva 39
	Número de diapositiva 40
	Número de diapositiva 41
	Número de diapositiva 42
	Número de diapositiva 43
	Número de diapositiva 44
	Número de diapositiva 45
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Número de diapositiva 49
	Número de diapositiva 50
	Número de diapositiva 51
	Número de diapositiva 52
	Número de diapositiva 53
	Número de diapositiva 54
	Número de diapositiva 55
	Número de diapositiva 56
	Número de diapositiva 57
	Número de diapositiva 58
	Número de diapositiva 59
	Número de diapositiva 60
	Número de diapositiva 61
	Número de diapositiva 62
	Número de diapositiva 63
	Número de diapositiva 64
	Número de diapositiva 65
	Número de diapositiva 66
	Número de diapositiva 67
	Número de diapositiva 68
	Número de diapositiva 69
	Número de diapositiva 70
	Número de diapositiva 71
	Número de diapositiva 72
	Número de diapositiva 73
	Número de diapositiva 74
	Número de diapositiva 75
	Número de diapositiva 76
	Número de diapositiva 77
	Número de diapositiva 78

