
 1. What is NormLab?

NormLab is a framework to support research on norm synthesis for Multi-Agent Systems.

NormLab allows to:

1. Perform MAS simulations. It incorporates two different MAS simulators: a traffic

simulator, and an on-line community simulator.

2. Perform on-line norm synthesis on MAS simulations. NormLab incorporates different
state-of-the-art on-line norm synthesis strategies that can be tested on MAS
simulations.

3. Develop and test custom norm synthesis strategies. NormLab allows to develop
custom on-line norm synthesis strategies to be tested on the MAS simulations.

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

 2. NormLab architecture

NormLabSimulators

Norm Synthesis Machine

MAS Simulators

On-line community
simulator

Traffic junction
simulator

MAS events Norms

Norm synthesis
strategies

NormLab

 2. NormLab architecture

NormLabSimulators

Norm Synthesis Machine

MAS Simulators

On-line community
simulator

Traffic junction
simulator

MAS events Norms

Norm synthesis
strategies

NormLab

Norm synthesis
settings

Domain-dependent
functions

Simulator settings

 2. NormLab architecture

NormLabSimulators

Norm Synthesis Machine

MAS Simulators

On-line community
simulator

Traffic junction
simulator

MAS events Norms

Norm synthesis
strategies

NormLab

Norm synthesis
settings

Domain-dependent
functions

Simulator settings

 3. The Norm Synthesis Machine

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

Input: Agents’ behaviours
(by observation)

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

Input: Agents’ behaviours
(by observation)

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

Input: Agents’ behaviours
(by observation)

• Based on Repast Simphony 2.1
• Agents are cars, and conflicts are collisions among cars.
• The goal is to synthesise normative systems that avoid collisions between cars.

 4. The traffic simulator

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

NormLab is multi-platform. You can use it either in Windows, MacOS or Linux!

Requirements

• Java JDK 1.6 or greater http://www.java.com
• Eclipse IDE (just for Linux users) http://www.eclipse.org/downloads
• Repast Simphony 2.1 http://repast.sourceforge.net

Downloads

To use NormLab you need to download:

• NormSynthesisMachine: http://normsynthesis.github.io/NormSynthesisMachine/

Implements an API that allows to perform norm synthesis for MAS.
• NormLab: http://normsynthesis.github.io/NormLabSimulators/

Contains the code of the two MAS simulators: traffic and on-line community.

Download both projects whether in a ZIP or TAR.GZ file.

 5. NormLab download

http://www.java.com/
http://www.eclipse.org/downloads
http://repast.sourceforge.net/
http://normsynthesis.github.io/NormSynthesisMachine
http://normsynthesis.github.io/NormLabSimulators

 5.1. NormLab installation

Preparing the working environment

1. Unzip NormSynthesisMachine and NormLabSimulators projects to your HOME folder.
• For instance… «/Users/Javi/NormLab»

2. Both projects will be unzipped as NormSynthesis-«project_name»- «numbers». For
instance…

• NormSynthesis-NormLabSimulators-34d43o
• NormSynthesis-NormSynthesisMachine-1847fje

3. Rename both projects,removing the «NormSynthesis» part and the numbers. After

renaming them they should look like this:

• NormLabSimulators
• NormSynthesisMachine

 5.1. NormLab installation

Preparing the working environment

1. Open the Repast Symphony IDE (in Linux, open Eclipse IDE with Repast installed on it).
2. Import both projects NormSynthesisMachine and NormLabSimulators in Eclipse.

1. File>New>Java Project.
2. Uncheck «Use default location» and click on «Browse».

 5.1. NormLab installation

Preparing the working environment

1. Unzip NormLabSimulators and NormSynthesisMachine projects to your HOME folder.
• For instance… «/Users/Javi/NormLab»

2. Open Eclipse IDE.
3. Import both projects NormLabSimulators
 and NormSynthesisMachine in Eclipse:

1. File>New>Java Project.
2. Uncheck «Use default location»
 and click on «Browse».

1. Import projects NormLabSimulators
 and NormSynthesisMachine.

 5.2. NormLab structure

Before starting you need to know:

NormLabSimulators project is structured as follows:

src/onlinecomm: The code of the on-line community simulator.
src/traffic: The code of the traffic simulator.
launchers: The launchers that allow to run the two simulators.
repast-settings/OnlineCommunity.rs: Basic Repast settings for the on-line community simulator.
repast-settings/TrafficJunction.rs: Basic Repast settings for the traffic junction simulator.

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

We are going to execute the TrafficJunction simulator with a very simple norm synthesis strategy,
which is as follows:

  Everytime the strategy is executed, return an empty normative system.

Consequences: No norms are given to the agents  collisions are never removed.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.
5. Click on button to start the simulator. Cars will appear as coloured balls. Collisions will appear

as red stars. Cars will start to drive and they will collide.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.
5. Click on button to start the simulator. Cars will appear as coloured balls. Collisions will appear

as red stars. Cars will start to drive and they will collide.
6. You can pause the simulation with button and stop it with button

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

In the traffic simulator, cars perceive the scenario by means of the three cells in front of them:

Norms are…

• IF … THEN… rules.
• Norm precondition: Set of predicates with one term each.

• Three different predicates (left, front, right).
• Six different terms (<, ^, >, v, -, w, *) representing cars with different headings, term «-»

stands for «nothing», «w» for «wall» and «*» for «anything».
• Norm postcondition: A modality.

IF left(>) & front(-) & right(-) THEN prohibition(go)

prh(go)

Graphical representation

 7. Example 2: Using norms

Reference car

Car perception

 7. Example 2: Using norms

TrafficJunction norm synthesis example 2

We are now going to execute the TrafficJunction simulator with a norm synthesis strategy that will
avoid some (but not all) collisions between cars. With this aim, the strategy always returns a
normative system with only one left-side-priority norm:

IF left(>) & front(*) & right(*) THEN prohibition(go)

prh(go)

Norm 1

* *

 7. Example 2: Using norms

TrafficJunction norm synthesis example 2

1. In Eclipse, in NormLabSimulators project, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the traffic

simulator setting parameters.
3. Search for the parameter «NormSynthesisExample».
4. Set the field «defaultValue» with the value «2». This will indicate NormLab to launch example 2,

which uses a norm synthesis strategy that always returns a normative system with the left-side-
priority norm.

5. Save the file.
6. Do right click on the file launchers/TrafficJunctionSimulator.launch.
7. Click on «Run As» > «TrafficJunctionSimulator».
8. Run the simulation with button
9. Update the norm synthesis inspector. Observe how now the normative system contains one norm,

and now cars occasionally stop to apply norm 1.

Car applying norm 1

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 8. Example 3: Removing collisions

TrafficJunction norm synthesis example 3

We are now going to execute the TrafficJunction simulator with a norm synthesis strategy that avoids
all possible collisions. With this aim, it always returns the following normative system:

To execute this example, you just have to follow the steps in section 7, but setting defaultValue=«3»
of the NormSynthesisExample parameter (again in NormLabSimulators project, directory repast-
settings/TrafficJunction.rs , file parameters.xml)

IF left(*) & front(^) & right(*) THEN prohibition(go)
IF left(>) & front(-) & right(*) THEN prohibition(go)
IF left(<) & front(<) & right(*) THEN prohibition(go)

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 9. Developing your own strategy

How are implemented all these examples? Let’s implement one of the examples!

We are now going to develop our own norm synthesis strategy. In particular, we are going to
implement the norm synthesis strategy of example 1, which returns an empty normative system.

The first thing we must do is to indicate NormLab that we are going to use a custom norm synthesis
strategy. With this aim, follow these steps:

1. In Eclipse, in NormLabSimulators project, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the traffic

simulator setting parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«0». This will

indicate NormLab that we do not want to load a pre-designed example.
4. Search for the parameter «NormSynthesisStrategy» and set the field defaultValue=«0». This will

indicate NormLab that we will give it a custom norm synthesis strategy.

 9. Developing your own strategy

Now, to create your norm synthesis strategy, just follow these steps:

1. In Eclipse (NormLabSimulators project), go to package es.csic.iiia.normlab.traffic.custom.
2. There, create a new Java class MyFirstStrategy.java that implements the interface

es.csic.iiia.nsm.strategy.NormSynthesisStrategy.
3. The interface will require you to implement two methods:

1. execute(): Executes the norm synthesis strategy
2. getNonRegulatedConflictsThisTick(): Returns a data structure containing the conflicts that

the strategy has detected during the current tick

 9. Developing your own strategy

We will create our strategy:

1. Create a new attribute private Map<Goal, List<Conflict>> conflicts.
2. Create a constructor for the class and, there, create the structure conflicts.
3. Make method getNonRegulatedConflictsThisTick() to return the attribute conflicts.
4. Your code should look like this:

 9. Developing your own strategy

Now, let’s implement the execute() method, which implements the norm synthesis strategy. This
method must return an object NormativeSystem, that contains the norms that will be given to the
agents.

There are a couple things that we must take into account:
• The Norm Synthesis Machine keeps synthesised norms in a normative network.
• To be able to access to the normative network, and the different elements of the Norm Synthesis

Machine, we must receive the NormSynthesisMachine as a parameter in our strategy:

Follow now these steps:
1. In the constructor of the class, add the parameter es.csic.iiia.nsm.NormSynthesisMachine nsm.
2. Now we can access the different elements of the Norm Synthesis Machine in our strategy.
3. Let’s obtain the Normative Network! Add the following attribute to your class:

 private NormativeNetwork normativeNetwork;

4. Now, in your constructor, add the following code line to obtain the (initially empty) normative
network:

 this.normativeNetwork = nsm.getNormativeNetwork();

5. Finally, we will now return an empty normative system at the end of the strategy execution. Add
the following line of code at the end of method execute():

return this.normativeNetwork.getNormativeSystem();

 9. Developing your own strategy

Congratulations! You have created your first norm synthesis strategy, which returns an empty
normative system Your code should now look like this:

 10. Executing your implemented strategy

And now… how to tell NormLab to use your norm synthesis strategy?
We need to create an agent in the Traffic Simulator, which:

1. Creates and configures the Norm Synthesis Machine.
2. Adds sensors to the Norm Synthesis Machine to perceive the scenario.
3. Creates and configures the norm synthesis strategy.
4. Executes your strategy at every simulation step.

The traffic simulator incorporates a default Traffic Norm Synthesis Agent, which is
implemented in class DefaultTrafficNormSynthesisAgent of package

es.csic.iiia.normlab.traffic.agent.

Let’s take a look at it…

 10. Executing your implemented strategy

Observe the constructor DefaultTrafficNormSynthesisAgent(). It performs these tasks:
1. Creates the norm synthesis machine with a given configuration.
2. Adds a set of sensors to the norm synthesis machine in order to perceive the scenario.
3. Sets the norm synthesis strategy.

4. Executes the norm synthesis strategy at every simulation step.

 10. Executing your implemented strategy

To create the NormSynthesisMachine, it needs to create:

1. NormSynthesisSettings: The settings for the norm synthesis machine.
2. PredicatesDomains: Information about the agents’ language. That is, the predicates and terms the

agents employ to describe the scenario from their local point of view.
3. DomainFunctions: Some domain-dependent functions that the Norm Synthesis Machine requires

to synthesise norms (e.g., conflict detection, norm applicability).

 10. Executing your implemented strategy

NormSynthesisSettings: An interface to be implemented (located in package
es.csic.iiia.nsm.config)

1. getNormSynthesisStrategy(): Returns the norm synthesis strategy to use.
2. getSystemGoals(): A list of system goals. In traffic, the only goal is “to avoid collisions”.
3. getNormsDefaultUtility(): Norms’ default utility (0.5 by default).
4. getNormEvaluationLearningRate(): The α rate to evaluate norms (0.1 is ok).
5. getNormsPerformanceRangesSize(): The size of the window to compute norms’ performance

ranges.
6. getNormGeneralisationMode(): SIMON’s norm generalisation mode (Shallow/Deep).
7. public int getNormGeneralisationStep(): SIMON’s norm generalisation step, namely the number

of norm predicates that can be simultaneously generalised.
8. getGeneralisationBoundary(Dimension dim, Goal goal): Returns the minimum value of

Effectiveness/necessity that a norm’s performance much reach to be generalised.
9. getSpecialisationBoundary(Dimension dim, Goal goal): Returns the value of

Effectiveness/necessity under which a norm can be specialised.
10. getNumTicksOfStabilityForConvergence(): The number of simulation ticks without conflicts or

changes to the normative system to converge.

An implementation of these settings for the traffic simulator is located in package
es.csic.iiia.normlab.traffic.normsynthesis, class TrafficNormSynthesisSettings

 10. Executing your implemented strategy

PredicatesDomains: Contains the predicates and terms that the agents employ to describe the MAS
from their local point of view. Located in project NormSynthesisMachine, package
es.csic.iiia.nsm.agent.language.

The traffic simulator creates predicates and their domains in (project NormLabSimulators) class
es.csic.iiia.traffic.TrafficSimulator, method createPredicatesDomains().

• Three different predicates (l, f, r) that represent the left, front and right positions in front of a car.
• Six different terms (<, ^, >, v, -, w, *) representing cars with different headings, term «-» stands

for «nothing», «w» for «wall» and «*» for «anything».

 10. Executing your implemented strategy

PredicatesDomains: The traffic simulator creates predicates and their domains in class
es.csic.iiia.traffic.TrafficSimulator, method createPredicatesDomains().

 10. Executing your implemented strategy

DomainFunctions: An interface to be implemented. Located in package es.csic.iiia.nsm.config
(NormSynthesisMachine project).

1. isConsistent(SetOfPredicatesWithTerms agentContext): Returns true if a set of predicates with

terms is consistent with the domain. For instance, (left(>),front(-),right(-)) is consistent. By
contrast, (left(>),front(<),right(-)) is not consistent, since two cars can not drive in opposite
directions in the same lane.

2. agentContextFunction(long agentId, View view): Returns the local perception of a given agent at
a particular system state (received as a View).

3. agentActionFunction(long agentId,ViewTransition viewTransition): Returns a list of the actions
that an agent performed in the transition from a state st to a state st-1

4. getNonRegulatedConflicts(Goal goal,ViewTransition viewTransition): Receives a transition
between two states, a system goal (e.g., to avoid collisions) and returns the conflicts that have
arisen in that transition with respect to the system goal (e.g., returns the collisions).

5. hasConflict(View view, long agentId, Goal goal): Returns true if a given agent is in conflict in a
given system state (i.e., View).

An implementation of the domain functions for the traffic simulator is located on
NormLabSimulators project, es.csic.iiia.normlab.traffic.normsynthesis package,

 class TrafficDomainFunctions.

 10. Executing your implemented strategy

Now that we understand how DefaultTrafficNormSynthesisAgent works, let’s tell it to use your norm
synthesis strategy:

1. Open class DefaultTrafficNormSynthesisAgent in package es.csic.iiia.normlab.traffic.agent. This

class implements the agent that «lives» in the traffic simulator, creates the norm synthesis
machine and executes the strategy at every simulation tick.

2. Go to method setCustomNormSynthesisStrategy()
3. There, tell NormLab to use your norm synthesis strategy. Use this code:

4. It is as simple as creating your norm synthesis strategy and telling the norm synthesis machine to
use your strategy.

5. Execute the simulation as you did for example 1.

Congratulations, you are using your own strategy!

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 11. Adding norms to your strategy

Let’s now add some norms to our strategy. We will use the same set of norms than used in the
example 2 (with one only left-hand-side priority norm).

1. In package es.csic.iiia.normlab.traffic.custom (NormLabSimulators project), copy your first norm

synthesis strategy (MyFirstStrategy.java) as a new strategy MySecondStrategy.java.
2. To add norms to the normative network we need to know the system goals (in traffic, the only

system goal is to avoid collisions). With this aim, add the following attribute to your strategy.
• private List<Goal> goals;

3. Now obtain the system goals in your constructor:
• this.goals = nsm.getNormSynthesisSettings().getSystemGoals();

4. Your code should look like this:

 11. Adding norms to your strategy

1. Let’s create the normative system. Norms have four elements: (1) a norm precondition; (2) a
modality (in our case, a prohibition); (3) an action to obligate/prohibit. In our implementation, the
norm also includes the goal it is aimed to achieve.

2. Now, create a new method createNormativeSystem() that will add the norms to the normative
network:

3. This code first gets the only system goal (to avoid collisions between cars)
4. Then, it creates a norm precondition (set of predicates with terms) and adds the predicates «l»

(left), «f» (front) and «r» (right), with its corresponding term.
5. Finally, it creates the norm adding the pre-condition, the modality «Prohibition» over the action

«Go», and the goal of the norm (to avoid collisions).

 11. Adding norms to your strategy

1. Now, call method createNormativeSystem() at the end of your constructor. Your code should look
like this:

2. At each execution, the strategy will return the norms that are active in the normative network
(i.e., the normative system).

 11. Adding norms to your strategy

To finish, set the traffic norm synthesis agent to use your new strategy.

1. Open class DefaultTrafficNormSynthesisAgent in package es.csic.iiia.normlab.traffic.agent. This

class implements the agent that «lives» in the traffic simulator, creates the norm synthesis
machine and executes the strategy at every simulation tick.

2. Go to method setCustomNormSynthesisStrategy()
3. There, tell NormLab to use your norm synthesis strategy. Use this code:

4. You can now execute the Traffic Simulator and see how your second strategy works. Observe that:
1. The normative system contains now one norm.
2. The unique norm is never evaluated (click on button Show of norms’ performance ranges).

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 12. A strategy with automatic norm generation

Let’s see now how can we automatically generate norms on-line.

For this example we are going to use the code of example 4, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex4.

There, we can find the following classes:

TrafficNSExample4_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample4_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample4_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future.

 12. A strategy with automatic norm generation

Let’s see now how can we automatically generate norms on-line.

For this example we are going to use the code of example 4, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex4.

There, we can find the following classes:

TrafficNSExample4_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample4_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample4_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future.

This agent works along the lines of the DefaultTrafficNormSynthesisAgent

 12. A strategy with automatic norm generation

TrafficNSExample4_NSOperators: How do operators work?

Create:
1. Receives a Conflict and a system Goal.
2. Employs a Case-Based Reasoning (CBR) norm generation approach to generate a norm aimed at

avoiding the given conflict in the future.
3. If the norm does not exist in the normative network, then it adds it.
4. If the norm exists in the normative network, then it activates it (since it may be inactive).

Add:
1. Adds a norm to the normative network.
2. Activates the norm in the normative network.

Activate:
1. Sets the state of a norm as «Active» in the normative network

Deactivate:
1. Sets the state of a norm as «Inactive» in the normative network.
  This operator is not invoked in this example since it does not refine norms (and hence does
 not deactivate norms).

 12. A strategy with automatic norm generation

TrafficNSExample4_NSStrategy: How does the norm synthesis strategy work?

Everytime the strategy is executed, it:
1. Perceives the scenario by means of the monitor. It saves perceptions in the form of

ViewTransitions. A ViewTransition describes a part of the scenario at time t-1 and at time t (that
is, its transition from the previous to the current tick).

2. Detects conflicts in perceptions by invoking method getNonRegulatedConflicts() of
DomainFunctions.

 12. A strategy with automatic norm generation

3. Generates norms (one for each detected conflict) by means of operator create.

To execute this strategy, follow these steps:

1. In Eclipse, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«4».

Execute the simulator and see how, as long as cars collide, it generates norms
to avoid those collisions in the future.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 13. Automatic norm generation + evaluation

We have seen how to automatically generate norms on-line.
Let’s see now how can we automatically evaluate norms on-line.

For this example we are going to use the code of example 5, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex5.

There, we can find the following classes:

TrafficNSExample5_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample5_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample5_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future, and
 continuously evaluates them in base of their outcomes in the scenario.

TrafficNSExample5_NSUtilityFunction
 A function to evaluate norms’ utility based on their outcomes whenever agents fulfill/infringe
 norms.

 13. Automatic norm generation + evaluation

We have seen how to automatically generate norms on-line.
Let’s see now how can we automatically evaluate norms on-line.

For this example we are going to use the code of example 5, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex5.

There, we can find the following classes:

TrafficNSExample5_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample5_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample5_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future, and
 continuously evaluates them in base of their outcomes in the scenario.

TrafficNSExample5_NSUtilityFunction
 A function to evaluate norms’ utility based on their outcomes whenever agents fulfill/infringe
 norms.

You know how these things work…

 13. Automatic norm generation + evaluation

How does norm evaluation work?

• Norm fulfilled + no conflicts  Effective norm (It avoids conflicts).
• Norm fulfilled + conflicts  Ineffective norm (It does not avoid conflicts).

• Norm infringed + no conflicts  Unnecessary norm (No conflicts arise when it is not fulfilled).
• Norm infringed + conflicts  Necessary norm (Conflicts arise when it is not fulfilled).

To evaluate norms at each tick, the norm synthesis strategy requires to retrieve:

1. The norms that have been fulfilled and infringed during the transition from the previous tick to

the current tick.
2. Information about whether norm fulfilments and infringements led to conflicts or not in the

current tick.

 13. Automatic norm generation + evaluation

TrafficNSExample5_NSStrategy: How does this new norm synthesis strategy work?

Everytime this particular strategy is executed, it performs norm generation + norm evaluation. You
already know norm generation. But… How is norm evaluation implemented?

Norm evaluation consists on the following steps:

1. Compute norm applicability, namely to retrieve the norms that applied to each agent in the

simulation at time t-1.

• As you can see in the code, for each ViewTransition it employs a NormReasoner to compute the

norms that apply to each agent in the viewTransition.
• The NormReasoner employs the DomainFunctions to retrieve the norms that apply to each agent.

 13. Automatic norm generation + evaluation

2. Compute norm compliance, namely to assess if agents complied or not with their applicable
norms during the transition from the previous tick (time t-1) to the current tick (time t), and if
they lead to conflicts or not.

 13. Automatic norm generation + evaluation

3. Update norms’ utilities based on norm compliance.

Each norm is evaluated in terms of:

• The system goals. Are norms useful to achieve system goals?
 Example: In the case of traffic, are norms useful to avoid car collisions?

• Two dimensions, effectiveness and necessity. Are norms effective to avoid collisions? Are they

necessary to avoid collisions?

 13. Automatic norm generation + evaluation

Finally, the normEvaluation() method puts together norm applicability, norm compliance and update
utilities:

Let’s execute this strategy. Follow these steps:

1. In Eclipse, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«5». This will

indicate NormLab that we do not want to load a pre-designed example.

Execute the simulator and see how now it generates norms and evaluates them. Observe how the
effectiveness and necessity of norms change along time.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 14. SIMON. A complete norm synthesis strategy

We are now going to see how to implement a complete norm synthesis strategy that performs:

1. Norm generation
2. Norm evaluation
3. Norm refinement

With this aim, we will execute the SIMON norm synthesis strategy. First of all, let’s tell NormLab that
we want to execute SIMON:

1. In Eclipse, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«0». This will

indicate NormLab that we do not want to load a pre-designed example.
4. Search for the parameter «NormSynthesisStrategy» and set the field defaultValue=«2». This will

indicate NormLab that we want to use the SIMON norm synthesis strategy.
5. Search for the parameter «NormGeneralisationMode» and set the field defaultValue=«1». This

will indicate NormLab that we want SIMON to use Deep norm generalisation.
6. Search for the parameter «NormGeneralisationStep» and set the field defaultValue=«1». This will

indicate NormLab that we want SIMON to generalise just one norm predicate simultaneously in
each norm generalisation.

You already know these phases

Let’s see how SIMON refines the normative system

 14. SIMON. A complete norm synthesis strategy

Your parameters.xml file should look like this:

 14. SIMON. A complete norm synthesis strategy

Norm refinement: Generalises norms when possible, and specialises norms when necessary.

• Norm generalisations allow to synthesise compact normative systems by generalising several

norms to one unique norms that implicitly represents them.

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars

Norm generalisations allow to increase the compactness of the normative system

 emergency

ambulance fire-brigade police-car

NN0

n3 n1

Normative system
{n1, n2, n3}

n2

 14. SIMON. A complete norm synthesis strategy

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

 emergency

ambulance fire-brigade police-car

NN0

n3 n1 n2

NN1

n3 n1

Normative system
{n4}

n2

n4

Normative system
{n1, n2, n3}

 14. SIMON. A complete norm synthesis strategy

Norm generalisations allow to increase the compactness of the normative system

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

 emergency

ambulance fire-brigade police-car

NN1

n3 n1

Normative system
{n4}

n2

n4

 14. SIMON. A complete norm synthesis strategy

Norm specialisations allow to remove from the normative system those norms that under-perform

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

 emergency

ambulance fire-brigade police-car

NN0

n3 n1 n2

NN1

n3 n1

Normative system
{n4}

n2

n4

Normative system
{n1, n2, n3}

 14. SIMON. A complete norm synthesis strategy

Norm specialisations allow to remove from the normative system those norms that under-perform

n4

 14. SIMON. A complete norm synthesis strategy

Norm refinement: Generalises norms when possible, and specialises norms when necessary.

1. Norms are generalised whenever their effectiveness and necessity are over a generalisation

threshold.
2. Norms are specialised whenever their effectiveness or necessity are under a specialisation

theshold.

	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 28
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	Número de diapositiva 34
	Número de diapositiva 35
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Número de diapositiva 39
	Número de diapositiva 40
	Número de diapositiva 41
	Número de diapositiva 42
	Número de diapositiva 43
	Número de diapositiva 44
	Número de diapositiva 45
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Número de diapositiva 49
	Número de diapositiva 50
	Número de diapositiva 51
	Número de diapositiva 52
	Número de diapositiva 53
	Número de diapositiva 54
	Número de diapositiva 55
	Número de diapositiva 56
	Número de diapositiva 57
	Número de diapositiva 58
	Número de diapositiva 59
	Número de diapositiva 60
	Número de diapositiva 61
	Número de diapositiva 62
	Número de diapositiva 63
	Número de diapositiva 64
	Número de diapositiva 65
	Número de diapositiva 66
	Número de diapositiva 67
	Número de diapositiva 68
	Número de diapositiva 69
	Número de diapositiva 70
	Número de diapositiva 71
	Número de diapositiva 72
	Número de diapositiva 73
	Número de diapositiva 74

