
Tutorial on
Norm Synthesis

in Normative
Multi-Agent Systems

Maite López-Sánchez
maite_lopez@ub.edu

Volume Visualization and Artificial Intelligence Research Group (WAI)
Dept Matemàtica Aplicada i Anàlisi (MAiA), Facultat de Matemàtiques

Universitat de Barcelona (UB)

• Tutor:
Dr. Maite López-Sánchez
University of Barcelona

• Teaching material based on
– SOAS subject from the interuniversitary master on

Artificial Intelligence (UPC-UB-URV)
http://www.fib.upc.edu/en/masters/mai.html

– Related Research papers
– Co-authored research work:

• Ph.D. student Eva Bou (co-sup.: J.A. Rodríguez- Aguilar, IIIA)
• PhD. thesis by Jordi Campos (co-sup: Dr. Marc Esteva, IIIA).
• Ph.D. thesis on on-line norm synthesis by Javier Morales. Co-

supervisor: Dr. Juan A. Rodríguez-Aguilar (IIIA-CSIC)
• Research collaborations: Dr. Jaime S. Sichman (Univ. Sao

Paulo), Dr. Wamberto Vasconcelos (Univ. of Abeerdeen), Prof.
Michael Wooldridge (Univ. of Oxford).

• Tutorial material available online at:
–Tutorial slides:

• http://www.maia.ub.es/~maite/Teaching.html
–On-line Norm Synthesis source code:

http://normsynthesis.github.io/NormLabSimulators/
http://normsynthesis.github.io/NormSynthesisMachine/

http://www.maia.ub.es/~maite/Teaching.html
http://normsynthesis.github.io/NormLabSimulators
http://normsynthesis.github.io/NormSynthesisMachine

Tutorial Outline

1. Introduction to Norms
and Normative MAS.

2. Overview of approaches
to norm synthesis.

3. On-line automatic norm
synthesis.

4. Demo and hands-on
activity

Contents: Modules

Norm
Synthesis

Schedule

• 9:15 h: NMAS introduction
• 9:45 h: Norm synthesis

overview (45’ aprox.)
• 10:30 h: Break (15’)
• 10:45 h: On-line automatic

norm synthesis
• 11:45 h: Break (15’)
• 12:00 h: Demo and hands-

on activity (45’ if interest in
playing with the code)

• 12:45 h: Wrap-Up &
comments

The tutorial will last for 3h:30 min or 4h

Objectives for the tutorial

• To introduce NMAS
–MAS Design considerations.
–Norms, laws, social conventions and rules as

agent coordination mechanisms
• Be familiar with a framework to test on-line

NMAS
–On-line automatic norm synthesis
–Put it in practice

Tutorial Outline

1. Introduction to Norms
and Normative MAS.

2. Overview of approaches
to norm synthesis.

3. On-line automatic norm
synthesis.

4. Demo and hands-on
activity

Contents: Modules

Norm
Synthesis

Norms

• Coordination by norms and social laws:
– In our everyday lives, we use a range of

techniques for coordinating activities. One of
the most important is the use of norms and
social laws (Lewis, 1969).

Norm definition: Lewis

Norms

• Norm definition from Merriam-Webster
dictionary:
–a principle of right action binding upon the

members of a group and serving to guide,
control, or regulate proper and acceptable
behavior

–a pattern or trait taken to be typical in the
behavior of a social group

–…

Norm definition: Merriam-Webster dict.

Norms

• Norm definition from Britannica.com:
Norm, also called Social Norm, rule or standard of

behaviour shared by members of a social group.
Norms may be internalized —i.e., incorporated within the

individual so that there is conformity without external
rewards or punishments, or they may be enforced by
positive or negative sanctions from without.

The social unit sharing particular norms may be small (e.g.,
a clique of friends) or may include all adult members of a
society.

Norms are more specific than values or ideals: honesty is a
general value, but the rules defining what is honest
behaviour in a particular situation are norms.

Norm definition: Britannica encycl.

Norms

• Coordination by norms and social laws,
“Introduction to MAS” book by Wooldridge:
–A norm is an established, expected pattern

of behaviour.
• Human example: to form a queue when waiting for

a bus
• Norms may not be enforced
• Social laws usually carry with them some authority

• Alternative definition:
– Norms = constraints + punishment

Norm definition in MAS

Norms

• Conventions are key in the social process:
–Provide agents with a template upon which to

structure their action repertoire -> simplify
agent's decision-making process

–Balance between:
• Individual freedom and
• The goal of the agent society

Norm as a MAS coordination mechanism

Norms

• How do norms come to exist within a
society?
–Offline design
–Emergence
–On-line generation

Norm origin

Norm categories I

• R. Tuomela:
– The Importance of Us: A Philosophical Study of Basic Social

Notions. Stanford Series in Philosophy, Stanford University Press
(1995)

• Rule norms: imposed by authority based on an
agreement between the members (e.g. one has to
pay taxes).

• Social norms: apply to large groups (e.g. one should
not litter)

• Moral norms: appeal to one’s conscience (e.g. one
should not steal).

• Prudential norms: based on rationality (e.g one
ought to maximize one’s expected utility)

Tuomela

Norm categories II & III

• Norm Categories:
– Elster

• Consumption norms (e.g. manners of dress),
• Behaviour norms (e.g. the norm against cannibalism),
• Norms of reciprocity (e.g. gift-giving norms),
• Norms of cooperation (e.g. voting and tax

compliance)…
– Boella and van der Torre

• Regulative norms: obligations, prohibitions and
permissions

• Constitutive norms: create institutional facts like
property or marriage as well as the modification of
normative system itself

(II) Elster (III) Boella & van der Torre

Norms & agents

• Norms and BDI agents
–Normtive decision theory: BOID
– “Norm‐based behaviour modification in BDI

agents” Meneguzzi and Luck AAMAS’09
–Dignum et at.
– Introducing obligations in agents

• We take a system perspective: NMAS

Normative MAS

• Normative MAS @Dagstuhl 2007

http://www.dagstuhl.de/07122

http://www.dagstuhl.de/07122

Normative MAS

• Normative MAS @Dagstuhl 2007
• A normative multiagent system is a

multiagent system together with normative
systems in which:
–Agents can decide whether to follow the

explicitly represented norms, and
– the normative systems specify how and in

which extent the agents can modify the
norms.

http://www.dagstuhl.de/07122

http://www.dagstuhl.de/07122

Normative MAS

• Normative MAS @Dagstuhl 2007
– AAMS journal 2008 by Boella, van der Torre

and Verhagen:
 A normative MAS contains mechanisms to:

• Represent, communicate, distribute, detect, create,
modify, and enforce norms.

• Deliberate about norms and detect norm violation
and fulfillment.

http://www.dagstuhl.de/07122

http://www.dagstuhl.de/07122

Normative MAS

• Dagstuhl 2012

http://www.dagstuhl.de/12111

http://www.dagstuhl.de/12111

Normative MAS

• Some related questions:
–Who dictates norms?
–Who spreads them?
–What norm does apply to an agent?
–How the agent decides whether to .

 fulfill or violate it?
–Who/how detects if the agent complies with it?
–What are the consequences?
–Should this norm change?

Example: Answers for a Traffic scenario?

Normative MAS

• Some related questions:
–Who dictates norms?
–Who spreads them?
–What norm does apply to an agent?
–How the agent decides whether to fulfill or

violate it?
–Who/how detects if the agent complies with it?
–What are the consequences?
–Should this norm change?

Exercise: Answers for a regulated scenario

5 min

Further Questions II

• Further questions:
–Are norms hierarchical?
–Are norms local?
–Are norms imprecise?
–Do agents internalise (adopt) norms?
– If other agents do not comply with a norm,

should an agent bother about it?
–Do we need additional incentives? (rewards,

environment)

Further Questions III

• Further questions:
–Should we consider norm exceptions?
–How norms relate to organisations?

(modularity, abstractions)
–How do we design norms? (to coordinate,

organize, guide, regulate, or control interaction)
–Norm representation (logics, operational,..)
–Can we have conflicts between norms?

• Normative MAS @Dagstuhl 2015
– Normative systems are systems in the behavior of

which norms play a role and which need normative
concepts in order to be described or specified.

• deal with obligations, permissions and prohibitions

– A normative MAS combines models for normative
systems with models for MAS. […]

• They use sociological theories from sociology,
economics, legal science, etc.

Normative MAS
http://www.dagstuhl.de/15131

http://www.dagstuhl.de/15131

Norms and Philosophy

• Deontic Logic (DL):
–Despite the philosophical position that norms

are neither true nor false
–Obligations treated as goals in AI
–NORMAS: action and time DL

• Two distinct philosophical traditions:
J. Hansen. Imperatives and Deontic Logic. PhD thesis, University of Leipzig, 2008

–Von Wright: norms and normative propositions
–Alchourron: prescriptive and descriptive

obligations

Norms and game theory

• Norms as a mechanism in a game-
theoretic setting:
–D. Lewis “master and slave” game
–E. Bulygin “rex, minister and subject” game
–G. Boella c.s.: violation games,

institutionalized games, negotiation games,
norm creation games, control games

–DTGT vs DL (van der Torre):
• DTGT: each agent has its own utility
• DL: there is a single global utility

Further issues

Applications

• Applications:
– Contracts (e-commerce)
– International trade
– Social norms in 3D VW

(e.g. Second Life)
– Human Computer

Interaction
– “What if” scenarios for

policy makers
– Organizations
– What else?

Norm changes

Other practical issues

• Implementation issues:
–Are norms explicitly represented in the

system?
• If so: In which language? Are they “hardcoded”?
• How do agents reason about them?

–Define how norms support agent coordination
–Decide whether norms:

• are created by a legislation authority,
• emerge spontaneously or
• are negotiated among agents,

Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches
to norm synthesis.
– Off-line norm synthesis.
– …

3. On-line automatic norm
synthesis.

4. Demo and hands-on
activity

Contents: Modules

Norm
Synthesis

Norm design

• Social norms in practice: traffic laws
(Shoham and Tennenholtz, 1996).
– Two-dimensional grid world populated by

mobile robots.
–More than one robot at a cell is a collision.
–Robots collect and transport items from cell to

cell
–Goal: design a law that prevents collisions

 practice I

Which norms would you define?

Norm design

• Social norms in practice: traffic laws (Shoham
and Tennenholtz, 1996).
– First option: law which completely constrains the

movements of robots, so that they must all follow a
single, completely predetermined path, leaving no
possibility of collision:

.

.

 practice I

Norm design

• Social norms in practice: traffic laws (Shoham
and Tennenholtz, 1996).
– First option: law which completely constrains the

movements of robots, so that they must all follow a
single, completely predetermined path, leaving no
possibility of collision:

• Each robot is required to move constantly. The direction of
motion is fixed as follows. On even rows each robot must
move left, while in odd rows it must move right. It is required
to move up when it is in the right-most column. Finally, it is
required to move down when it is on either the leftmost
column of even rows or on the second rightmost column of
odd rows. The movement is therefore in a 'snake-like’
structure, and defines a Hamiltonian cycle on the grid.

 practice I

Introduction

• Each robot is required to move constantly. The direction of motion is fixed
as follows. On even rows each robot must move left, while in odd rows it
must move right. It is required to move up when it is in the right-most
column. Finally, it is required to move down when it is on either the leftmost
column of even rows or on the second rightmost column of odd rows. The
movement is therefore in a 'snake-like' Structure, and defines a Hamiltonian
cycle on the grid.

Norm design IV: practice I

1

2
3

4

5

Norm design

• This rule:
– Determines uniquely the next movement of agents
– Provides paths to any destination cell
– Does not require perceptual capabilities of the robots
– Is effective but not very efficient: changing directions

help.

 practice I

1

2
3

4

5

Offline norm design

• Off-line norm design:
–Norms are hardwired in agents
–Designer has more control
–But:

• Some characteristics may not be known at design
time

• Agent goals may be constantly changing: requires
agent reprogramming

• Complex systems are hard to predict (and to
design norms)

From MAS Intro Lesson

• Environment: Env =〈E,e0,τ〉
–E a finite set of discrete, instantaneous states:

–Agent actions transform the environment:

–A run, r, is a sequence of interleaved

environment states and actions:

–A state transformer function represents
behavior of the environment

Abstract Model of Environment & Agents (I)

Ac E

• Agent:
– Function which maps runs to actions

• An agent makes a decision about what action to perform.
• Perceive function: maps environment states to percepts

E→Per

– Reactive agent: maps percepts to actions Per*→Ac
– Deliberative agent:

• Action function: maps internal states to actions I→ Ac
• Next function: maps an internal state and a percept to an

internal state I × Per→ I

• A system is an agent-environment pair
– R(Ag, Env) : set of runs of agent Ag in environment Env

From MAS Intro Lesson
Abstract Model of Environment & Agents (II)

Offline norm design

• Offline norm design:
– Define agents as functions from runs (end in

environmental states) to actions:
• Ag: RE →Ac
• A constraint is then a pair <E’,α> where

– E’ ⊆E is a set of environment states
– α ∈ Ac is an action

 Reading: “if the environment is in some state e ∈ E’, then the
action α is forbidden”.

– A social law is a set of such constraints
– An agent is legal to respect a social law if it never

attempts to perform a forbidden action in this law.

Norm design II

Offline norm design

• Offline norm design:
–When social laws are useful?

• Focal states: always legal: agents should be
always be able to ‘visit’ them:

• If the environment is at e∈F, it should be possible
for the agent to act so as to be able to
guarantee that any other state e' ∈ F is brought
about.

• A useful social law is one that does not
constrain the actions of agents so as to make
this impossible.

Norm design III

Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches
to norm synthesis.
– Off-line norm synthesis.
– Norm emergence
– Norm agreement
– Norm adaptation
– On-line norm synthesis

Contents: Modules

Norm
Synthesis

Norm mechanisms

–Two approaches for building a normative
behaviour in an agent.

• Top-down: institutional mechanism specifies
norms.

• Bottom-up: mechanisms that can help a norm to
emerge: “Don’t do to them what you don’t want
them to do to you”

Norm emergence

• Norm Emergence:
–Agents have to reach a global agreement on

the use of social conventions by using only
locally available information:

• Global: all agents use it
• Local: each agent decides to adopt one based

solely on its own experiences

Norm emergence

• Norm Emergence:
–Scenario: the tee shirt game:

• All agents have a blue and a red tee shirt
• They should end up wearing the same colour
• Play: initially, random colour selection

– Rounds: each round :
» form pairs of agents: they see the colour of the other

agent in the pair
» At the end: they are allowed to change colour (no

messages)
• Agents need a decision making process based on

their memory about previously encountered agents

Tee Shirt Game I

Let’s play it !

Norm emergence

• Some decision making alternatives:
– Simple majority: adopt the most seen colour
– Simple majority with agent types:

• Agents are of two types
• Agents of the same type exchange memories and adopt them

as if they were their own (type confidence).

– Simple majority with communication on success:
• Communicate useful memories (to pair agents) only if a

certain success is reached (prevents noise communication)

– Highest cumulative reward:
• Use the strategy with highest cumulative payoff (required)

Tee Shirt Game II

If still in the mood: play the first one…

Norm emergence

• Moreover:
–Agents can periodically forget everything

(memory restart)
• Agents are open to new ideas

–Efficiency measure: time to convergence
–Colour adoption can be seen as a strategy or

convention to adopt.
– Issues:

• Strategy changing cost
• Stability: keep agreements in the society

Tee Shirt Game III

Norm emergence

• Results:
–All alternatives led to emergent conventions
–Best results: Highest cumulative reward:

• Bounded time to convergence
• It is stable: once reached, agents do not diverge

from the norm.
• Efficient: agents’ payoff is not worse than the one

they would have received had they stuck with the
strategy they initially chose.

Tee Shirt Game IV

Norm emergence

• Exercise: implement a simulation of the tee shirt
game with agents
– Choose one strategy for agents that considers

previously encountered agents
– Check convergence
– Run it a number of times
– Optional: combine different strategies

Optional Homework: Tee Shirt Game V

 Implementation

Research paper 1

• Title:
–A categorization of simulation works on norms

• Authors:
–Bastin Tony Roy Savarimuthu and

Stephen Cranefield (Univ of Otago,
New Zeland)

• Year:
– 2009

Research paper 1

• Abstract:
– Norms are expectations of behaviours of the

agents in a society.
– Being autonomous:

• agents might not always follow the norms.
• they themselves can evolve new norms while adapting to

changing needs.
– Paper:

• Propose a life-cycle model for norms (based on
simulation)

• discuss different mechanisms used by researchers to
study norm creation, spreading, enforcement and emergence

A categorization of simulation works on norms

Research paper 1

• What are norms?
– Expectations of an agent about the behaviour of other

agents in the society
• help in sustaining social order and increase the predictability

of behaviour in the society.
– Fulfilling a generalized expectation of behaviour
– = to conventions
– Members adhere to norms:

• for shame,
• fear to authority,
• rational appeal to norms,
• willingness to follow the crowd…

– Violations may be punished

A categorization of simulation works on norms

Research paper 1

• Norm aspects:
–Normative expectation of a behavioural

regularity +
–Norm spreading factor:

• Notion of advice from powerful leaders
• Sanctioning mechanism:

– Monetary (or utilitarian)
– Physical
– Emotional (reputation, isolation,..)

• Imitation
• Learning

A categorization of simulation works on norms

Research paper 1

• Phases for
norm
life-cycle

A categorization of simulation works on norms

Proposed norm

Internalized norm

Punishments

Research paper 1

• Phases of norm-life cycle:
1. Norm creation -> proposed norm
2. Spreading -> internalized norms (agents

subscribe to norms)
3. Enforcement -> punishment (norm violator)
4. A norm has emerged if:

• It has spread (i.e. it is followed by a considerable
proportion of an agent society and this fact is
recognized by most agents)

• without being explicitly created.

A categorization of simulation works on norms

Research paper 1

• 1.- Norm creation:
– The mechanism by which an agent in the society comes to know

what the norm of the society is.
– Approaches:

• Top-down:
– Off-line designer:

» + control
» - predictability

– Powerful leader
» Norm leader provides norms to follower agents

• Enterpreneurial:
– An agent comes up with a norm and recommends it to other agents

• Cognitive:
– Agents recognize what the norms of a society are
– based on the observations of interactions (inference).

A categorization of simulation works on norms

Research paper 1

• 2.- Norm spreading
–Mechanisms:

• leadership,
• Imitation: “When in Rome do as the Romans”
• machine learning,
• cultural and evolutionary

A categorization of simulation works on norms

Research paper 1

• 3.- Norm enforcement
–Process by which norm violators are

discouraged through some form of
sanctioning:

• Punishment (fitness, emotion)
• Reputation

–Can be considered as part of 2.-spreading
(Axelrod)

A categorization of simulation works on norms

Research paper 1

4. Norm emergence:
– Reaching some significant threshold in the extent of the spread

of a norm.
• Ex.: a society is said to have a norm of gift exchange at Christmas if

more than x% of the population follows such a practice.
• The value of x has varied from 35 to 100 across different simulation based studies of

norms.
– Approaches:

• An agent comes to know about a norm through mechanisms such
as leadership or imitation and when it accepts the norm it
contributes to norm spreading and emergence.

• A cognitive agent generates a personal norm based on observation:
– Many cognitive agents could generate similar personal norms and for

an external observer it might seem that a norm has emerged in a
society.

– Cognitive agents could communicate norms and verify norms.
» micro interactions between agents lead to the macro effect of

establishing a norm

A categorization of simulation works on norms

A categorization of simulation works on norms

Missing: incentive mechanisms (R Centeno, H Billhardt)

Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches
to norm synthesis.
– Off-line norm synthesis.
– Norm emergence
– Norm agreement
– Norm adaptation
– On-line norm synthesis

Contents: Modules

Norm
Synthesis

Research paper 2

• Dynamic Specifications for Norm-
Governed Systems (A. Artikis, D. Kaponis,
J. Pitt, 2009)
–Previous work: framework for executable

specification of norm-governed MAS:
• Specified at design-time

–Paper research: specifications may be
modified at run-time by the members of the
system

• Action language to encode specifications
• Scenario: argumentation protocol

Research paper: Artikis’09

• In some open MAS,
–environmental,
–social or other conditions

 may favour, or even require, specifications to be
modifiable during the system execution.

• Ex.:
– A malfunction of a large number of sensors in a

sensor network,
– Manipulation of a voting procedure due to strategic

voting,
– When an organisation conducts its business in an

inefficient manner.

Motivation

Dynamic Norm Specification

Dynamic Norm Specification

• Assumptions:
–Open MAS:

• Agents developed by different parties
• No direct access to agent’s internal state
• Agents may fail to conform to the system

specification in order to achieve their individual
goals.

• Examples:
– Virtual Organisations, electronic marketplaces,

argumentation (dispute resolution) protocols, negotiation
protocols

–Adoption of a bird’s eye view of the system

Introduction: Assumptions I

Dynamic Norm Specification

–Normative System:
• Actuality and ideality do not necessarily coincide

– Actuality: what is the case
– Ideality: what ought to be the case

• Specification of what is permitted, prohibited and
obligatory.

• Institutional power:
– Designated agents, when acting in specified roles, are

empowered by an institution to create specific relations or
state of affairs

– Ex.: an agent is empowered to award a contract (to
create a bundle of normative relations between the
contracting parts).

Introduction: Assumptions II

Dynamic Norm Specification

• Brewka’s dynamic argument systems:
–Argument systems in which, at any point in the

disputation, participants may start a meta level
debate:

• The rules of order become the current point of
discussion with the intention of altering these rules

Introduction: inspiration

Dynamic Norm Specification

• Protocol participants can alter the rules of
a protocol P during its execution:
–P: object protocol
–Participants start a meta protocol to alter P:

• Add a new rule-set
• Delete an existing one or
• Replace an existing rule-set with a new one

–This can be done recursively

Introduction: the approach I

Dynamic Norm Specification

–Ex. scenario:
• Both object and meta protocols are argumentation

protocols

Introduction: the approach II

Event Calculus

• Event Calculus:
– action language to formalize system specifications for

representing and reasoning about actions or events
and their effects.

• Basic elements:
– Fluent F:

• property that can have different values along time

– Term F=V : fluent F has value V if:
• F=V has been initiated by an action before and
• Not terminated by another action in the meantime.

Kowalski and Sergot ‘86

An Argumentation Protocol

• RTFD* (Rescher’s Theory of Formal
Disputation)
–Argumentation (dispute resolution) protocol
–Formalisation in Event Calculus:

• Roles:
– Proponent: claims the topic of the argumentation
– Opponent
– Determiner

• Proponent starts the protocol (claims the topic)

Formalization I

An Argumentation Protocol

• Protagonists (proponent & opponent) take turns to
perform actions:

• Ag’s action Act is followed by a time period where:
– Ag may not perform any actions,
– The other participants may object to Act

Formalization II

• When the period of the argumentation elapses the
Determiner declares a winner that is:

– The proponent if both participants accept the topic.
– The opponent if proponent does not accept the topic.
– Any of them if the proponent accepts the topic and the

opponent does not

An Argumentation Protocol
Formalization III

A Dynamic Argum. Prot.

• Each protocol level (PL)
has its own protocol state:
– Add a parameter into the

representation:
• Ex.: Claim(Protag,Q, PL)

• Rules of the
argumentation protocol:
– ‘core’: always part of the

protocol specification
– ‘replaceable’: by meta-

protocol during protocol
execution

• Ex: replace the `accept' rule
with the `sic' rule

A dynamic argumentation protocol I

• Rule sets:
– ‘active’: part of the

protocol at given PLs
(ex.:1,2):
holdsAt(active(R)=[0,2],t)

– ‘inactive’.

A Dynamic Argum. Prot.

• Transition protocol
– To start a protocol of level n+1

to modify the protocol rules of level n.
• Example:

– PL=n, a protagonist proposes a modification of the
rules of this protocol level.

• If the protagonist is empowered to propose such a change
then the protocol of level n+1 begins;

• Otherwise the proposal is ignored.
– The topic of the n+1 protocol is the proposed rule

modification
– If the agent that successfully proposed the

modification is declared the winner of the argument of
level n+1 then the rules of level n will be modified.

A dynamic argumentation protocol II

A Dynamic Argum. Prot.

• Replaceable
rule: sic

Animation of a 2-level argument system I

A Dynamic Argum. Prot.

• PL= 0:
– t=0

• proponent = ag1
• Topic Q: “Jack is a

murderer”
– t=14

• New evidence Q' on
Q by ag1: “victim’s
blood on Jack’s
shoe”

• Opponent= ag2
• Ag2 objects to Q'
• Effects of Q’:

premise(agent1 ; on(blood; shoe); 0)=t
premise(agent2 ; on(blood; shoe); 0)=u

• Ag2’s objection
does not block the
effects because Q'
is not objectionable

Animation of a 2-level argument system II

A Dynamic Argum. Prot.

• PL= 0:
– t=14

• sic rule applies:
both protagonists
accept Q'

– t=15 (Ag2 turn to speak)
– t=18:

• Ag2 claims Q'': “Q'
was obtained
illegally “

– t=30 (Ag1 turn to speak)
– t=31

• Ag1 concedes Q''
(but does not
change Q'
acceptance due to
sic)

Animation of a 2-level argument system III

A Dynamic Argum. Prot.

• PL= 0:
– t=45 (Ag2 turn to speak)
– t=46

• Ag2 proposes a rule
change sic ->
sic_ill_info that is
successful:

• PL=1
– t=49:

• proponent = ag2
• Topic Q1: “change sic

for sic_ill_info” to deal
with illegal information

– t=77 Determiner turn
– t=78

• Det declares ag2 the
winner.

Animation of a 2-level argument system IV

A Dynamic Argum. Prot.

• PL=1
– t=78

• Det declares ag2 the
winner:

• PL=0 the rule is changed
– sic becomes inactive at

PL=0
• PL=1

– t=93: PL 1 Ends
• PL=0

– t=94: If retroactive
effects:

• accepts(Ag1,Q',0) !=
true

• accepts(Ag2,Q',0) !=
true

Animation of a 2-level argument system V

Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches
to norm synthesis.
– Off-line norm synthesis.
– Norm emergence
– Norm agreement
– Norm adaptation
– On-line norm synthesis

Contents: Modules

Norm
Synthesis

Adaptation of
Autonomic Electronic Institutions

through norms and institutional agents

Eva Bou, Maite López-Sánchez, J. A. Rodríguez-Aguilar
Institut d’Investigació en Intel·ligència Artificial (IIIA-CSIC)

Universitat de Barcelona (UB)

Research Paper 3

• Electronic Institution: regulated virtual
environment where agents interact

• Autonomic Electronic Institution:
 <PS, N, DF, G, Pi, Pe, Pa, V, δ, γ>

Autonomic Electronic Institution

• N: set of Norms, norm Ni has parameters <pN
i1, …. , pN

imi
>

• G = {c1, …, cp} set of institutional Goals
 defined as constraints: ci is an expression gi(V) ⊲ [mi, Mi]
• δ : N x G x V N normative transition function, to
adapt to changing circumstances

 AEI

Learning Model
Genetic Algorithm

• Adapt δ, γ to A

Agent
population

I1

Ij

Ik

Configurations

Learning Model II
Genetic Algorithm

learn γ

learn δ

• Adapt δ, γ to A

Agent
population

Case Study

• Traffic Regulation Authority as an AEI.
– Simulation: Simma MAS tool
– We focus on a two-road junction (traffic scene)

• Cars: external agents
• Agents’ institutional state:
 Pa = <a1, …, an>,
 aj represents Aj

Traffic Control

aj = <xj, yj, hjx, hjy, speedj,

 indicatorj, offensesj,
accidentsj, distancej,
pointsj>

Traffic AEI

• Norms:
– Have associated penalties (point reductions).
– Related to actions performed by cars:

• Right priority norm
• Front priority norm

Norms

Traffic AEI IV

• Car agents decide wheter to comply with a norm
based on four parameters:

• Institutional agents in the traffic scene represent
Traffic Authority employees (police agents).

<fulfill_prob, high_punishment, inc_prob, police>

Agents & Norms

Traffic AEI VI

• Goals:
– constraints upon a combination of reference values:

– gi function over the reference values
– degree of satisfaction of a goal f(x,[m,M],µ)

Goals I

m=20, M=40, µ=0.5, k=0.75

Traffic AEI VII

• Fitness function to combine multiple goals:

– wi weighting factors

Goals II

Results
Learning

Results II

Results III

AEI learns traffic norms that fulfill its goals
for different agent populations

Future Work

• Extend institutional adaptation capabilities to

dynamically adapt to any change in the
population.
– CBR approach

• Develop a more complex traffic network:
– decentralized approach where different areas (i.e.,

junctions) are regulated by different institutions.

Self-adaptation in
Autonomic Electronic Institutions through

Case-Based Reasoning

 Adapting Autonomic Electronic Institutions
to Heterogeneous Agent Societies

Eva Bou, Maite López-Sánchez, J. A. Rodríguez-Aguilar
Institut d’Investigació en Intel·ligència Artificial (IIIA-CSIC)

Universitat de Barcelona (UB)

Eva Bou, Maite López-Sánchez, J. A. Rodríguez-Aguilar, Jaime S. Sichman
IIIA-CSIC, UB, Univ. de Sao Paulo

Research Paper 4

Learning Model

• Adapt δ, γ to A
 1st step: Genetic Algorithms (GA)

Lean best parameters for prototypical agent populations

2nd step: Case-Based Reasoning (CBR)
Adapt to any agent population

–CBR: Solves new problems reusing past experiences:
– uses solutions from similar problems previously learnt
 (cases).

– Problem: given the current agent population, provide
the best parameters so to accomplish institutional goals.

General Process

Learning Model

• Case similarity function: (distance)
– Aggregated function:

–attribute distance:

CBR: Case Retrieval

Traffic AEI
Learning: Genetic Algorithm

learn γ

learn δ

Agent
population

j

*j

Traffic AEI

• Case definition
– Np : norm parameters (fineright, finefront)

– PSp: performative structure parameter (police)

– V: reference values (col, crash, off, block, expel)
– pop: statistic data about agent population’s behaviour

(meanOff, medianOff, …)
– Np*: norm parameters’ best values (fine*right, fine*front)

– PSp*: performative structure parameter’s best value (police*)

Learning: Case Base Reasoning

• Case generation:
– 7 prototypical populations
– AEI’s 108 (=6x6x3) different parameters:

• fineright , finefront ∈ {0, 3, 6, 9, 12, 15}

• police ∈ { 0.8, 0.9, 1 }

Empirical Evaluation
Building the Knowledge Base

756 cases
2000 ticks each

• Can the AEI adapt to any agent population?
– Experimental setting:

• Initially: fineright = finefront=0 and police=0.8
• Population A = Pop1 ….Pop15 , Population B = Pop7
• Every step AEI checks if adaptation is required

– If Goals are not satisfied (G<G*-ε)  Retrieve a case from the KB

Empirical Evaluation
Case Retrieval

(1 step = 2000 ticks)

• Can the AEI satisfy its goals?
– G ≥ G*- ε
– 750 experiments:

• 15 pop x 50 runs

Empirical Evaluation
Case Retrieval Evaluation

• Can the AEI satisfy its goals?
– Most times YES

• Number of experiments stabilized in first 10 steps (population
A = Pop1 …Pop15):

• Number of experiments stabilized in last 10 steps (change to

population B = Pop7):

Empirical Evaluation
Case Retrieval Evaluation

Adaptive Organisation-Centred
Multi-Agent Systems

Jordi Campos Miralles

Summary of Ph.D. Dissertation

Barcelona, July 2011

Supervisors:
 Maite López-Sánchez (Universitat de Barcelona, UB)
 Marc Esteva (Institut d'Intel·ligència Artificial, IIIA-CSIC)

AOCMAS approach
● Abstract architecture with 2 levels:

● a Domain-Level (DL) = agents organised to
perform domain's activity

G
oals

D
L

O
rg

D
L

…
agDL

1 agDL
m

agDL
k agDL

p

…

…

EnvDL

ProtsDL NormsDL
∘−−−−
∘−−−− role1

rolei

rolem

SocStrDL
relj relk

groupl

SocConvDL

DetecPolDL

cluster1 clustern

Domain Level

● and a Meta-Level (ML) = agents (assistants) organised
to assist DL (eg. to adapt its org.)

Interface EnvPDL, AgPDL, OrgDL OrgDL'

G
oals

M
L

O
rg

M
L

… agML
1 agML

n

EnvML
ProtsML NormsML

∘−−−−
∘−−−− role1

rolei

rolem

SocStrML
relj relk

groupl

SocConvML

DetecPolML

D
L

O
rg

D
L

…
agDL

1 agDL
m

agDL
k agDL

p

…

…

EnvDL

ProtsDL NormsDL
∘−−−−
∘−−−− role1

rolei

rolem

SocStrDL
relj relk

groupl

SocConvDL

DetecPolDL

cluster1 clustern

AOCMAS approach
Meta Level

2-LAMA

● Hence we call this abstract architecture:
Two-Level Assisted MAS Architecture (2-LAMA)

System

Interface EnvPDL, AgPDL, OrgDL OrgDL'

G
oals

M
L

O
rg

M
L

… agML
1 agML

n

EnvML
ProtsML NormsML

∘−−−−
∘−−−− role1

rolei

rolem

SocStrML
relj relk

groupl

SocConvML

DetecPolML

D
L

O
rg

D
L

…
agDL

1 agDL
m

agDL
k agDL

p

…

…

EnvDL

ProtsDL NormsDL
∘−−−−
∘−−−− role1

rolei

rolem

SocStrDL
relj relk

groupl

SocConvDL

DetecPolDL

cluster1 clustern

2-LAMA: adaptation

● αN: EnvPDL x AgPDL x NormDLx GoalsDL→ NormDL
 Norm adaptation function

System

Interface EnvPDL, AgPDL, OrgDL OrgDL'

G
oals

M
L

O
rg

M
L

… agML
1 agML

n

EnvML
ProtsML NormsML

∘−−−−
∘−−−− role1

rolei

rolem

SocStrML
relj relk

groupl

SocConvML

DetecPolML

D
L

O
rg

D
L

…
agDL

1 agDL
m

agDL
k agDL

p

…

…

EnvDL

ProtsDL NormsDL
∘−−−−
∘−−−− role1

rolei

rolem

SocStrDL
relj relk

groupl

SocConvDL

DetecPolDL

cluster1 clustern

2-LAMA: distributed

● αN: EnvPDL x AgPDL x NormDLx GoalsDL→ NormDL
● αN = βαN ({α1

N..αn
N}) agreement function

System

Interface EnvPDL, AgPDL, OrgDL OrgDL'

G
oals

M
L

O
rg

M
L

… agML
1 agML

n

EnvML
ProtsML NormsML

∘−−−−
∘−−−− role1

rolei

rolem

SocStrML
relj relk

groupl

SocConvML

DetecPolML

D
L

O
rg

D
L

…
agDL

1 agDL
m

agDL
k agDL

p

…

…

EnvDL

ProtsDL NormsDL
∘−−−−
∘−−−− role1

rolei

rolem

SocStrDL
relj relk

groupl

SocConvDL

DetecPolDL

cluster1 clustern

2-LAMA: information

● αi
N: EnvPi x AgPi x (SumPj)n-1 x Norms x Goals → Norms

Local Remote = summaries of other local info. Information:

System

Interface EnvPDL, AgPDL, OrgDL OrgDL'

G
oals

M
L

O
rg

M
L

… agML
1 agML

n

EnvML
ProtsML NormsML

∘−−−−
∘−−−− role1

rolei

rolem

SocStrML
relj relk

groupl

SocConvML

DetecPolML

D
L

O
rg

D
L

…
agDL

1 agDL
m

agDL
k agDL

p

…

…

EnvDL

ProtsDL NormsDL
∘−−−−
∘−−−− role1

rolei

rolem

SocStrDL
relj relk

groupl

SocConvDL

DetecPolDL

cluster1 clustern

Adaptation steps

● adaptation frequency should keep the
adapt. cost below the benefits it generates.

– This cost depends on: information retrieval,
computation, adoption and transition.

an a1 an a1

M
L an a1

agsP1
C,

envP1
C

Local information

M
L

sumP1

sumPn

Remote information

M
L

Local decision
αi

N ⇒ vote1

αi
N ⇒ voten

M
L

norms

Final decision

βA
N

an a1

D
L

p1
…

cluster1 clustern

pm

pk

pz

D
L

p1
…

cluster1 clustern

pm

pk

pz
D

L

p1
…

cluster1 clustern

pm

pk

pz

D
L

p1
…

cluster1 clustern

pm

pk

pz

βA
N

agsPn
C,

envPn
C …

… … … …
votes

P2P sharing network

p1

ISP3 ISP1

inet
.
.
.

individual

aggregated

p12

p9 .
.
.

p4
ISP2

p5 p8

cluster

.

.

.

. . .

● P2P data sharing network:
– to share 1 piece of data among all computers

(peers) following a simplified version of the
standard BitTorrent protocol, consuming the
minimum time (goal).

data
Case Study

P2P as an OCMAS

p1

ISP3 ISP1

inet
.
.
.

individual

aggregated

p12

p9 .
.
.

p4
ISP2

p5 p8

cluster

.

.

.

. . .

● OCMAS view:
– Comput. = Agents
– Net = Environment
– Protocols, Social struc., Restrictions = Org.

data

P2P as an AOCMAS

p1

ISP3 ISP1

inet
.
.
.

individual

aggregated

p12

p9 .
.
.

p4
ISP2

p5 p8

cluster

.

.

.

. . .

● AOCMAS view:
– Comput. = Agents
– Net = Environment
– Protocols, Social struc., Restrictions = Org.

data

Adaptation to
env./pop.

changes may
improve perf.

Network abstraction

● Network: packet switching transport
– Msgs split into packets that share links in time

r1 r0

r2

r3

p1

p3

p2

p5 p7 p6 p8

p12

p10

p11

p9

aggregated

ISP

inet

individual
cluster

p4

Network abstraction

● Network: packet switching transport
– Msgs split into packets that share links in time

● msglatency = f(msg.length, #links, links.usage)

r1 r0

r2

r3

p1

p3

p2

p5 p7 p6 p8

p12

p10

p11

p9

aggregated

ISP

inet

individual
cluster

p4

a1 a2 a3

p1
p2

p3

r1 r0

r2

r3

na2

na3 na1
n1

n3
n2

n5 n7 n6 n8

n12

n10

n11

n9

aggregated
ISP

inet

individual

p9
p10

p11
p12 p5 p6 p7 p8

.

.

.

.

.

.

.

.

.

p4

n4

2-LAMA on P2P scenario

a1 a2 a3

p1
p2

p3

r1 r0

r2

r3

na2

na3 na1
n1

n3
n2

n5 n7 n6 n8

n12

n10

n11

n9

aggregated
ISP

inet

individual

p9
p10

p11
p12 p5 p6 p7 p8

.

.

.

.

.

.

.

.

.

p4

n4

2-LAMA on P2P scenario

DL norms:

normFR: “a peer
cannot send data to

>maxFR simult.”

e.g. maxFR = 2

a1 a2 a3

p1
p2

p3

r1 r0

r2

r3

na2

na3 na1
n1

n3
n2

n5 n7 n6 n8

n12

n10

n11

n9

aggregated
ISP

inet

individual

p9
p10

p11
p12 p5 p6 p7 p8

.

.

.

.

.

.

.

.

.

p4

n4

2-LAMA on P2P scenario

DL norms:

normFR: “a peer
cannot send data to

>maxFR simult.”

normBW: “a peer
cannot use >maxBW

bandwidth.”

e.g. maxBW = 75%

Simulator

Visual representation of Meta-Level and Domain-Level activity.

Adaptation Mechanisms

M
L

D
L

org
D

L

agDL
i

normsDL

∘−− paramx −
∘− paramy −−

rolel

rolem

socStrDL
reln

socConvDL

agDL
k agDL

j instances

αRels αN = optimiseLatencies =
cbr

heuristic
AssistF

Norm Adaptation: CBR

• αi
N : KnowP × Goals × Norms → Norms

 State relation

• Idea: to use machine learning to learn this relation.
• Issues:

• unknown appropriate norms
• credit assignment problem
• large state space

 a tailored version of Case-Based Reasoning (CBR)

M
L αRels αN = optimiseLatencies =

cbr

heuristic
AssistF

Tailored CBR: a case
● Case:

– Problem:
● sharing state: Completeness, Waiting
● comm. capacity: SrvBW, RcvBW, RcvEffBW
● current norms: OldMaxFR, OldMaxBW
● absolute values in order to normalise: SeedBW, LeechBW, NumPeers

– Solution:
● new norms: NewMaxFR, NewMaxBW

– Evaluation:
● effectiveness of the solution: Goodness

Tailored CBR

to fetch
similar
cases

New problem

to extract
a single
solution to update

case-base

to apply the
new solution

to eval

Case
-Prob'

- ∅
- ∅

Case
-Prob

Case
-Prob

Cases
-Prob
-Sol
-Eval

Case
-Prob'
-Sol'
- ∅

Case
-Prob'
-Sol'
-Eval'

Scenario

Retrieve

Case
-Prob

Case
-Prob

Cases
-Prob
-Sol
-Eval

Reuse Retain

Revise

Case
-Prob'

- ∅
- ∅

Retrieved cases

Suggested
solution

via voting (βA
N)

Scenario

Confirmed
solution

-Sol'
Outcome

Case-Base

Similarity
Adapt.
& Heu.

Vocabulary

Case

Knowledge

to provide
a new

situation

Simulator

Visual exploration of norm evolution.

BT

Coordination Models: BT

r1 r0

r2

r3

p1

p3

p2

p5 p7 p6 p8

p12

p10

p11

p9 tracker

p4

t

●Name: BitTorrent standard protocol (BT)
●Type: non-adaptive coordination model

●Observations:
● we use it as a base-line

● it has a single Tracker (~ directory service)
● it has a random factor

Coord. Models: 2L-CBR

P2 P3 P4 … P12

Training Test

2LAMA-CBR 2L-S-N-Heu BT

P1

CB CB CB

…

P1 P2 P3 … P11 P12

P1
…

Test

P1 P3 P4 … P12 P2

…
…

P1

P12

P2

Test

P3 P4 P2 … P12

P12 P4 P3 … P2

P1
P1

P12

P2
… …

#execs.

= = =

12 600
(50·12=600)

600
(50·12=600)

50
perm

utations

12 ≠ initial data position

50 repetitions

…
…

2L-S

Test

P1

P12

P2

…

=

12

training ex.: 6600
 (600·11=6600)

- Name: 2-LAMA with social
relationships adaptation and

Norm adaptation using
a CBR approach (2L-S-N-CBR)

-Type: adaptive coord. model

Observations:

● dynamic adaptation method
● requires training

● the order of
initial data positions during

the training is relevant

Results

tim
e

2LAMA-CBR 2L-S-N-Heu BT

986.2

2L-S

793.1 744.5 732.6

net 206,592.0 338,448.3 306,755.0 348,399.6

netSat

0.177 1.813 2.126 1.846

2LAMA-CBR is the fastest.
 results statistically significants

2LAMA-CBR is uses the
network most.

2LAMA-CBR learns to use
intensively the network
without achieving too

much saturation.

Results

2LAMA-CBR learns to use intensively the network without
achieving too much saturation.

P
articular exam

ple (datum
 in p3):

Results

CBR learns: ▼maxFR does not always imply ▼netSat.

Example:
 If a source is serving to some agents with smaller BW, ▼maxFR may

saturate receivers' individual links.

pk

pl

inet
pk

inet

maxFR=2 maxFR=1

▼maxFR

pi pi

sat

2LAMA-CBR learns to use intensively the network without
achieving too much saturation.

Exploring Open MAS issues
● Preliminary results about:

● Entering / Leaving agents
● Norm violations

 2-LAMA is robust in Open MAS contexts.

tim
e

2LAMA-CBR 2L-S-N-Heu BT

1220.7

2L-S

847.9 822.8 805.5

2LAMA-CBR is still the fastest
has a moderate time increment

Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches
to norm synthesis.
– Off-line norm synthesis.
– …

3. On-line automatic norm
synthesis.

4. Demo and hands-on
activity

Contents: Modules

Norm
Synthesis

Norm set-up

• Norm synthesis: (Shoham & Tennenholtz)

– Formal, exhaustive, NP-complete

– Disallow (& ensure) access to undesirable (&

goal) states in the state space

Related Work: Open
Challenges

Norm set-up

• Norm synthesis: (Shoham & Tennenholtz)

– Formal, exhaustive, NP-complete

– Disallow (& ensure) access to undesirable (&

goal) states in the state space

• Norm agreement: (Artikis et al.)

– Democratic, convergence

– Agents enriched with agreement capabilities.

Related Work: Open
Challenges

Norm set-up

• Norm emergence: (Conte, Sen, Villatoro,...)

– Ex: driving on the left/right

– Convergence (initial conditions)

– Agents choose a solution from a space of

alternative solutions (known at design time)

• Repeated two-player games

• Topology of relationships

• Observation for norm adoption / Internalisation

Related Work II: Open Challenges

Norm set-up

• Automatic norm generation
– Regulatory agents propose norms
 to avoid conflicts in agent interactions

• Requires conflict detection

• Does not search the complete state space

– Norm evaluation based on

• Agent responses (violations and compliances)

• Consequences (conflicts)

A proposal

Norm Generation
A proposal

Norm Generation
A proposal

Norm Generation
A proposal

proposal

Social Norms

Norm Generation
A proposal

proposal

evaluation

Social Norms

Norm Generation
A proposal

proposal

evaluation

Norm
compliance

C
on

se
qu

en
ce

s

N
N
N

N

Social Norms

meaning

Norm Generation
A proposal

proposal

evaluation

Top-down

Bottom-up

Social Norms

Goal: conflict avoidance

Dynamicity

Division of concerns

Presentation

• Non-intrusive, autonomy
preserving, norm generation
mechanism
– Norm quality measured based on

• System objectives

– Norm compliance/violation
evaluated in terms of

• System Objectives
• (No prescribed penalties)

– General system objective:
• Avoid conflicts

Our claim

 Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches to
norm synthesis.

3. On-line automatic norm
synthesis.
– AAMAS 2013.
– AAMAS 2014

4. Demo and hands-on activity

Norm
Synthesis

Automated Synthesis of Normative Systems

Javier Morales, Maite López-Sánchez, Juan A. Rodríguez-
Aguilar, Michael Wooldridge, Wamberto Vasconcelos

 1. Introduction

Individuals within a society
continuously interact 
Conflicts raise naturally

 1. Introduction

Individuals within a society
continuously interact 
Conflicts raise naturally

Human societies avoid undesirable
situations (i.e., conflicts) by including

regulations.

 1. Introduction

Likewise human societies, we can avoid conflicts in a Multi-Agent
System (MAS) by including regulations.

Possible approach: Off-line norm design.
1. Generate all system states (off-line).
2. Identify undesired system states.
3. Synthesise norms to avoid undesired states.

Not feasible for Open Multi-agent Systems

1. Large scenario  Impossible to generate all system states.
2. Uncertainty  We do not know agents’ behaviour
3. Dynamic systems  System changes along time.

 1. Introduction

Research problem: How to synthesise a
normative system that helps a MAS to avoid
undesirable states (conflicts)?

 2. Research problem and approach

Assumption: Uncertainty about the MAS composition and agents’
behaviour  We cannot design the normative system off-line.

Our approach: An on-line mechanism for the automated synthesis
of normative systems for MAS.

 2. Research problem and approach

MAS
interaction

 2. Research problem and approach

MAS
interaction Sensing

agents
actions

 2. Research problem and approach

On-line norm
synthesis

MAS
interaction Sensing

conflicts

agents
actions

 2. Research problem and approach

On-line norm
synthesis

MAS
interaction Sensing

conflicts norms

agents
actions

 2. Research problem and approach

On-line norm
synthesis

MAS
interaction Sensing

conflicts norms

agents
actions

 2. Research problem and approach

On-line norm
synthesis

MAS
interaction Sensing

conflicts norms

agents
actions

 2. Research problem and approach

On-line norm
synthesis

MAS
interaction Sensing

conflicts norms

agents
actions

 2. Research problem and approach

On-line norm
synthesis

MAS
interaction Sensing

conflicts norms

agents
actions

 2. Research problem and approach

On-line norm
synthesis

MAS
interaction Sensing

conflicts norms

agents
actions

MAS interaction example = Simulated discretized traffic intersection:
• Agents are cars.
• Conflicts are collisions among cars.
• MAS goal is to avoid collisions among cars.

 3. Scenario: The traffic intersection

Simulated traffic intersection scenario

 4. Automated Synthesis of Normative Systems

On-line norm
synthesis

MAS
interaction Sensing

conflicts norms

agents
actions

1. Conflict detection by MAS observation.

 4. Automated Synthesis of Normative Systems

1. Conflict detection by MAS observation.

2. For each detected conflict  Synthesis of new norms.
• New norms are aimed to avoid the conflict in the future.

 4. Automated Synthesis of Normative Systems

1. Conflict detection by MAS observation.

2. For each detected conflict  Synthesis of new norms.
• New norms are aimed to avoid the conflict in the future.

 But… are synthesised norms good enough for avoiding conflicts?

 4. Automated Synthesis of Normative Systems

1. Conflict detection by MAS observation.

2. For each detected conflict  Synthesis of new norms.
• New norms are aimed to avoid the conflict in the future.

3. Evaluation of synthesised norms.

1. Are synthesised norms effective?
2. Are they really necessary?

 4. Automated Synthesis of Normative Systems

We evaluate the performance of norms in base of their effectiveness
and necessity:

• Effectiveness: Do norms avoid conflicts when agents comply with

them?
• Necessity: Do conflicts arise when agents do not comply with

norms?

 4. Automated Synthesis of Normative Systems

Effectiveness:

Consider the following norms…

1. Give way to your left.

2. Never give way.

 4. Automated Synthesis of Normative Systems

Effectiveness:

Consider the following norms…

1. Give way to your left.

2. Never give way.

IF Agents apply it, NO collisions arise  EFFECTIVE norm

 4. Automated Synthesis of Normative Systems

Effectiveness:

Consider the following norms…

1. Give way to your left.

2. Never give way.

IF Agents apply it, collisions arise  INEFFECTIVE norm

IF Agents apply it, NO collisions arise  EFFECTIVE norm

 4. Automated Synthesis of Normative Systems

Necessity:

Consider the following norms…

1. Give way to your left.

2. Stop if you do not perceive any car.

 4. Automated Synthesis of Normative Systems

Necessity:

Consider the following norms…

1. Give way to your left.

2. Stop if you do not perceive any car.

IF Agents violate it, collisions arise  NECESSARY norm

 4. Automated Synthesis of Normative Systems

Necessity:

Consider the following norms…

1. Give way to your left.

2. Stop if you do not perceive any car.

IF Agents violate it, no collisions arise  UNNECESSARY norm

IF Agents violate it, collisions arise  NECESSARY norm

 4. Automated Synthesis of Normative Systems

1. Conflict detection by MAS observation.

2. For each detected conflict  Synthesis of new norms.
• New norms are aimed to avoid the conflict in the future.

3. Evaluation of synthesised norms.

1. Are synthesised norms effective?
2. Are they really necessary?

 4. Automated Synthesis of Normative Systems

1. Conflict detection by MAS observation.

2. For each detected conflict  Synthesis of new norms.
• New norms are aimed to avoid the conflict in the future.

3. Evaluation of synthesised norms.

1. Are synthesised norms effective?
2. Are they really necessary?

4. Refinement of norms. Norms that do not perform well
(ineffective and unnecessary norms) are removed.

 4. Automated Synthesis of Normative Systems

Normative
system

IRON Machine

views

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

IRON (Intelligent Robust On-line Norm synthesis mechanism) solves
the on-line automated norm synthesis problem.

 4. IRON: Automated Synthesis of Normative Systems

Scenario-
dependant

inputs

Normative
system

IRON Machine

views

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

IRON (Intelligent Robust On-line Norm synthesis mechanism) solves
the on-line automated norm synthesis problem.

 4. IRON: Automated Synthesis of Normative Systems

Scenario-
dependant

inputs

Normative
system

IRON Machine

views

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

IRON (Intelligent Robust On-line Norm synthesis mechanism) solves
the on-line automated norm synthesis problem.

 4. IRON: Automated Synthesis of Normative Systems

Scenario-
dependant

inputs

Normative
system

IRON Machine

views

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

IRON (Intelligent Robust On-line Norm synthesis mechanism) solves
the on-line automated norm synthesis problem.

 4. IRON: Automated Synthesis of Normative Systems

Scenario-
dependant

inputs

Normative
system

IRON Machine

views

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

IRON (Intelligent Robust On-line Norm synthesis mechanism) solves
the on-line automated norm synthesis problem.

 4. IRON: Automated Synthesis of Normative Systems

Scenario-
dependant

inputs

Normative
system

IRON Machine

views

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

IRON (Intelligent Robust On-line Norm synthesis mechanism) solves
the on-line automated norm synthesis problem.

 4. IRON: Automated Synthesis of Normative Systems

Scenario-
dependant

inputs

How norms look
like in IRON?

A norm is an IF … THEN … rule like:

<left(car-to-right)&front(-)&right(-), obl(stop)>

• IRON synthesises norms from the agents’perspective  Agents can
understand norms.

• Whenever the local perception of a agent satisfies the precondition (IF)
of a norm, then the norm applies to the agent.

 4. IRON: Automated Synthesis of Normative Systems

A norm is an IF … THEN … rule like:

<left(car-to-right)&front(-)&right(-), obl(stop)>

Formally, a norm is of the form <ϕ, Ѳ(ac)>
• ϕ is the precondition.
• ac is an action available to the agents.
• Ѳ(ac) is a deontic operator.

To synthesise norms, IRON uses a BNF grammar:
 Norm ::= <ϕ, Ѳ(ac)>
 ϕ ::= <ϕ & ϕ> | α
 Ѳ ::= obl | perm | prh
 Ac ::= ac1 | ac2 | … | acn
 α ::= pn(τ1 ,…,τn)

 4. IRON: Automated Synthesis of Normative Systems

Normative
system

IRON Machine

views

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

inputs

IRON (Intelligent Robust On-line Norm synthesis mechanism) solves
the on-line automated norm synthesis problem.

 4. IRON: Automated Synthesis of Normative Systems

IRON Machine
I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

 4. IRON: Automated Synthesis of Normative Systems

IRON Machine
I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Normative
Network

 4. IRON: Automated Synthesis of Normative Systems

IRON Machine
I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Control Unit

Operators
Strategy

Normative
Network

read

write

 4. IRON: Automated Synthesis of Normative Systems

IRON Machine
I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Control Unit

Operators
Strategy

Normative
Network

read

write

 4. IRON: Automated Synthesis of Normative Systems

 4. IRON: The Normative Network

• Data structure to represent explored norms.
• Nodes stand for norms.
• Edges stand for generalisation relationships between norms.

• A normative network represents a normative system Ω as its active norms.

n1

Normative Network

n2 n3

n4

Active Inactive

Ω = {n4}

Normative System

 4. IRON: The Normative Network

n1: Give way to police cars

n1

Normative Network

n2 n3

n4
Ω = {n4}

Normative System

 n2: Give way to fire-trucks n3: Give way to ambulances

n4: Give way to emergency vehicles

IRON Machine
I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Control Unit

Operators
Strategy

Normative
Network

read

write

 4. IRON: Automated Synthesis of Normative Systems

Operators apply changes to the Normative Network  Transitions
from one normative system to another.

 4. IRON: Operators

Operators apply changes to the Normative Network  Transitions
from one normative system to another.

 4. IRON: Operators

create: Synthesises a norm and
adds it to the normative network

Active Inactive

n1 n2 n1

NN0 NN1

Ω={n1} Ω={n1,n2}

Operators apply changes to the Normative Network  Transitions
from one normative system to another.

 4. IRON: Operators

create: Synthesises a norm and
adds it to the normative network

Active Inactive

n1 n2 n1

NN0 NN1

Ω={n1} Ω={n1,n2} Ω={n1,n2} Ω={n1}

n1 n1

NN0 NN1

n2 n2

deactivate: Deactivates a norm
in the normative network

Operators apply changes to the Normative Network  Transitions
from one normative system to another.

 4. IRON: Operators

generalise: Generalises a set of
norms into a parent norm

Active Inactive

n1

NN0 NN1
n3

n1 n2

Ω={n1,n2} Ω={n3}

n2

Operators apply changes to the Normative Network  Transitions
from one normative system to another.

 4. IRON: Operators

generalise: Generalises a set of
norms into a parent norm

Active Inactive

n1

NN0 NN1 NN0 NN1

specialises: Undoes a norm
generalisation

n3

n1 n2

n3

n1 n2

n3

n1 n2

Ω={n1,n2} Ω={n3} Ω={n3} Ω={n1,n2}

n2

IRON Machine
I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Control Unit

Operators
Strategy

Normative
Network

read

write

 4. IRON: Automated Synthesis of Normative Systems

1. Conflict detection from perceptions of the MAS.

2. Norm Synthesis: For each detected conflict, it uses operator
create to synthesise norms.

3. Norm evaluation: Evaluates norms effectiveness and necessity
based on their outcomes in the MAS.

4. Norm refinement: Deactivates ineffective and unnecessary
norms by means of operator deactivate. Generalises and
specialises norms using operators generalise and specialise.

 4. IRON: Strategy

1. Conflict detection from perceptions of the MAS.

2. Norm Synthesis: For each detected conflict, it uses operator
create to synthesise norms.

3. Norm evaluation: Evaluates norms effectiveness and necessity
based on their outcomes in the MAS.

4. Norm refinement: Deactivates ineffective and unnecessary
norms by means of operator deactivate. Generalises and
specialises norms using operators generalise and specialise.

 4. IRON: Strategy

Creation of new norms  Based on experience

We require an AI technique to store experiences and their
solutions, and learn from them.

Case Based Reasoning (CBR). Solving problems based on the following principle:
• Similar problems have similar solutions.

Case base: Experience is stored in the formof
cases, each case with its solution.

Whenever we want to solve a new problem (case):
Quan volem resoldre un nou problema (cas):

1. Build new description of the case
2. Search into the case base for the most similar

problem.
3. Adapt its solution to the new case.
4. Revise the solution: Does it work?
5. If the new case is relevant and its solution

works, store new case.

 4. IRON: Strategy. Norm synthesis

Case Based Reasoning (CBR). Solving problems based on the following principle:
• Similar problems have similar solutions.

Case base: Experience is stored in the formof
cases, each case with its solution.

Whenever we want to solve a new problem (case):
Quan volem resoldre un nou problema (cas):

1. Build new description of the case
2. Search into the case base for the most similar

problem.
3. Adapt its solution to the new case.
4. Revise the solution: Does it work?
5. If the new case is relevant and its solution

works, store new case.

Problem: CBR requires a human to revise solutions and evaluate how good they are.
In our case... Unsupervised CBR.

 4. IRON: Strategy. Norm synthesis

Initially empty
Case Base

Case Base

New Conflict
description arrives

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

Initially empty
Case Base

Case Base

Search for a
similar situation

New Conflict
description arrives

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

Unsupervised CBR System

Initially empty
Case Base

No similar
case is found

Case Base

Search for a
similar situation

New Conflict
description arrives

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

Unsupervised CBR System

Initially empty
Case Base

No similar
case is found

Case Base

Search for a
similar situation

New Conflict
description arrives

Generate a new
random solution

Store new case

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

Unsupervised CBR System

Initially empty
Case Base

No similar
case is found

Case Base

Search for a
similar situation

New Conflict
description arrives

Generate a new
random solution

Store new case

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

Case composition

Conflict Description

Case Base

 View vs
t-1 View vs

t

 4. IRON: Strategy. Norm synthesis

Case composition

Case Base

Case Description

Case 1

Case Solution List

 View vs
t-1 View vs

t Solution

 4. IRON: Strategy. Norm synthesis

Case composition

Case Base

Case Description

Case 1

Case Solution List

STOP obligation to ONE of collided cars

 View vs
t-1 View vs

t Solution

 4. IRON: Strategy. Norm synthesis

Case composition

Case Base

Case Description

Case 1

Case Solution List

 View vs
t-1 View vs

t Solution

 4. IRON: Strategy. Norm synthesis

Consider the following conflict:

 4. IRON: Strategy. Norm synthesis

 View at time t-1 View at time t

Conflicting agents: {ag1, ag2}
Agent actions (t-1  t):

{ag1: Go, ag2: Go}

ag1

ag2

New norm

Consider the following conflict:

 4. IRON: Strategy. Norm synthesis

 View at time t-1 View at time t

Conflicting agents: {ag1, ag2}
Agent actions (t-1  t):

{ag1: Go, ag2: Go}

ag1

ag2

New norm

Consider the following conflict:

 4. IRON: Strategy. Norm synthesis

 View at time t-1 View at time t

Conflicting agents: {ag1, ag2}
Agent actions (t-1  t):

{ag1: Go, ag2: Go}

Prh(Go)

ag1

ag2

New norm

Unsupervised CBR System

Initially empty
Case Base

No similar
case is found

Case Base

Search for a
similar situation

New Conflict
description arrives

Generate a new
random solution

Store new case

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

Unsupervised CBR System

Initially empty
Case Base

No similar
case is found

A similar case
is found

Case Base

Search for a
similar situation

New Conflict
description arrives

Generate a new
random solution

Store new case

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

Unsupervised CBR System

Initially empty
Case Base

Generate a new
random solution

Adapt best solution
to solve the current

conflict

Store new case

Case Base

Search for a
similar situation

New Conflict
description arrives

No similar
case is found

A similar case
is found

 vs
t-1 vs

t

 4. IRON: Strategy. Norm synthesis

1. Conflict detection from perceptions of the MAS.

2. Norm Synthesis: For each detected conflict, it uses operator
create to synthesise norms.

3. Norm evaluation: Evaluates norms effectiveness and necessity
based on their outcomes in the MAS.

4. Norm refinement: Deactivates ineffective and unnecessary
norms by means of operator deactivate. Generalises and
specialises norms using operators generalise and specialise.

 4. IRON: Strategy

Norm Generalisation Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

Norms are evaluated based on the conflicts that arise after agents
apply/violate them.

Consider a car c1 and a norm n1 to avoid collisions

a. If c1 applies n1 and collides  Ineffective norm.
b. If c1 applies n1 and does not collide  Effective norm.
c. If c1 violates n1 and does not collide  Unnecessary norm.
d. If c1 violates n1 and collides  Necessary norm.

)()(
)(),(

nmnm
nmtnr

CCCC

CC

AAAA

AA
eff

⋅+⋅
⋅

ωω
ω

),()1,()1(),(tnrtntn effeffeff ⋅+−⋅−= αµαµ),()1,()1(),(tnrtntn necnecnec ⋅+−⋅−= αµαµ

)()(
)(),(

nmnm
nmtnr

CCCC

CC

VVVV

VV
nec

⋅+⋅
⋅
ωω

ω

Effectiveness Necessity

 4. IRON: Norm evaluation

1. Conflict detection from perceptions of the MAS.

2. Norm Synthesis: For each detected conflict, it uses operator
create to synthesise norms.

3. Norm evaluation: Evaluates norms effectiveness and necessity
based on their outcomes in the MAS.

4. Norm refinement: Deactivates ineffective and unnecessary
norms by means of operator deactivate. Generalises and
specialises norms using operators generalise and specialise.

 4. IRON: Strategy

For each norm:

1. IF its effectiveness OR necessity

is under a deactivation
threshold, then specialise the
norm if it is general, or
deactivate it if it’s a leave.

2. IF its effectiveness AND
necessity is above a
generalisation threshold, then
try to generalise.

 4. IRON: Strategy. Norm refinement

n1

NN0 NN1

NN0 NN1

n3

n1 n2

n3

n1 n2

n3

n1 n2

Ω={n3} Ω={n1,n2}

Ω={n1,n2} Ω={n3}

specialise

generalise

Norm Generalisation

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System 4. IRON: Strategy. Norm generalisation

Norm Generalisation

*

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System 4. IRON: Strategy. Norm generalisation example

Norm Generalisation

*
Generalitzed
(Deactivation)

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System 4. IRON: Strategy. Norm generalisation example

Norm Generalisation

*

*

…

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

 4. IRON: Strategy. Norm generalisation example

Norm Generalisation

*

*

…

* * Left hand side
Priority norm

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

 4. IRON: Strategy. Norm generalisation example

Norm Generalisation

*

*

…

* *

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

 4. IRON: Strategy. Norm specialisation example

Norm Generalisation

*

*

…

* *

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

 4. IRON: Strategy. Norm specialisation example

Norm Generalisation

*

*

…

* *

Child norms
Are activated

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

Specialise the
General norm

 4. IRON: Strategy. Norm specialisation example

Norm Generalisation

*

*

…

* *

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

Specialise
The norm

 4. IRON: Strategy. Norm specialisation example

Norm Generalisation

*

*

…

* *

Norm Generalisation Translation of case solutions to norms Translation of case solutions to norms Unsupervised CBR System

Deactivate
the norm

 4. IRON: Strategy. Norm specialisation

In this simple scenario we may synthesise many candidate norms…

 5. Evaluation: The traffic intersection scenario

What combination of candidate norms (i.e., normative system)
may achieve MAS goals?

1. Give way to left.
2. Give way to right.
3. Keep security distance.
4. Stop always.
5. Never stop.
6. Stop when you perceive a car

behind you.
7. …

In this simple scenario we may synthesise many candidate norms…

 5. Evaluation: The traffic intersection scenario

In this scenario: 216 candidate norms  2216 = 1065 candidate
normative systems.

1. Give way to left.
2. Give way to right.
3. Keep security distance.
4. Stop always.
5. Never stop.
6. Stop when you perceive a car

behind you.
7. …

 5. Empirical evaluation

1. A typical execution of the norm synthesis process.
 IRON successfully synthesises normative systems that

avoids collisions.

2. A robustness analysis that the tolerance of IRON to non-
compliant behaviour (norm violations).
 IRON synthesises normative systems even for high norm

violation rates.

 5. Empirical evaluation

Prototype Execution Tick 13: first collisions
arise and IRON synthesises
first norms.

Tick 35: IRON generalises
norms.

Tick 3349: Cardinality of
the normative system
reduced to 5 norms.
Collisions are avoided.

Tick 13349: Simulation
stops because of
convergence.

1

2

3

4 1

2 3

4

 5. Empirical evaluation

Robustness Analysis Low violation rates (up to
40%) IRON converges for
100% of the simulation runs.

High violation rates (40%-
60%) IRON converges
between 80% and 98% of
the simulation runs.

Very high violation rates
(70%-90%) IRON converges
for 20% of the simulation
runs despite a 70% violation
rate. Norms cannot be
synthesised beyond 80%
violation rate.

1

2

3

1
2

3

 6. Conclusions

- We have contributed to the automated synthesis of normative
systems.

- Our norm synthesis mechanism is based on:
• A set of core synthesis operators.
• Effectiveness and necessity as the means of evaluating norms.

- Empirical evaluation shows that IRON successfully synthesises
norms even in presence of non-compliant behaviour.

Future work

- To investigate further relationships between norms in the

normative network.
- Extend the norm synthesis process to create norms with

sequences of views (t-n, …, t) instead of (t-1, t).

 Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches to
norm synthesis.

3. On-line automatic norm
synthesis.
– AAMAS 2013.
– AAMAS 2014

4. Demo and hands-on activity

Norm
Synthesis

Minimality and Simplicity in the On-line
Automated Synthesis of Normative Systems

Javier Morales, Maite López-Sánchez, Juan A. Rodríguez-Aguilar,
Michael Wooldridge, Wamberto Vasconcelos

 Introduction

• Individuals interacting cause
conflicts (undesired states).

• Norms are enacted to avoid

conflicts.

• Running example: Road traffic.

• Norms can be employed to avoid
undesirable states (i.e., conflicts) in
Multi-Agent Systems.

 Research problem

How to synthesise a normative system that is
good enough to regulate a dynamic Multi-Agent System?

 Research problem

Avoids
over regulation

Easy to reason
about

1 2 3
Avoids conflicts

How to synthesise a normative system that is
good enough to regulate a dynamic Multi-Agent System?

An on-line norm synthesis strategy to synthesise conflict-free
and compact normative systems.

The compactness of a normative system is measured by:

• Minimality: Size of the normative system.
• Simplicity: Size of its individual norms.

 Research problem and approach

Avoids
over regulation

Easy to reason
about

1 2 3
Avoids conflicts

 Research problem and approach

MAS
(domain interaction)

On-line norm
synthesis strategy

Norm synthesis Machine

agents
actions /
conflicts

norms

 Research problem and approach

MAS
(domain interaction)

On-line norm
synthesis strategy

Norm synthesis Machine

norms

Monitors the MAS
detecting conflicts

agents
actions /
conflicts

 Research problem and approach

MAS
(domain interaction)

On-line norm
synthesis strategy

Norm synthesis Machine

norms

Synthesises norms
to avoid

conflicts in the future

agents
actions /
conflicts

 Research problem and approach

MAS
(domain interaction)

On-line norm
synthesis strategy

Norm synthesis Machine

norms

Synthesises norms
to avoid

conflicts in the future

agents
actions /
conflicts

SIMON (Simple Minimal On-line Norm Synthesis)

 SIMON: An On-line Norm Synthesis strategy

SIMON (Simple Minimal On-line Norm Synthesis)

Step 1. For each detected conflict, SIMON generates a new active norm to avoid it
in the future.

 SIMON: An On-line Norm Synthesis strategy

Active Inactive

n1

Normative Network

n2 n3

n4 {n3,n4}

Normative System

SIMON (Simple Minimal On-line Norm Synthesis)

Step 1. For each detected conflict, SIMON generates a new active norm to avoid it
in the future.

Step 2. Evaluation of each norm in terms of whether it is effective and necessary:

 IF agents comply with it, NO conflicts arise  EFFECTIVE
 IF agents comply with it, conflicts arise  INEFFECTIVE

 IF agents infringe it, conflicts arise  NECESSARY
 IF agents infringe it, NO conflicts arise  UNNECESSARY

 SIMON: An On-line Norm Synthesis strategy

SIMON (Simple Minimal On-line Norm Synthesis)

Step 1. For each detected conflict, SIMON generates a new active norm to avoid it
in the future.

Step 2. Evaluation of each norm in terms of whether it is effective and necessary.

Step 3. Refinement of norms. SIMON performs optimistic norm generalisations.

Aims at synthesising compact normative systems.

 SIMON: An On-line Norm Synthesis strategy

SIMON (Simple Minimal On-line Norm Synthesis)

Step 1. For each detected conflict, SIMON generates a new active norm to avoid it
in the future.

Step 2. Evaluation of each norm in terms of whether it is effective and necessary.

Step 3. Refinement of norms. SIMON performs optimistic norm generalisations.

Aims at synthesising compact normative systems.

 SIMON: An On-line Norm Synthesis strategy

Adapted from
AAMAS’13

 SIMON: Norm refinement

Based on three key components:

A taxonomy of terms to specify norms

An optimistic approach to norm generalisation

Novel norm generalisation modes

1

2

3

 SIMON: Taxonomy of terms to specify norms

Norm examples (informal):

• Give way to ambulances
• Give way to fire brigade Give way to emergency vehicles
• Give way to police cars

The terms employed to specify norms are part of a taxonomy.

 emergency car

ambulance fire-brigade police-car private-car

}

 SIMON: Norm refinement

Based on three key components:

A taxonomy of terms to specify norms

An optimistic approach to norm generalisation

Novel norm generalisation modes

1

2

3

 SIMON: Norm generalisation

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars

Norm generalisation

 emergency

ambulance fire-brigade police-car

NN0

n3 n1

Normative system
{n1, n2, n3}

n2

 SIMON: Norm generalisation

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

Norm generalisation

 emergency

ambulance fire-brigade police-car

NN0

n3 n1 n2

NN1

n3 n1

Normative system
{n4}

n2

n4

Normative system
{n1, n2, n3}

 SIMON: Norm generalisation

Norm generalisation

 emergency

ambulance fire-brigade police-car

NN0

n3 n1

Normative system
{n1, n2, n3}

n2

NN1

n3 n1

Normative system
{n4}

n2

n4

Conservative approach
Employs full evidence
to generalise norms.

 SIMON: Optimistic norm generalisation

Optimistic norm generalisation

 emergency

ambulance fire-brigade police-car

NN0

n1

Normative system
{n1, n2}

n2

n1: Give way to ambulances
n2: Give way to fire brigade

 SIMON: Optimistic norm generalisation

Optimistic norm generalisation

 emergency

ambulance fire-brigade police-car

NN0

n1

Normative system
{n1, n2}

n2

n1: Give way to ambulances
n2: Give way to fire brigade

Most speciffic generalisation
between two terms
E. Armengol and E. Plaza.
Bottom-up induction of feature terms.
Machine Learning, 41(3):259–294, 2000.

 SIMON: Optimistic norm generalisation

Optimistic norm generalisation

 emergency

ambulance fire-brigade police-car

NN0

n1

Normative system
{n1, n2}

n2

NN1

n1

Normative system
{n4}

n2

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n4: Give way to emergency vehicles

 SIMON: Optimistic vs. conservative generalisation

1. Conservative generalisation requires full evidence.

2. Optimistic generalisation just requires partial evidence.

3. Optimistic generalisation expected to increase the number of generalisations.

More compact normative systems
(lower minimality and simplicity)

 SIMON: Norm refinement

Based on three key components:

A taxonomy of terms to specify norms

An optimistic approach to norm generalisation

Novel norm generalisation modes

1

2

3

 SIMON: Shallow norm generalisation

Shallow norm generalisation (S-SIMON)

NN0

n1

Normative system
{n1, n2}

n2

• Compares norms that are
active in the normative
network.

n1: Give way to ambulances
n2: Give way to fire brigade emergency car

ambulance fire-brigade police-car private-car

 SIMON: Shallow norm generalisation

Shallow norm generalisation (S-SIMON)

NN0

n1

Normative system
{n1, n2}

n2

NN1

n1

Normative system
{n4}

n2

n4
• Compares norms that are

active in the normative
network.

• Directly generalises two
active norms.

n1: Give way to ambulances
n2: Give way to fire brigade
n4: Give way to emergency vehicles

 emergency car

ambulance fire-brigade police-car private-car

 SIMON: Deep norm generalisation

n1: Give way to ambulances
n2: Give way to fire brigade

n4: Give way to emergency vehicles
n5: Give way to private cars

 emergency car

ambulance fire-brigade police-car private-car

NN0

n2 n1

Normative system
{n4, n5}

n5

n4

Deep norm generalisation (D-SIMON)

• Compares norms that are
active in the normative
network.

 SIMON: Deep norm generalisation

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles
n5: Give way to private cars
n6: Give way to cars

 emergency car

ambulance fire-brigade police-car private-car

NN0

n2 n1

Normative system
{n4, n5}

NN1

n1

Normative system
{n4 , n6}

n5

n4

n2 n3

n4

n5

n6

Deep norm generalisation (D-SIMON)

• Compares norms that are
active in the normative
network.

• Indirectly generalises two
norms that are subsumed
by two active norms.

 SIMON: Shallow vs Deep norm generalisation

na

nc

Finds two active norms to generalise

nb

nd

Shallow generalisation

 SIMON: Shallow vs Deep norm generalisation

na

nc

nb

nd

Shallow generalisation

ne
Generalises to a new norm

 SIMON: Shallow vs Deep norm generalisation

na

nc

nb

nd

Shallow generalisation Deep generalisation

ne

na

nc

nb

nd

Finds two active norms

 SIMON: Shallow vs Deep norm generalisation

na

nc

nb

nd

Shallow generalisation Deep generalisation

ne

na

nc

nb

nd

Finds two inactive norms to generalise

 SIMON: Shallow vs Deep norm generalisation

na

nc

nb

nd

Shallow generalisation Deep generalisation

ne

na

nc

nb

nd

ne

Generalises to a new norm

 SIMON: Shallow vs Deep norm generalisation

na

nc

nb

nd

Shallow generalisation Deep generalisation

ne

na

nc

nb

nd

ne

More coarse More fine-grained

 Empirical evaluation

Our goal is to compare IRON (AAMAS 2013) and SIMON in terms of:

1. The quality of the normative systems that they synthesise.
2. The computational costs their synthesis processes require.
3. The search space of normative systems that they explore.

IRON performs conservative norm generalisations whereas
SIMON performs optimistic norm generalisations.

 Empirical evaluation: Scenario

We employ the same simulated traffic junction:

• Agents are cars.
• Conflicts are collisions among cars.
• Our goal is to synthesise normative systems that avoid collisions between cars.

Simulated traffic intersection scenario

 Empirical evaluation: Norms

IF left(car-heading-right) & front(nothing) & right(nothing) THEN prohibition(go)

Norms

• IF … THEN… rules.
• Norm precondition: Set of predicates with one term each.
• Norm postcondition: A modality.

Norm example

prh(go)

Graphical representation

 Empirical results

BENEFITS

D-SIMON normative
systems are up to 46%
more minimal and
61% simpler than
IRON’s.

COSTS

D-SIMON requires:

1. To synthesise

more norms.
2. Extra convergence

time.

S-SIMON D-SIMON

 Empirical results

Why does D-SIMON outperform IRON in terms of minimality and simplicity?

N1 N50 N100 N150 N200 N250 N314

30 111 173

 Empirical results

Why does D-SIMON outperform IRON in terms of minimality and simplicity?

D-SIMON focuses on an area of the search space with
more compact normative systems

N1 N50 N100 N150 N200 N250 N314

30 111 173

 Conclusions

1. Synthesising conflict-free and compact normative systems is important to:

• Avoid conflicts.
• Avoid over regulation.
• Ease the reasoning of agents.

2. We have presented SIMON, a novel strategy for the on-line synthesis of
 conflict-free and compact normative systems.

3. SIMON shows that being optimistic (non requiring full evidence) and

investing computational efforts on discovering implicit relationships (deep
generalisation) pays off.

4. Applicable to other domains.

 Case study 2: Virtual Communities

MAS = Simulated virtual community

System

Norms are like… IF user(1) & section(2) & contentType(porn)
THEN prh(upload(content))

• Agents model human users interacting within virtual communities

• On-line synthesis of norms to avoid conflicts (i.e. user complaints)

 Case Study 2: Virtual Communities Simulator

NORM SYNTHESIS BECOMES A
PARTICIPATORY MECHANISM:

Users choose community norms by

means of their complaints.

 Case study 2: Virtual Communities

 Tutorial Outline

1. Introduction to Norms and
Normative MAS.

2. Overview of approaches to
norm synthesis.

3. On-line automatic norm
synthesis.

4. Demo and hands-on activity

Norm
Synthesis

 Demo

Javier Morales, Maite López-Sánchez, Juan A. Rodríguez-
Aguilar, Michael Wooldridge, Wamberto Vasconcelos

AAMAS 2014

 1. What is NormLab?

NormLab is a framework to support research on norm synthesis for Multi-Agent Systems.

NormLab allows to:

1. Perform MAS simulations. It incorporates two different MAS simulators: a traffic

simulator, and an on-line community simulator.

2. Perform on-line norm synthesis on MAS simulations. NormLab incorporates different
state-of-the-art on-line norm synthesis strategies that can be tested on MAS
simulations.

3. Develop and test custom norm synthesis strategies. NormLab allows to develop
custom on-line norm synthesis strategies to be tested on the MAS simulations.

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

 2. NormLab architecture

NormLabSimulators

Norm Synthesis Machine

MAS Simulators

On-line community
simulator

Traffic junction
simulator

MAS events Norms

Norm synthesis
strategies

NormLab

 2. NormLab architecture

NormLabSimulators

Norm Synthesis Machine

MAS Simulators

On-line community
simulator

Traffic junction
simulator

MAS events Norms

Norm synthesis
strategies

NormLab

Norm synthesis
settings

Domain-dependent
functions

Simulator settings

 2. NormLab architecture

NormLabSimulators

Norm Synthesis Machine

MAS Simulators

On-line community
simulator

Traffic junction
simulator

MAS events Norms

Norm synthesis
strategies

NormLab

Norm synthesis
settings

Domain-dependent
functions

Simulator settings

 3. The Norm Synthesis Machine

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

Input: Agents’ behaviours
(by observation)

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

Input: Agents’ behaviours
(by observation)

 3. The Norm Synthesis Machine

Agents’
behaviours are

simulated

Norm Synthesis Machine

MAS events. . . .

Multi-agent System

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant

settings

Normative
system

Input: Agents’ behaviours
(by observation)

• Based on Repast Simphony 2.1
• Agents are cars, and conflicts are collisions among cars.
• The goal is to synthesise normative systems that avoid collisions between cars.

 4. The traffic simulator

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

NormLab is multi-platform. You can use it either in Windows, MacOS or Linux!

Requirements

• Java JDK 1.6 or greater http://www.java.com
• Eclipse IDE (just for Linux users) http://www.eclipse.org/downloads
• Repast Simphony 2.1 http://repast.sourceforge.net

Downloads

To use NormLab you need to download:

• NormSynthesisMachine: http://normsynthesis.github.io/NormSynthesisMachine/

Implements an API that allows to perform norm synthesis for MAS.
• NormLab: http://normsynthesis.github.io/NormLabSimulators/

Contains the code of the two MAS simulators: traffic and on-line community.

Download both projects whether in a ZIP or TAR.GZ file.

 5. NormLab download

http://www.java.com/
http://www.eclipse.org/downloads
http://repast.sourceforge.net/
http://normsynthesis.github.io/NormSynthesisMachine
http://normsynthesis.github.io/NormLabSimulators

 5.1. NormLab installation

Preparing the working environment

1. Unzip NormSynthesisMachine and NormLabSimulators projects to your HOME folder.
• For instance… «/Users/Javi/NormLab»

2. Both projects will be unzipped as NormSynthesis-«project_name»- «numbers». For
instance…

• NormSynthesis-NormLabSimulators-34d43o
• NormSynthesis-NormSynthesisMachine-1847fje

3. Rename both projects,removing the «NormSynthesis» part and the numbers. After

renaming them they should look like this:

• NormLabSimulators
• NormSynthesisMachine

 5.1. NormLab installation

Preparing the working environment

1. Open the Repast Symphony IDE (in Linux, open Eclipse IDE with Repast installed on it).
2. Import both projects NormSynthesisMachine and NormLabSimulators in Eclipse.

1. File>New>Java Project.
2. Uncheck «Use default location» and click on «Browse».

 5.1. NormLab installation

Preparing the working environment

1. Unzip NormLabSimulators and NormSynthesisMachine projects to your HOME folder.
• For instance… «/Users/Javi/NormLab»

2. Open Eclipse IDE.
3. Import both projects NormLabSimulators
 and NormSynthesisMachine in Eclipse:

1. File>New>Java Project.
2. Uncheck «Use default location»
 and click on «Browse».

1. Import projects NormLabSimulators
 and NormSynthesisMachine.

 5.2. NormLab structure

Before starting you need to know:

NormLabSimulators project is structured as follows:

src/onlinecomm: The code of the on-line community simulator.
src/traffic: The code of the traffic simulator.
launchers: The launchers that allow to run the two simulators.
repast-settings/OnlineCommunity.rs: Basic Repast settings for the on-line community simulator.
repast-settings/TrafficJunction.rs: Basic Repast settings for the traffic junction simulator.

 Tutorial outline

What are the contents of this tutorial?

1. An introduction to NormLab

1. The NormLab architecture.
2. The Norm Synthesis Machine.
3. The NormLab simulators.

2. Configuration of the working environment

1. NormLab download.
2. NormLab installation.

3. NormLab execution:

1. Execution examples.
2. Guided development of different norm synthesis strategies.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

We are going to execute the TrafficJunction simulator with a very simple norm synthesis strategy,
which is as follows:

  Everytime the strategy is executed, return an empty normative system.

Consequences: No norms are given to the agents  collisions are never removed.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.
5. Click on button to start the simulator. Cars will appear as coloured balls. Collisions will appear

as red stars. Cars will start to drive and they will collide.

 6. Example 1: Executing NormLab

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.
5. Click on button to start the simulator. Cars will appear as coloured balls. Collisions will appear

as red stars. Cars will start to drive and they will collide.
6. You can pause the simulation with button and stop it with button

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

In the traffic simulator, cars perceive the scenario by means of the three cells in front of them:

Norms are…

• IF … THEN… rules.
• Norm precondition: Set of predicates with one term each.

• Three different predicates (left, front, right).
• Six different terms (<, ^, >, v, -, w, *) representing cars with different headings, term «-»

stands for «nothing», «w» for «wall» and «*» for «anything».
• Norm postcondition: A modality.

IF left(>) & front(-) & right(-) THEN prohibition(go)

prh(go)

Graphical representation

 7. Example 2: Using norms

Reference car

Car perception

 7. Example 2: Using norms

TrafficJunction norm synthesis example 2

We are now going to execute the TrafficJunction simulator with a norm synthesis strategy that will
avoid some (but not all) collisions between cars. With this aim, the strategy always returns a
normative system with only one left-side-priority norm:

IF left(>) & front(*) & right(*) THEN prohibition(go)

prh(go)

Norm 1

* *

 7. Example 2: Using norms

TrafficJunction norm synthesis example 2

1. In Eclipse, in NormLabSimulators project, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the traffic

simulator setting parameters.
3. Search for the parameter «NormSynthesisExample».
4. Set the field «defaultValue» with the value «2». This will indicate NormLab to launch example 2,

which uses a norm synthesis strategy that always returns a normative system with the left-side-
priority norm.

5. Save the file.
6. Do right click on the file launchers/TrafficJunctionSimulator.launch.
7. Click on «Run As» > «TrafficJunctionSimulator».
8. Run the simulation with button
9. Update the norm synthesis inspector. Observe how now the normative system contains one norm,

and now cars occasionally stop to apply norm 1.

Car applying norm 1

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 8. Example 3: Removing collisions

TrafficJunction norm synthesis example 3

We are now going to execute the TrafficJunction simulator with a norm synthesis strategy that avoids
all possible collisions. With this aim, it always returns the following normative system:

To execute this example, you just have to follow the steps in section 7, but setting defaultValue=«3»
of the NormSynthesisExample parameter (again in NormLabSimulators project, directory repast-
settings/TrafficJunction.rs , file parameters.xml)

IF left(*) & front(^) & right(*) THEN prohibition(go)
IF left(>) & front(-) & right(*) THEN prohibition(go)
IF left(<) & front(<) & right(*) THEN prohibition(go)

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 9. Developing your own strategy

How are implemented all these examples? Let’s implement one of the examples!

We are now going to develop our own norm synthesis strategy. In particular, we are going to
implement the norm synthesis strategy of example 1, which returns an empty normative system.

The first thing we must do is to indicate NormLab that we are going to use a custom norm synthesis
strategy. With this aim, follow these steps:

1. In Eclipse, in NormLabSimulators project, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the traffic

simulator setting parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«0». This will

indicate NormLab that we do not want to load a pre-designed example.
4. Search for the parameter «NormSynthesisStrategy» and set the field defaultValue=«0». This will

indicate NormLab that we will give it a custom norm synthesis strategy.

 9. Developing your own strategy

Now, to create your norm synthesis strategy, just follow these steps:

1. In Eclipse (NormLabSimulators project), go to package es.csic.iiia.normlab.traffic.custom.
2. There, create a new Java class MyFirstStrategy.java that implements the interface

es.csic.iiia.nsm.strategy.NormSynthesisStrategy.
3. The interface will require you to implement two methods:

1. execute(): Executes the norm synthesis strategy
2. getNonRegulatedConflictsThisTick(): Returns a data structure containing the conflicts that

the strategy has detected during the current tick

 9. Developing your own strategy

We will create our strategy:

1. Create a new attribute private Map<Goal, List<Conflict>> conflicts.
2. Create a constructor for the class and, there, create the structure conflicts.
3. Make method getNonRegulatedConflictsThisTick() to return the attribute conflicts.
4. Your code should look like this:

 9. Developing your own strategy

Now, let’s implement the execute() method, which implements the norm synthesis strategy. This
method must return an object NormativeSystem, that contains the norms that will be given to the
agents.

There are a couple things that we must take into account:
• The Norm Synthesis Machine keeps synthesised norms in a normative network.
• To be able to access to the normative network, and the different elements of the Norm Synthesis

Machine, we must receive the NormSynthesisMachine as a parameter in our strategy:

Follow now these steps:
1. In the constructor of the class, add the parameter es.csic.iiia.nsm.NormSynthesisMachine nsm.
2. Now we can access the different elements of the Norm Synthesis Machine in our strategy.
3. Let’s obtain the Normative Network! Add the following attribute to your class:

 private NormativeNetwork normativeNetwork;

4. Now, in your constructor, add the following code line to obtain the (initially empty) normative
network:

 this.normativeNetwork = nsm.getNormativeNetwork();

5. Finally, we will now return an empty normative system at the end of the strategy execution. Add
the following line of code at the end of method execute():

return this.normativeNetwork.getNormativeSystem();

 9. Developing your own strategy

Congratulations! You have created your first norm synthesis strategy, which returns an empty
normative system Your code should now look like this:

 10. Executing your implemented strategy

And now… how to tell NormLab to use your norm synthesis strategy?
We need to create an agent in the Traffic Simulator, which:

1. Creates and configures the Norm Synthesis Machine.
2. Adds sensors to the Norm Synthesis Machine to perceive the scenario.
3. Creates and configures the norm synthesis strategy.
4. Executes your strategy at every simulation step.

The traffic simulator incorporates a default Traffic Norm Synthesis Agent, which is
implemented in class DefaultTrafficNormSynthesisAgent of package

es.csic.iiia.normlab.traffic.agent.

Let’s take a look at it…

 10. Executing your implemented strategy

Observe the constructor DefaultTrafficNormSynthesisAgent(). It performs these tasks:
1. Creates the norm synthesis machine with a given configuration.
2. Adds a set of sensors to the norm synthesis machine in order to perceive the scenario.
3. Sets the norm synthesis strategy.

4. Executes the norm synthesis strategy at every simulation step.

 10. Executing your implemented strategy

To create the NormSynthesisMachine, it needs to create:

1. NormSynthesisSettings: The settings for the norm synthesis machine.
2. PredicatesDomains: Information about the agents’ language. That is, the predicates and terms the

agents employ to describe the scenario from their local point of view.
3. DomainFunctions: Some domain-dependent functions that the Norm Synthesis Machine requires

to synthesise norms (e.g., conflict detection, norm applicability).

 10. Executing your implemented strategy

NormSynthesisSettings: An interface to be implemented (located in package
es.csic.iiia.nsm.config)

1. getNormSynthesisStrategy(): Returns the norm synthesis strategy to use.
2. getSystemGoals(): A list of system goals. In traffic, the only goal is “to avoid collisions”.
3. getNormsDefaultUtility(): Norms’ default utility (0.5 by default).
4. getNormEvaluationLearningRate(): The α rate to evaluate norms (0.1 is ok).
5. getNormsPerformanceRangesSize(): The size of the window to compute norms’ performance

ranges.
6. getNormGeneralisationMode(): SIMON’s norm generalisation mode (Shallow/Deep).
7. public int getNormGeneralisationStep(): SIMON’s norm generalisation step, namely the number

of norm predicates that can be simultaneously generalised.
8. getGeneralisationBoundary(Dimension dim, Goal goal): Returns the minimum value of

Effectiveness/necessity that a norm’s performance much reach to be generalised.
9. getSpecialisationBoundary(Dimension dim, Goal goal): Returns the value of

Effectiveness/necessity under which a norm can be specialised.
10. getNumTicksOfStabilityForConvergence(): The number of simulation ticks without conflicts or

changes to the normative system to converge.

An implementation of these settings for the traffic simulator is located in package
es.csic.iiia.normlab.traffic.normsynthesis, class TrafficNormSynthesisSettings

 10. Executing your implemented strategy

PredicatesDomains: Contains the predicates and terms that the agents employ to describe the MAS
from their local point of view. Located in project NormSynthesisMachine, package
es.csic.iiia.nsm.agent.language.

The traffic simulator creates predicates and their domains in (project NormLabSimulators) class
es.csic.iiia.traffic.TrafficSimulator, method createPredicatesDomains().

• Three different predicates (l, f, r) that represent the left, front and right positions in front of a car.
• Six different terms (<, ^, >, v, -, w, *) representing cars with different headings, term «-» stands

for «nothing», «w» for «wall» and «*» for «anything».

 10. Executing your implemented strategy

PredicatesDomains: The traffic simulator creates predicates and their domains in class
es.csic.iiia.traffic.TrafficSimulator, method createPredicatesDomains().

 10. Executing your implemented strategy

DomainFunctions: An interface to be implemented. Located in package es.csic.iiia.nsm.config
(NormSynthesisMachine project).

1. isConsistent(SetOfPredicatesWithTerms agentContext): Returns true if a set of predicates with

terms is consistent with the domain. For instance, (left(>),front(-),right(-)) is consistent. By
contrast, (left(>),front(<),right(-)) is not consistent, since two cars can not drive in opposite
directions in the same lane.

2. agentContextFunction(long agentId, View view): Returns the local perception of a given agent at
a particular system state (received as a View).

3. agentActionFunction(long agentId,ViewTransition viewTransition): Returns a list of the actions
that an agent performed in the transition from a state st to a state st-1

4. getNonRegulatedConflicts(Goal goal,ViewTransition viewTransition): Receives a transition
between two states, a system goal (e.g., to avoid collisions) and returns the conflicts that have
arisen in that transition with respect to the system goal (e.g., returns the collisions).

5. hasConflict(View view, long agentId, Goal goal): Returns true if a given agent is in conflict in a
given system state (i.e., View).

An implementation of the domain functions for the traffic simulator is located on
NormLabSimulators project, es.csic.iiia.normlab.traffic.normsynthesis package,

 class TrafficDomainFunctions.

 10. Executing your implemented strategy

Now that we understand how DefaultTrafficNormSynthesisAgent works, let’s tell it to use your norm
synthesis strategy:

1. Open class DefaultTrafficNormSynthesisAgent in package es.csic.iiia.normlab.traffic.agent. This

class implements the agent that «lives» in the traffic simulator, creates the norm synthesis
machine and executes the strategy at every simulation tick.

2. Go to method setCustomNormSynthesisStrategy()
3. There, tell NormLab to use your norm synthesis strategy. Use this code:

4. It is as simple as creating your norm synthesis strategy and telling the norm synthesis machine to
use your strategy.

5. Execute the simulation as you did for example 1.

Congratulations, you are using your own strategy!

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 11. Adding norms to your strategy

Let’s now add some norms to our strategy. We will use the same set of norms than used in the
example 2 (with one only left-hand-side priority norm).

1. In package es.csic.iiia.normlab.traffic.custom (NormLabSimulators project), copy your first norm

synthesis strategy (MyFirstStrategy.java) as a new strategy MySecondStrategy.java.
2. To add norms to the normative network we need to know the system goals (in traffic, the only

system goal is to avoid collisions). With this aim, add the following attribute to your strategy.
• private List<Goal> goals;

3. Now obtain the system goals in your constructor:
• this.goals = nsm.getNormSynthesisSettings().getSystemGoals();

4. Your code should look like this:

 11. Adding norms to your strategy

1. Let’s create the normative system. Norms have four elements: (1) a norm precondition; (2) a
modality (in our case, a prohibition); (3) an action to obligate/prohibit. In our implementation, the
norm also includes the goal it is aimed to achieve.

2. Now, create a new method createNormativeSystem() that will add the norms to the normative
network:

3. This code first gets the only system goal (to avoid collisions between cars)
4. Then, it creates a norm precondition (set of predicates with terms) and adds the predicates «l»

(left), «f» (front) and «r» (right), with its corresponding term.
5. Finally, it creates the norm adding the pre-condition, the modality «Prohibition» over the action

«Go», and the goal of the norm (to avoid collisions).

 11. Adding norms to your strategy

1. Now, call method createNormativeSystem() at the end of your constructor. Your code should look
like this:

2. At each execution, the strategy will return the norms that are active in the normative network
(i.e., the normative system).

 11. Adding norms to your strategy

To finish, set the traffic norm synthesis agent to use your new strategy.

1. Open class DefaultTrafficNormSynthesisAgent in package es.csic.iiia.normlab.traffic.agent. This

class implements the agent that «lives» in the traffic simulator, creates the norm synthesis
machine and executes the strategy at every simulation tick.

2. Go to method setCustomNormSynthesisStrategy()
3. There, tell NormLab to use your norm synthesis strategy. Use this code:

4. You can now execute the Traffic Simulator and see how your second strategy works. Observe that:
1. The normative system contains now one norm.
2. The unique norm is never evaluated (click on button Show of norms’ performance ranges).

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 12. A strategy with automatic norm generation

Let’s see now how can we automatically generate norms on-line.

For this example we are going to use the code of example 4, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex4.

There, we can find the following classes:

TrafficNSExample4_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample4_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample4_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future.

 12. A strategy with automatic norm generation

Let’s see now how can we automatically generate norms on-line.

For this example we are going to use the code of example 4, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex4.

There, we can find the following classes:

TrafficNSExample4_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample4_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample4_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future.

This agent works along the lines of the DefaultTrafficNormSynthesisAgent

 12. A strategy with automatic norm generation

TrafficNSExample4_NSOperators: How do operators work?

Create:
1. Receives a Conflict and a system Goal.
2. Employs a Case-Based Reasoning (CBR) norm generation approach to generate a norm aimed at

avoiding the given conflict in the future.
3. If the norm does not exist in the normative network, then it adds it.
4. If the norm exists in the normative network, then it activates it (since it may be inactive).

Add:
1. Adds a norm to the normative network.
2. Activates the norm in the normative network.

Activate:
1. Sets the state of a norm as «Active» in the normative network

Deactivate:
1. Sets the state of a norm as «Inactive» in the normative network.
  This operator is not invoked in this example since it does not refine norms (and hence does
 not deactivate norms).

 12. A strategy with automatic norm generation

TrafficNSExample4_NSStrategy: How does the norm synthesis strategy work?

Everytime the strategy is executed, it:
1. Perceives the scenario by means of the monitor. It saves perceptions in the form of

ViewTransitions. A ViewTransition describes a part of the scenario at time t-1 and at time t (that
is, its transition from the previous to the current tick).

2. Detects conflicts in perceptions by invoking method getNonRegulatedConflicts() of
DomainFunctions.

 12. A strategy with automatic norm generation

3. Generates norms (one for each detected conflict) by means of operator create.

To execute this strategy, follow these steps:

1. In Eclipse, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«4».

Execute the simulator and see how, as long as cars collide, it generates norms
to avoid those collisions in the future.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 13. Automatic norm generation + evaluation

We have seen how to automatically generate norms on-line.
Let’s see now how can we automatically evaluate norms on-line.

For this example we are going to use the code of example 5, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex5.

There, we can find the following classes:

TrafficNSExample5_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample5_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample5_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future, and
 continuously evaluates them in base of their outcomes in the scenario.

TrafficNSExample5_NSUtilityFunction
 A function to evaluate norms’ utility based on their outcomes whenever agents fulfill/infringe
 norms.

 13. Automatic norm generation + evaluation

We have seen how to automatically generate norms on-line.
Let’s see now how can we automatically evaluate norms on-line.

For this example we are going to use the code of example 5, which is located in the package
es.csic.iiia.normlab.traffic.examples.ex5.

There, we can find the following classes:

TrafficNSExample5_NSAgent
 The agent that creates the Norm Synthesis Machine and executes the strategy.

TrafficNSExample5_NSOperators
 Operators to create, add, activate and deactivate norms in the normative network.

TrafficNSExample5_NSStrategy
 A norm synthesis strategy that generates norms to avoid arisen collisions in the future, and
 continuously evaluates them in base of their outcomes in the scenario.

TrafficNSExample5_NSUtilityFunction
 A function to evaluate norms’ utility based on their outcomes whenever agents fulfill/infringe
 norms.

You know how these things work…

 13. Automatic norm generation + evaluation

How does norm evaluation work?

• Norm fulfilled + no conflicts  Effective norm (It avoids conflicts).
• Norm fulfilled + conflicts  Ineffective norm (It does not avoid conflicts).

• Norm infringed + no conflicts  Unnecessary norm (No conflicts arise when it is not fulfilled).
• Norm infringed + conflicts  Necessary norm (Conflicts arise when it is not fulfilled).

To evaluate norms at each tick, the norm synthesis strategy requires to retrieve:

1. The norms that have been fulfilled and infringed during the transition from the previous tick to

the current tick.
2. Information about whether norm fulfilments and infringements led to conflicts or not in the

current tick.

 13. Automatic norm generation + evaluation

TrafficNSExample5_NSStrategy: How does this new norm synthesis strategy work?

Everytime this particular strategy is executed, it performs norm generation + norm evaluation. You
already know norm generation. But… How is norm evaluation implemented?

Norm evaluation consists on the following steps:

1. Compute norm applicability, namely to retrieve the norms that applied to each agent in the

simulation at time t-1.

• As you can see in the code, for each ViewTransition it employs a NormReasoner to compute the

norms that apply to each agent in the viewTransition.
• The NormReasoner employs the DomainFunctions to retrieve the norms that apply to each agent.

 13. Automatic norm generation + evaluation

2. Compute norm compliance, namely to assess if agents complied or not with their applicable
norms during the transition from the previous tick (time t-1) to the current tick (time t), and if
they lead to conflicts or not.

 13. Automatic norm generation + evaluation

3. Update norms’ utilities based on norm compliance.

Each norm is evaluated in terms of:

• The system goals. Are norms useful to achieve system goals?
 Example: In the case of traffic, are norms useful to avoid car collisions?

• Two dimensions, effectiveness and necessity. Are norms effective to avoid collisions? Are they

necessary to avoid collisions?

 13. Automatic norm generation + evaluation

Finally, the normEvaluation() method puts together norm applicability, norm compliance and update
utilities:

Let’s execute this strategy. Follow these steps:

1. In Eclipse, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«5». This will

indicate NormLab that we do not want to load a pre-designed example.

Execute the simulator and see how now it generates norms and evaluates them. Observe how the
effectiveness and necessity of norms change along time.

 Tutorial outline

NormLab execution:

1. Execution examples
1. Example strategy 1: Returns an empty set of norms.
2. Example strategy 2: Returns a fixed set of 1 norm.
3. Example strategy 3: Returns a fixed set of 3 norms.

2. Guided development of different norm synthesis strategies

1. Development of example strategy 1: Empty set of norms.
2. Development of example strategy 2: Fixed set of 1 norm.
3. Studying example 4: A strategy with norm generation.
4. Studying example 5: A strategy with norm generation + evaluation.
5. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 14. SIMON. A complete norm synthesis strategy

We are now going to see how to implement a complete norm synthesis strategy that performs:

1. Norm generation
2. Norm evaluation
3. Norm refinement

With this aim, we will execute the SIMON norm synthesis strategy. First of all, let’s tell NormLab that
we want to execute SIMON:

1. In Eclipse, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«0». This will

indicate NormLab that we do not want to load a pre-designed example.
4. Search for the parameter «NormSynthesisStrategy» and set the field defaultValue=«2». This will

indicate NormLab that we want to use the SIMON norm synthesis strategy.
5. Search for the parameter «NormGeneralisationMode» and set the field defaultValue=«1». This

will indicate NormLab that we want SIMON to use Deep norm generalisation.
6. Search for the parameter «NormGeneralisationStep» and set the field defaultValue=«1». This will

indicate NormLab that we want SIMON to generalise just one norm predicate simultaneously in
each norm generalisation.

You already know these phases

Let’s see how SIMON refines the normative system

 14. SIMON. A complete norm synthesis strategy

Your parameters.xml file should look like this:

 14. SIMON. A complete norm synthesis strategy

Norm refinement: Generalises norms when possible, and specialises norms when necessary.

• Norm generalisations allow to synthesise compact normative systems by generalising several

norms to one unique norms that implicitly represents them.

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars

Norm generalisations allow to increase the compactness of the normative system

 emergency

ambulance fire-brigade police-car

NN0

n3 n1

Normative system
{n1, n2, n3}

n2

 14. SIMON. A complete norm synthesis strategy

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

 emergency

ambulance fire-brigade police-car

NN0

n3 n1 n2

NN1

n3 n1

Normative system
{n4}

n2

n4

Normative system
{n1, n2, n3}

 14. SIMON. A complete norm synthesis strategy

Norm generalisations allow to increase the compactness of the normative system

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

 emergency

ambulance fire-brigade police-car

NN1

n3 n1

Normative system
{n4}

n2

n4

 14. SIMON. A complete norm synthesis strategy

Norm specialisations allow to remove from the normative system those norms that under-perform

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

 emergency

ambulance fire-brigade police-car

NN0

n3 n1 n2

NN1

n3 n1

Normative system
{n4}

n2

n4

Normative system
{n1, n2, n3}

 14. SIMON. A complete norm synthesis strategy

Norm specialisations allow to remove from the normative system those norms that under-perform

n4

 14. SIMON. A complete norm synthesis strategy

Norm refinement: Generalises norms when possible, and specialises norms when necessary.

1. Norms are generalised whenever their effectiveness and necessity are over a generalisation

threshold.
2. Norms are specialised whenever their effectiveness or necessity are under a specialisation

theshold.

	Tutorial on �Norm Synthesis �in Normative �Multi-Agent Systems
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Tutorial Outline
	Schedule
	Objectives for the tutorial
	Tutorial Outline
	Norms
	Norms
	Norms
	Norms
	Norms
	Norms
	Norm categories I
	Norm categories II & III
	Norms & agents
	Normative MAS
	Normative MAS
	Normative MAS
	Normative MAS
	Normative MAS
	Normative MAS
	Further Questions II
	Further Questions III
	Normative MAS
	Norms and Philosophy
	Norms and game theory
	Applications
	Norm changes
	Other practical issues
	Tutorial Outline
	Norm design
	Norm design
	Norm design
	Introduction
	Norm design
	Offline norm design
	From MAS Intro Lesson
	Número de diapositiva 40
	Offline norm design
	Offline norm design
	Tutorial Outline
	Norm mechanisms
	Norm emergence
	Norm emergence
	Norm emergence
	Norm emergence
	Norm emergence
	Norm emergence
	Research paper 1
	Research paper 1
	Research paper 1
	Research paper 1
	Research paper 1
	Research paper 1
	Research paper 1
	Research paper 1
	Research paper 1
	Research paper 1
	Número de diapositiva 61
	Tutorial Outline
	Research paper 2
	Dynamic Norm Specification
	Dynamic Norm Specification
	Dynamic Norm Specification
	Dynamic Norm Specification
	Dynamic Norm Specification
	Dynamic Norm Specification
	Event Calculus
	An Argumentation Protocol
	An Argumentation Protocol
	An Argumentation Protocol
	A Dynamic Argum. Prot.
	A Dynamic Argum. Prot.
	A Dynamic Argum. Prot.
	A Dynamic Argum. Prot.
	A Dynamic Argum. Prot.
	A Dynamic Argum. Prot.
	A Dynamic Argum. Prot.
	Tutorial Outline
	Adaptation of �Autonomic Electronic Institutions through norms and institutional agents
			 AEI
	Learning Model
	Learning Model II
	Case Study
	Traffic AEI
	Traffic AEI IV
	Traffic AEI VI
	Traffic AEI VII
	Results
	Results II
	Results III
	Future Work
	Self-adaptation in �Autonomic Electronic Institutions through Case-Based Reasoning��� Adapting Autonomic Electronic Institutions to Heterogeneous Agent Societies
	Learning Model
	Learning Model
	Traffic AEI
	Traffic AEI
	Empirical Evaluation
	Empirical Evaluation
	Empirical Evaluation
	Empirical Evaluation
	Número de diapositiva 104
	AOCMAS approach
	Número de diapositiva 106
	2-LAMA
	2-LAMA: adaptation
	2-LAMA: distributed
	2-LAMA: information
	Adaptation steps
	P2P sharing network
	P2P as an OCMAS
	P2P as an AOCMAS
	Network abstraction
	Network abstraction
	2-LAMA on P2P scenario
	2-LAMA on P2P scenario
	2-LAMA on P2P scenario
	Simulator
	Adaptation Mechanisms
	Norm Adaptation: CBR
	Tailored CBR: a case
	Tailored CBR
	Simulator
	Coordination Models: BT
	Coord. Models: 2L-CBR
	Results
	Results
	Results
	Exploring Open MAS issues
	Tutorial Outline
	Norm set-up
	Norm set-up
	Norm set-up
	Norm set-up
	Norm Generation
	Norm Generation
	Norm Generation
	Norm Generation
	Norm Generation
	Norm Generation
	Presentation
	Tutorial Outline
	Número de diapositiva 145
	Número de diapositiva 146
	Número de diapositiva 147
	Número de diapositiva 148
	Número de diapositiva 149
	Número de diapositiva 150
	Número de diapositiva 151
	Número de diapositiva 152
	Número de diapositiva 153
	Número de diapositiva 154
	Número de diapositiva 155
	Número de diapositiva 156
	Número de diapositiva 157
	Número de diapositiva 158
	Número de diapositiva 159
	Número de diapositiva 160
	Número de diapositiva 161
	Número de diapositiva 162
	Número de diapositiva 163
	Número de diapositiva 164
	Número de diapositiva 165
	Número de diapositiva 166
	Número de diapositiva 167
	Número de diapositiva 168
	Número de diapositiva 169
	Número de diapositiva 170
	Número de diapositiva 171
	Número de diapositiva 172
	Número de diapositiva 173
	Número de diapositiva 174
	Número de diapositiva 175
	Número de diapositiva 176
	Número de diapositiva 177
	Número de diapositiva 178
	Número de diapositiva 179
	Número de diapositiva 180
	Número de diapositiva 181
	Número de diapositiva 182
	Número de diapositiva 183
	Número de diapositiva 184
	Número de diapositiva 185
	Número de diapositiva 186
	Número de diapositiva 187
	Número de diapositiva 188
	Número de diapositiva 189
	Número de diapositiva 190
	Número de diapositiva 191
	Número de diapositiva 192
	Número de diapositiva 193
	Número de diapositiva 194
	Número de diapositiva 195
	Número de diapositiva 196
	Número de diapositiva 197
	Número de diapositiva 198
	Número de diapositiva 199
	Número de diapositiva 200
	Número de diapositiva 201
	Número de diapositiva 202
	Número de diapositiva 203
	Número de diapositiva 204
	Número de diapositiva 205
	Número de diapositiva 206
	Número de diapositiva 207
	Número de diapositiva 208
	Número de diapositiva 209
	Número de diapositiva 210
	Número de diapositiva 211
	Número de diapositiva 212
	Número de diapositiva 213
	Número de diapositiva 214
	Número de diapositiva 215
	Número de diapositiva 216
	Número de diapositiva 217
	Número de diapositiva 218
	Número de diapositiva 219
	Número de diapositiva 220
	Número de diapositiva 221
	Número de diapositiva 222
	Número de diapositiva 223
	Número de diapositiva 224
	Número de diapositiva 225
	Número de diapositiva 226
	Número de diapositiva 227
	Número de diapositiva 228
	Número de diapositiva 229
	Número de diapositiva 230
	Número de diapositiva 231
	Número de diapositiva 232
	Número de diapositiva 233
	Número de diapositiva 234
	Número de diapositiva 235
	Tutorial Outline
	Número de diapositiva 237
	Número de diapositiva 238
	Número de diapositiva 239
	Número de diapositiva 240
	Número de diapositiva 241
	Número de diapositiva 242
	Número de diapositiva 243
	Número de diapositiva 244
	Número de diapositiva 245
	Número de diapositiva 246
	Número de diapositiva 247
	Número de diapositiva 248
	Número de diapositiva 249
	Número de diapositiva 250
	Número de diapositiva 251
	Número de diapositiva 252
	Número de diapositiva 253
	Número de diapositiva 254
	Número de diapositiva 255
	Número de diapositiva 256
	Número de diapositiva 257
	Número de diapositiva 258
	Número de diapositiva 259
	Número de diapositiva 260
	Número de diapositiva 261
	Número de diapositiva 262
	Número de diapositiva 263
	Número de diapositiva 264
	Número de diapositiva 265
	Número de diapositiva 266
	Número de diapositiva 267
	Número de diapositiva 268
	Número de diapositiva 269
	Número de diapositiva 270
	Número de diapositiva 271
	Número de diapositiva 272
	Número de diapositiva 273
	Número de diapositiva 274
	Número de diapositiva 275
	Número de diapositiva 276
	Número de diapositiva 277
	Número de diapositiva 278
	Número de diapositiva 279
	Número de diapositiva 280
	Número de diapositiva 281
	Tutorial Outline
	Número de diapositiva 283
	Número de diapositiva 284
	Número de diapositiva 285
	Número de diapositiva 286
	Número de diapositiva 287
	Número de diapositiva 288
	Número de diapositiva 289
	Número de diapositiva 290
	Número de diapositiva 291
	Número de diapositiva 292
	Número de diapositiva 293
	Número de diapositiva 294
	Número de diapositiva 295
	Número de diapositiva 296
	Número de diapositiva 297
	Número de diapositiva 298
	Número de diapositiva 299
	Número de diapositiva 300
	Número de diapositiva 301
	Número de diapositiva 302
	Número de diapositiva 303
	Número de diapositiva 304
	Número de diapositiva 305
	Número de diapositiva 306
	Número de diapositiva 307
	Número de diapositiva 308
	Número de diapositiva 309
	Número de diapositiva 310
	Número de diapositiva 311
	Número de diapositiva 312
	Número de diapositiva 313
	Número de diapositiva 314
	Número de diapositiva 315
	Número de diapositiva 316
	Número de diapositiva 317
	Número de diapositiva 318
	Número de diapositiva 319
	Número de diapositiva 320
	Número de diapositiva 321
	Número de diapositiva 322
	Número de diapositiva 323
	Número de diapositiva 324
	Número de diapositiva 325
	Número de diapositiva 326
	Número de diapositiva 327
	Número de diapositiva 328
	Número de diapositiva 329
	Número de diapositiva 330
	Número de diapositiva 331
	Número de diapositiva 332
	Número de diapositiva 333
	Número de diapositiva 334
	Número de diapositiva 335
	Número de diapositiva 336
	Número de diapositiva 337
	Número de diapositiva 338
	Número de diapositiva 339
	Número de diapositiva 340
	Número de diapositiva 341
	Número de diapositiva 342
	Número de diapositiva 343
	Número de diapositiva 344
	Número de diapositiva 345
	Número de diapositiva 346
	Número de diapositiva 347
	Número de diapositiva 348
	Número de diapositiva 349
	Número de diapositiva 350
	Número de diapositiva 351
	Número de diapositiva 352
	Número de diapositiva 353
	Número de diapositiva 354
	Número de diapositiva 355
	Número de diapositiva 356
	Número de diapositiva 357

