
Tutorial on
Norm Synthesis

in Normative
Multi-Agent Systems

Maite López-Sánchez
maite_lopez@ub.edu

Volume Visualization and Artificial Intelligence Research Group (WAI)
Dept Matemàtica Aplicada i Anàlisi (MAiA), Facultat de Matemàtiques

Universitat de Barcelona (UB)

• Tutor:
Dr. Maite López-Sánchez
University of Barcelona

• Teaching material based on
– SOAS subject from the interuniversitary master on Artificial

Intelligence (UPC-UB-URV) http://www.fib.upc.edu/en/masters/mai.html

– Related Research papers

– Co-authored research work:
• Ph.D. students: Eva Bou, Jordi Campos, Javier Morales and

Master students: Patricio Petruzzi, Pedro Avila, David
Sanchez, Iosu Mendizábal. Co-supervised with: Dr. Juan
Antonio Rodríguez- Aguilar and Dr. Marc Esteva (IIIA-CSIC)

• Research collaborations: Dr. Jaime S. Sichman (Univ. Sao
Paulo), Dr. Wamberto Vasconcelos (Univ. of Abeerdeen),
Prof. Michael Wooldridge (Univ. of Oxford).

• Tutorial material available online at:
–Tutorial slides:

• http://www.maia.ub.es/~maite/Teaching.html
–On-line Norm Synthesis source code:

http://normsynthesis.github.io/NormLabSimulators/
http://normsynthesis.github.io/NormSynthesisMachine/

http://www.maia.ub.es/~maite/Teaching.html
http://normsynthesis.github.io/NormLabSimulators
http://normsynthesis.github.io/NormSynthesisMachine

Tutorial Outline
Contents

Norm
Synthesis

1. Introdution to Normative
MAS

2. On-line automatic norm
synthesis.

3. Demo and hands-on activity.

Tutorial Outline
Schedule

1. Introdution to Normative
MAS
– 30’

2. On-line automatic norm
synthesis.
– 30’

3. Demo and hands-on activity.
– 60’

Tutorial Outline

1. Introdution to Normative
MAS
– Consider design questions

2. On-line automatic norm
synthesis.
– Learn one approach

3. Demo and hands-on activity.
– Get familiar with a framework
– Put it in practice

Objectives

Norm
Synthesis

Tutorial Outline

1. Introduction to Normative
MAS and norm synthesis
approaches.
– Off-line norm synthesis.
– Norm emergence
– Other

2. On-line automatic norm
synthesis.

3. Demo and hands-on activity

Contents: Modules

Norm
Synthesis

Norms

• Coordination by norms and social laws:
– In our everyday lives, we use a range of techniques

for coordinating activities. One of the most important
is the use of norms and social laws (Lewis, 1969).

Norm definition: Lewis

Norm categories

– Tuomela:
• Rule norms (e.g. to pay taxes),
• Social norms (e.g. not litter),
• Moral norms: (e.g. not steal),
• Prudential norms: (e.g. max. expected utility).

– Elster:
• Consumption norms (e.g. manners of dress),
• Behaviour norms (e.g. the norm against cannibalism),
• Norms of reciprocity (e.g. gift-giving norms),
• Norms of cooperation (e.g. voting and tax compliance).

Social

Norms in MAS

– A norm is an established, expected pattern of
behaviour (Wooldridge).

• May not be enforced
• Related to authority

Norm definition in MAS: Wooldridge

Norms in MAS

– A norm is an established, expected pattern of
behaviour (Wooldridge).

• May not be enforced
• Related to authority

– Alternative defs.:
• Constraints + punishment
• Deontic Logic (DL)

– Normative propositions
– [Des/Pres]criptive obligations

• Game Theory (GT):
– Violation games,…
– Decision Theoretic GT vs DL

Norm definition in MAS: Wooldridge

Norms in MAS

• Norms are key for social processes:
– Simplify agent's decision-making process (templates)
– Balance between:

• Individual freedom (autonomy)
• The goal of the agent society

Norm as a MAS coordination mechanism

Norms in MAS

– Norm Categories (Boella and van der Torre):
• Regulative norms:

– Obligations (O),
– Prohibitions and
– Permissions.

• Constitutive norms:
– Create institutional facts (e.g. property or marriage) and
– Modify normative system itself.

Norms and agents

Norms in MAS

– Norm Categories (Boella and van der Torre):
• Regulative norms:

– Obligations (O),
– Prohibitions and
– Permissions.

• Constitutive norms:
– Create institutional facts (e.g. property or marriage) and
– Modify normative system itself.

– Noms and BDI agents:
• Norm‐based behaviour: BOID

– Meneguzzi and Luck,
– Dignum et al. ...

Norms and agents

Normative MAS

• Normative MAS: MAS + normative system

http://www.dagstuhl.de/15131

@Dagstuhl 2007 @Dagstuhl 2012 @Dagstuhl 2015

– Agents can decide whether to follow explicitly represented norms,
– Normative systems specify how agents can modify norms.
– Sociological theories from sociology, economics, legal science,..

http://www.dagstuhl.de/15131

Design questions

– How do we represent norms?

– Who dictates norms?

– How agents decide norm fulfillment?

– Who/how detects if agents comply with norms?

– Should a norm change?

Example: Answers for a Traffic scenario?

Design questions

– How do we represent norms?
• Are norms implicit, hierarchichal, local, imprecise,..?
• Are there norm exceptions, contradictions?

– Who dictates norms?
• Are norms related to organisations?
• Who spreads them?

– How agents decide norm fulfillment?
• What norms apply to an agent?
• Do agents internalise norms?

– Who/how detects if agents comply with norms?
• If other agents do not comply with a norm, should an agent bother?
• Are there infringement consequences?

– Should a norm change?
• Do we need additional incentives? (rewards, environment ,..)

Example: Answers for a Traffic scenario?

Design questions

Design questions
Exercise: Answers for a regulated scenario?

5 min – How do we represent norms?

– Who dictates norms?

– How agents decide norm fulfillment?

– Who/how detects if agents comply with norms?

– Should a norm change?

Norm changes

Applications

• Applications:
– Contracts (e-commerce)
– International trade
– Social norms in 3D VW

(e.g. NPC in Second Life)
– Human Computer

Interaction
– “What if” scenarios for

policy makers
– Organizations
– What else?

Norm design

• How do norms come to exist within a society?
– Off-line design
– Emergence
– Other ways:

• Norm agreement
• Norm Learning
• On-line generation

Norm origin

Tutorial Outline

1. Introduction to Normative
MAS and norm synthesis
approaches.
– Off-line norm synthesis.
– Norm emergence
– Other

2. On-line automatic norm
synthesis.

3. Demo and hands-on activity

Contents: Modules

Norm
Synthesis

Off-line norm design

• Shoham and Tennenholtz (1996): Traffic law for
preventing robot collisions in 2D a grid.

 practice I

Which norm would you define?

1

2
3

4

5

Off-line norm design

• Shoham and Tennenholtz (1996): Traffic law for
preventing robot collisions in 2D a grid.

– Each robot is required to move constantly. The direction of motion is fixed as follows. On even
rows each robot must move left, while in odd rows it must move right. It is required to move up
when it is in the right-most column. Finally, it is required to move down when it is on either the
leftmost column of even rows or on the second rightmost column of odd rows. The movement
is therefore in a 'snake-like' Structure, and defines a Hamiltonian cycle on the grid

 practice I

1

2
3

4

5

Off-line norm design

• Shoham and Tennenholtz (1996): Traffic law for
preventing robot collisions in 2D a grid.

– Each robot is required to move constantly. The direction of motion is fixed as follows. On even
rows each robot must move left, while in odd rows it must move right. It is required to move up
when it is in the right-most column. Finally, it is required to move down when it is on either the
leftmost column of even rows or on the second rightmost column of odd rows. The movement
is therefore in a 'snake-like' Structure, and defines a Hamiltonian cycle on the grid

 practice I

1

2
3

4

5

– Determines uniquely the next
movement of agents

– Provides paths to any
destination cell

– Does not require perceptual
capabilities of the robots

– Is effective but not very
efficient (fixed directions)

Off-line norm design

– E a finite set of environment discrete states:
– Agent actions transform the environment:

– A constraint is then a pair < E’,α> where

– E’ ⊆ E set of environment states, α ∈ Ac an action
• “IF environment is in some state e ∈ E’, THEN action α is forbidden”

– A social law is a set of constraints
• Useful social law: Disallows (& ensures) access to undesirable (& goal)

states in the state space.
• An agent is legal respect a social law if it never attempts to perform

a forbidden action in this law.

Abstract Model of Environment & Agents

E

Offline norm design

– Formal, exhaustive, NP-complete
– Norms are hardwired in agents
– Designer has more control
– But:

• Some characteristics may not be known at design time
• Agent goals may be constantly changing: requires agent

reprogramming
• Complex systems are hard to predict (and to design norms)

Tutorial Outline

1. Introduction to Normative
MAS and norm synthesis
approaches.
– Off-line norm synthesis.
– Norm emergence
– Other

2. On-line automatic norm
synthesis.

3. Demo and hands-on activity

Contents: Modules

Norm
Synthesis

Norm emergence

• Norm Emergence:
– Agents reach global agreement on social conventions

by using only locally available information :

• Global: all agents adopt norms
• Local: each agent decides to adopt one based

solely on its own experiences

Norm emergence

– The tee shirt game: Let’s play it!
• All agents have a blue and a red T-shirt
• They should end up wearing the same colour

– Colour adoption as a strategy or convention to adopt
• Agents:

– Decide what to dress
– based on their memory about encountered agents (initially, can be

random)
• Form agent populations, select a monitor and play in rounds:

– Monitor agent detects convergence (same colour)
– Each round:

» Form pairs of agents: each one sees the t-shirt colour of the
other agent.

» Agents can change colour (dress again) after each round.

Tee Shirt Game

Norm emergence issues

• Search space:
– Agents choose a solution from a space of alternative solutions

(known at design time).
– Repeated two-player games.
– Agents open to new ideas can periodically forget everything.

• Convergence:
– Initial conditions.
– Stability: keep agreements in the society.
– Efficiency measure: time to norm convergence.

• Norm changes:
– Strategy changing cost.

Norm emergence

• Research on:
– Norm adoption & internalisation (Conte et al.)
– Topology of relationships (Luck et al., Sen et al.,)
– …
– Norm life-cycle:

• Savarimutu and Cranefield

Norm emergence
Norm life-cycle: Savarimutu and Cranefield

Proposed norm

Internalized norm

Punishments

Phases of
norm construction

 Mechanisms used by
simulation models

Tutorial Outline

1. Introduction to Normative
MAS and norm synthesis
approaches.
– Off-line norm synthesis.
– Norm emergence
– Other: agreement, learning,

on-line
2. On-line automatic norm

synthesis.
3. Demo and hands-on activity

Contents: Modules

Norm
Synthesis

Norm design

• How do norms come to exist within a society?
– Off-line design
– Emergence
– Other ways:

• Norm agreement
• Norm Learning
• On-line generation

Norm origin

Norm agreement

– Empowered members use a (meta-level)
argumentation protocol to modify norms at run-time.

– Democratic
– Agents enriched with agreement capabilities

by Artikis, Kaponis, Pitt

Norm learning

– Norm learning:
• Genetic Algorithms: Punishment learning (Bou et al.)
• Case Based Reasoning: Norm parameter adaptation

(Campos et al.)

Norm origin

Genetic Algorithms
Learning effective norm punishments

Agent
population

I1

Ij

Ik

Configurations

Agent
population

Learn fines

Learns norm punishments for each population

Genetic Algorithms
Learning effective norm punishments for the traffic domain

CBR: P2P sharing network

Norm parameter evolution

Norms:
• normFR: a peer cannot send data to >maxFR simult.
• normBW: a peer cannot use >maxBW bandwidth.

Norm design

• How do norms come to exist within a society?
– Off-line design
– Emergence
– Other ways:

• Norm agreement
• Norm Learning
• On-line generation

Norm origin

Tutorial Outline
Contents

Norm
Synthesis

1. Introdution to Normative
MAS

2. On-line automatic norm
synthesis.

3. Demo and hands-on activity.

Research Problem
Automatic Synthesis of Normative Systems

• How to synthesise a Normative System
(NS) that avoids undesirable states (i.e.,
conflicts) in a MAS?

– If limited previous knowledge and/or

dynamic MAS, then: on-line empirical

approach.

• Is the resulting NS good enough?
– Avoids conflicts?
– Is it compact?

(avoids overregulation and is easy to reason about)

On-line norm generation

– Regulatory agents propose norms
 to avoid conflicts in agent interactions

• Non intrusive, preserves agent autonomy

• Requires conflict detection

• Does not search the complete state space

– Norm evaluation based on

• Agent responses (infringements and compliances)

• Consequences (conflicts ≈ system goals)

• Normative system compactness

Morales, López-Sánchez, Rodríguez-Aguilar, Wooldridge, Vasconcelos

Norm Synthesis Machine

MAS events
Norms (NS)

47

 MAS Simulator

On-line norm generation
Architecture

Norm Synthesis Machine

MAS events
Norms (NS)

48

 MAS Simulator

On-line norm generation
Architecture

Norm Synthesis Machine

MAS events
Norms (NS)

49

 MAS Simulator

On-line norm generation
Architecture

Conflict detection,
Norm synthesis

Norm Synthesis Machine

MAS events
Norms (NS)

50

 MAS Simulator

On-line norm generation
Architecture

Norm Synthesis Machine

MAS events
Norms (NS)

51

 MAS Simulator

On-line norm generation
Architecture

Norm Synthesis Machine

MAS events
Norms (NS)

52

 MAS Simulator

On-line norm generation
Architecture

Conflict & norm compliance detection,
Norm refinement

Norm Synthesis Machine

MAS events
Norms (NS)

53

 MAS Simulator

On-line norm generation
Architecture

Norm Synthesis Machine

MAS events
Norms (NS)

54

 MAS Simulator

Top-down

Bottom-up

Goal: conflict avoidance

Dynamicity

Division of concerns

On-line norm generation
Architecture

Norm Synthesis Machine

MAS events
Norms (NS)

55

 MAS Simulator

Top-down

Bottom-up

Goal: conflict avoidance

Dynamicity

Division of concerns

Similar to human socities

On-line generation
Architecture

On-line norm generation

– Regulatory agents propose norms
 to avoid conflicts in agent interactions

• Non intrusive, preserves agent autonomy

• Requires conflict detection

• Does not search the complete state space

– Norm evaluation based on

• Agent responses (infringements and compliances)

• Consequences (conflicts ≈ system goals)

• Normative system compactness

Morales, López-Sánchez, Rodríguez-Aguilar, Wooldridge, Vasconcelos

Simulated discretized traffic intersection:
• Agents : cars.
• Conflicts: car collisions.
• MAS goal: collision avoidance.

Simulated traffic intersection scenario

Simulated Scenario
MAS

Norm Synthesis Machine

MAS events
Norms (NS)

58

 MAS Simulator

On-line norm generation

Conflict detection,
Norm synthesis

Norm synthesis Strategy

59
prh(go)

Graphical
representation

In the traffic simulator, cars perceive three cells in front:

Norms are…

• IF … THEN… rules: <ϕ, Ѳ(ac)>
• Whenever the local perception of an agent satisfies the precondition of a norm (ϕ), then the

norm applies to the agent: the deontic operator specifies the modality of its action ac
• α : unary predicates: α ∈{left, front, right}
• τi : terms τi ∈{car-to-right, car-same-dir, car-to-left, car-opp-dir, nothing, wall, anything }

• Ex.: IF left(car-to-right) & front(nothing) & right(nothing) THEN prohibition(go)

Reference car

Car perception

Norm syntax

Norm ::= <ϕ, Ѳ(ac)>
 ϕ ::= <ϕ & ϕ> | α
 Ѳ ::= obl | perm | prh
 Ac ::= ac1 | ac2 | … | acn
 α ::= pn(τ1 ,…,τn)

Norm creation

Conflict Description

 View vs
t-1 View vs

t

Conflicting agents: {ag1, ag2}
Agent actions (t-1  t):
 {ag1: Go, ag2: Go}

 View at time t-1 View at time t

ag1

ag2

Conflict Description

 View at time t-1 View at time t

Prh(Go)

ag1

ag2

New norm

Conflicting agents: {ag1, ag2}
Agent actions (t-1  t):
 {ag1: Go, ag2: Go}

Norm creation

1. Conflict detection by MAS observation.
2. For each detected conflict  Synthesis of a new norm.

• to avoid the conflict in the future.

Automated norm synthesis
Norm synthesis Strategy

1. Conflict detection by MAS observation.
2. For each detected conflict  Synthesis of a new norm.

• to avoid the conflict in the future.

Automated norm synthesis
Norm synthesis Strategy

But… are synthesised norms good enough for avoiding conflicts?

1. Conflict detection by MAS observation.
2. For each detected conflict  Synthesis of a new norm.

• to avoid the conflict in the future.

3. Evaluate norms in terms of:
• Effectiveness: Do norms avoid conflicts when agents comply with them?

• If complied & no conflicts → Effectiveness ↑↑ (ex. Left hand side priority)

• If complied & conflicts → Effectiveness ↓↓ (ex. Never give way)

• Necessity: Do conflicts arise when agents infringe norms?
• If infringed & no conflicts → Necessity ↓↓ (ex. Stop if no car in view)

• If infringed & conflicts → Necessity ↑↑ (ex. Left hand side priority)

Automated norm synthesis
Norm synthesis Strategy

But… are synthesised norms good enough for avoiding conflicts?

Norm Synthesis Machine

MAS events
Norms (NS)

65

 MAS Simulator

On-line norm generation
Architecture

Conflict & norm compliance detection,
Norm refinement

MAS events Norms (NS)

66

Norm Synthesis Machine
Normative Network

MAS Simulator

Norm Synthesis Machine

n4

n1 n3 n2

Normative
Network Control

Unit

Operators
Strategy read

write

Normative Network
(Data Structure):
• Nodes: explored norms.
• Edges: norm
generalisation relationships

MAS events Norms (NS)

67

Norm Synthesis Machine
Normative Network

MAS Simulator

Norm Synthesis Machine

n4

n1 n3 n2

Normative
Network Control

Unit

Operators
Strategy read

write

Normative Network
(Data Structure):
• Nodes: explored norms.
• Edges: norm
generalisation relationships

n1: Give way
to police cars

n2: Give way
to fire-trucks

n3: Give way
to ambulances

n4: Give way to
emergency vehicles

MAS events Norms (NS)

68

Norm Synthesis Machine
Normative Network

MAS Simulator

Norm Synthesis Machine

n4

n1 n3 n2

Normative
Network Control

Unit

Operators
Strategy read

write

Normative Network
(Data Structure):
• Nodes: explored norms.
• Edges: norm
generalisation relationships

A Normative Network
represents a
Normative System Ω as its
active norms.

Ex: Ω ={n4}

1. Conflict detection by MAS observation.
2. For each detected conflict  Synthesis of new norms.

• New norms are aimed to avoid the conflict in the future.

3. Evaluate norms in terms of:
• Effectiveness: Do norms avoid conflicts when agents comply with them?
• Necessity: Do conflicts arise when agents infringe norms?

4. Refine norms:
• Deactivate/Specialise norms that do not perform well
• Generalise well performing norms (if enough evidence)

Automated norm synthesis
Norm synthesis Strategy

But… are synthesised norms good enough for avoiding conflicts?

MAS events Norms (NS)

70

On-line norm generation
Architecture

MAS Simulator

Norm Synthesis Machine
Normative
Network Control

Unit

Operators
Strategy read

write

MAS events Norms (NS)

71

Create operator

MAS Simulator

Norm Synthesis Machine
Normative
Network Control

Unit

Operators
Strategy read

write

create: Synthesises a norm
and adds it to the
Normative Network

n1 n2 n1

NN0 NN1

Ω0={n1} Ω1={n1,n2}

Normative Network Operators

MAS events Norms (NS)

72

Normative Network Operators
Deactivate operator

MAS Simulator

Norm Synthesis Machine
Normative
Network Control

Unit

Operators
Strategy read

write

deactivate: Deactivates a
norm in the Normative
Network

n1 n2 n1

NN0 NN1

Ω0={n1,n2} Ω1={n1}

n2

MAS events Norms (NS)

73

Generalise operator

MAS Simulator

Norm Synthesis Machine
Normative
Network Control

Unit

Operators
Strategy read

write

generalise: Generalises a
set of norms into a parent
norm

n1 n2 n1

NN0 NN1

n2

Ω0={n1,n2} Ω1={n3}

n3

Normative Network Operators

MAS events Norms (NS)

74

Specialise operator

MAS Simulator

Norm Synthesis Machine
Normative
Network Control

Unit

Operators
Strategy read

write

specialises: Undoes a
norm generalisation

n1 n2 n1

NN0 NN1

n2

Ω0={n3} Ω1={n1}

n3 n3

Normative Network Operators

MAS events Norms (NS)

75

On-line norm generation
Norm synthesis strategy

MAS Simulator

Norm Synthesis Machine
Normative
Network Control

Unit

Operators
Strategy read

write

1. Conflict detection
2. Norm creation
3. Norm evaluation
4. Norm Refinement:

• Deactivate/specialise
norms that do not
perform well

• Generalise well
performing norms (if
enough evidence)

Norm generalisation

• Term taxonomy

• Norm generalisation

Taxonomy of terms

 emergency car

ambulance fire-brigade police-car private-car

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars

NN0

n3 n1

Normative System
Ω0= {n1, n2, n3}

n2

Norm generalisation

• Term taxonomy

• Norm generalisation

Conservative approach

 emergency car

ambulance fire-brigade police-car private-car

NN0

n3 n1

Normative System
Ω0= {n1, n2, n3}

n2

NN1

n3 n1

Normative System
Ω1={n4}

n2

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

Norm generalisation

• Term taxonomy

• Norm generalisation

 emergency car

ambulance fire-brigade police-car private-car

NN0

n3 n1

Normative System
Ω0= {n1, n2, n3}

n2

NN1

n3 n1

Normative System
Ω1={n4}

n2

n4 Conservative approach
Employs full evidence
to generalise norms.

Conservative approach

Norm generalisation

• Term taxonomy

• Optimistic norm generalisation

 emergency car

ambulance fire-brigade police-car private-car

NN0

n1

Normative System
Ω0= {n1, n2}

n2

Optimistic approach

n1: Give way to ambulances
n2: Give way to fire brigade

Norm generalisation

• Term taxonomy

• Optimistic norm generalisation (partial evidence)

 emergency car

ambulance fire-brigade police-car private-car

NN0

n1

Normative System
Ω0= {n1, n2}

n2

NN1

n1

Normative System
Ω1={n4}

n2

n4

Optimistic approach

Most specific generalisation
between two terms
E. Armengol and E. Plaza.
Bottom-up induction of feature terms.
Machine Learning, 41(3):259–294, 2000.

n1: Give way to ambulances
n2: Give way to fire brigade
n4: Give way to emergency vehicles

Norm generalisation

• Term taxonomy

• Shallow Optimistic norm generalisation

 emergency car

ambulance fire-brigade police-car private-car

NN0

n1

Normative System
Ω0= {n1, n2}

n2

Generalisation modes: shallow

n1: Give way to ambulances
n2: Give way to fire brigade

Norm generalisation

• Term taxonomy

• Shallow Optimistic norm generalisation

 emergency car

ambulance fire-brigade police-car private-car

NN0

n1

Normative System
Ω0= {n1, n2}

n2

NN1

n1

Normative System
Ω1={n4}

n2

n4

Generalisation modes: shallow

• Directly generalises two
active norms (in Ω).

n1: Give way to ambulances
n2: Give way to fire brigade
n4: Give way to emergency vehicles

Norm generalisation

• Term taxonomy

• Deep Optimistic norm generalisation

 emergency car

ambulance fire-brigade police-car private-car

Generalisation modes: deep

n1: Give way to ambulances
n2: Give way to fire brigade

n4: Give way to emergency vehicles
n5: Give way to private cars

NN0

n2 n1

Normative system
Ω0={n4, n5}

n5

n4

Norm generalisation

• Term taxonomy

• Deep Optimistic norm generalisation

 emergency car

ambulance fire-brigade police-car private-car

Generalisation modes: deep

Normative system
Ω0={n4, n5}

NN2

n1

Normative system
Ω1={n4 , n6}

n2 n3

n4

n5

n6
n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles
n5: Give way to private cars
n6: Give way to cars

NN0

n2 n1 n5

n4

Norm generalisation
Shallow vs. deep generalisation modes

na

nc

nb

nd

Shallow generalisation

 Deep generalisation

ne

na

nc

nb

nd

ne

More coarse More fine-grained

In this simple scenario we may
synthesise many candidate norms:

66 candidate norms  266 ≈ 1020
candidate Normative Systems.

1. Give way to left.
2. Give way to right.
3. Keep security distance.
4. Stop always.
5. Never stop.
6. …

What combination of candidate norms (NS) achieves MAS goals?

Normative Systems

1. A typical execution of the norm synthesis process.
 Successful synthesis of NS that avoid collisions.

2. A robustness analysis w.r.t. non-compliant behaviour (norm
infringements).
 Synthesis of NS even for high norm violation rates.

3. Analysis of the search space
 Different strategies explore different NS.

Empirical evaluation

Tick 13: first collisions
arise and IRON
synthesises first norms.

Tick 35: IRON
generalises norms.

Tick 3349: Cardinality of
the normative system
reduced to 5 norms.
Collisions are avoided.

Tick 13349: Simulation
stops because of
convergence.

1

2

3

4

1

2 3

4

Empirical evaluation
Prototypical execution

Empirical evaluation
Robustness Analysis

Low violation rates (up to
40%) IRON converges for
100% of the simulation runs.

High violation rates (40%-
60%) IRON converges
between 80% and 98% of
the simulation runs.

Very high violation rates
(70%-90%) IRON converges
for 20% of the simulation
runs despite a 70% violation
rate. Norms cannot be
synthesised beyond 80%
violation rate.

1
2

3
3

2

1

D-SIMON focuses on an search space area with more compact NS.
(D-SIMON: requires more computational effort than S-SIMON)

N1 N50 N100 N150 N200 N250 N314

3
0 111 173

Empirical evaluation
NS Search Space for each norm synthesis strategy

IRON: conservative norm
generalisations
SIMON: optimistic norm
generalisations

• We have presented SIMON, a novel strategy for the on-line synthesis of
 conflict-free and compact normative systems that:

• Avoids conflicts.
• Avoids over regulation.
• Eases the reasoning of agents.

• Applicable to other domains.

On-line norm generation
Conclusions so far

MAS = Simulated virtual community

System

Ex. Norms: IF user(1) & section(2) & contentType(porn)
THEN prh(upload(content))

• Agents model human users interacting within virtual communities
• On-line synthesis of norms to avoid conflicts (i.e. user complaints)

On-line norm generation
Case study 2: Virtual Communities

On-line norm generation
Case study 2: Virtual Communities Simulator

On-line norm generation
Case study 2: Virtual Communities

NORM SYNTHESIS BECOMES A
PARTICIPATORY MECHANISM:

Users choose community norms by

means of their complaints.

Tutorial Outline
Contents

Norm
Synthesis

1. Introdution to Normative
MAS

2. On-line automatic norm
synthesis.

3. Demo and hands-on activity.

NormLab hands-on Tutorial

Javier Morales (IIIA-UB), Maite López-Sánchez(UB), Juan A. Rodríguez-
Aguilar (IIIA-CISC), Michael Wooldridge (UO), Wamberto Vasconcelos (UA)

 1. NormLab (Introduction)

NormLab is a framework to support research on norm synthesis for Multi-Agent Systems.

NormLab allows to:

• Perform MAS simulations. It incorporates two different MAS simulators: a traffic

simulator, and an on-line community simulator.

• Perform on-line norm synthesis on MAS simulations. NormLab incorporates different
state-of-the-art on-line norm synthesis strategies that can be tested on MAS
simulations.

• Develop and test custom norm synthesis strategies. NormLab allows to develop
custom on-line norm synthesis strategies to be tested on the MAS simulations.

NormLab hands-on tutorial Outline

An introduction to NormLab
1. (Introduction to NormLab)
2. NormLab architecture.
3. Norm Synthesis Machine.
4. Traffic simulator.

Configuration of the working environment

5. NormLab download and installation.

NormLab execution:
 6-8. Execution examples.
 9-14. Guided development of different norm synthesis strategies.

 2. NormLab architecture

MAS Simulators

On-line community
simulator

Norm synthesis
settings

Domain-
dependent
functions

Simulator
settings

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategies: IRON, SIMON, …

NormLab

MAS events
Norms (NS)

 3. Norm Synthesis Machine

 MAS Simulator

Norm synthesis
settings

Domain-
dependent
functions

Simulator
settings

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events
Norms (NS)

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events

1.- Agents
behave

Norms (NS)

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events 2.- Agents
are

observed

Norms (NS)

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events

3.- New
norms

required?
Norms (NS)

 3. Norm Synthesis Machine

 MAS Simulator

Traffic junction
simulator

Norm Synthesis Machine

 Norm synthesis strategy: SIMON

NormLab

MAS events
Norms (NS) 4.- Provide

Normative
System

• Based on Repast Simphony 2.2
• Agents are cars, and conflicts are collisions among cars.
• The goal is to synthesise normative systems that avoid collisions between cars.

 4. Traffic simulator

NormLab hands-on tutorial Outline

An introduction to NormLab
1. (Introduction to NormLab)
2. NormLab architecture.
3. Norm Synthesis Machine.
4. Traffic simulator.

Configuration of the working environment

5. NormLab download and installation.

NormLab execution:
 6-8. Execution examples.
 9-14. Guided development of different norm synthesis strategies.

NormLab is multi-platform. You can use it either in Windows, MacOS or Linux

Requirements

• Java JDK 1.6 or later http://www.java.com
• Eclipse IDE (just for Linux users) http://www.eclipse.org/downloads
• Repast Simphony 2.2 http://repast.sourceforge.net

Downloads

To use NormLab you need to download:

• NormSynthesisMachine: http://normsynthesis.github.io/NormSynthesisMachine

Implements an API that allows to perform norm synthesis for MAS.
• NormLabSimulators: http://normsynthesis.github.io/NormLabSimulators

Code of two MAS simulators: traffic and on-line community.

Download both projects in a ZIP or TAR.GZ file.

 5. NormLab download

http://www.java.com/
http://www.eclipse.org/downloads
http://repast.sourceforge.net/
http://normsynthesis.github.io/NormSynthesisMachine
http://normsynthesis.github.io/NormLabSimulators

 5. NormLab installation

Preparing the working environment

1. Unzip NormSynthesisMachine and NormLabSimulators projects to your HOME folder.
• For instance… «/Users/Javi/NormLab»

2. Both projects will be unzipped as NormSynthesis-«project_name»- «numbers». For
instance…

• NormSynthesis-NormLabSimulators-34d43o
• NormSynthesis-NormSynthesisMachine-1847fje

3. Rename both projects, removing the «NormSynthesis» part and the numbers. After

renaming them they should look like this:

• NormLabSimulators
• NormSynthesisMachine

 5. NormLab installation

Preparing the working environment

1. Open the Repast Symphony IDE (in Linux, open Eclipse IDE with Repast installed on it).
2. Select Java view in Eclipse
3. Import both projects NormSynthesisMachine and NormLabSimulators in Eclipse.

1. File>New>Java Project.
2. Uncheck «Use default location» and click on «Browse».

 5. NormLab project structure

NormLabSimulators project is structured as follows:

src/traffic: The code of the traffic simulator.
(src/onlineComm: The code of the on-line community simulator)
launchers: The launchers that allow to run the two simulators.
repast-settings/TrafficJunction.rs: Basic Repast settings for the traffic junction simulator.
(repast-settings/OnlineCommunities.rs: Basic Repast settings for the on-line community simulator)

NormLab hands-on tutorial Outline

An introduction to NormLab
1. (Introduction to NormLab)
2. NormLab architecture.
3. Norm Synthesis Machine.
4. Traffic simulator.

Configuration of the working environment

5. NormLab download and installation.

NormLab execution:
 6-8. Execution examples.
 9-14. Guided development of different norm synthesis strategies.

 Tutorial outline

NormLab execution:

6-8. Execution examples:
6. Example strategy 1: Normlab execution: Returns an empty set of norms.
7. Example strategy 2: Returns a fixed set of 1 norm.
8. Example strategy 3: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies:

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Returns a fixed set of 1 norm.
8. Example strategy 3: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 6. NormLab Execution: Example 1

TrafficJunction norm synthesis example 1

We are going to execute the TrafficJunction simulator with the simplest norm synthesis strategy:

  Everytime the strategy is executed, return an empty normative system.

Consequences: No norms are given to the agents  collisions are never avoided.

Note: This execution assumes that file parameters.xml (in directory repast-settings/TrafficJunction.rs

within NormLabSimulators project) has parameter «NormSynthesisExample» with field
«defaultValue» set to «1»

 6. NormLab Execution: Example 1

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.

 6. NormLab Execution: Example 1

TrafficJunction norm synthesis example 1

1. In Eclipse, in NormLabSimulators project, go to directory launchers/
2. Do right click on the file TrafficJunctionSimulator.launch.
3. Click on «Run As» > «TrafficJunctionSimulator».
4. Click on button to initialise the simulator.
5. Click on button to start the simulator. Cars will appear as coloured balls. Collisions will appear

as red stars. Cars will start to drive and they will collide.
6. You can pause the simulation with button and stop it with button

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Using norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

IF left(>) & front(-) & right(-) THEN prohibition(go)

prh(go)

Graphical representation

 7. Using norms: Example 2

Reference car

Car perception

In the traffic simulator, cars‘ perceptions correspond to the three cells in front of them:

Norms are…

• IF … THEN… rules.
• Norm precondition: Set of predicates with one term each.

• Three predicates (left, front, right).
• Terms {<, ^, >, v, -, w, *} represent: cars with {<, ^, >, v} headings; nothing (-), wall (w); and

anything (*)
• Norm postcondition: A modality.

 7. Using norms: Example 2

TrafficJunction norm synthesis example 2

We will execute the TrafficJunction simulator with a norm synthesis strategy that returns a normative
system with only one left-side-priority norm:

It avoids some (but not all) collisions.

IF left(>) & front(*) & right(*) THEN prohibition(go)

prh(go)

Norm 1

* *

 7. Using norms: Example 2

TrafficJunction norm synthesis example 2

1. In Eclipse, in NormLabSimulators project, go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample».
4. Set the field «defaultValue» to «2». This will indicate NormLab to launch example 2, which uses a

norm synthesis strategy that always returns a normative system with the left-side-priority norm.
5. Save the file.

 7. Using norms: Example 2

TrafficJunction norm synthesis example 2

6. Do right click on the file TrafficJunctionSimulator.launch.
7. Click on «Run As» > «TrafficJunctionSimulator».
8. Run the simulation with button
9. Update the norm synthesis inspector. Observe how now the normative system contains norm N1,

and cars occasionally stop to conform to it.

Green cirle:
Norm 1 applies
and car c1 stops
(c3 has priority)

Red circle:
Norm 1 applies but car

c5 does NOT stop

Tick i

Tick i +1
Non regulated

collision
(between c1 - c2) Regulated collision (between c4 - c5)

c6 complies with N1 (stops)

c1 c2

c4

c5

c3

c6

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Using norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Development of example strategy 2: Fixed set of 1 norm.
11. Studying example 4: A strategy with norm generation.
12. Studying example 5: A strategy with norm generation + evaluation.
13. Studying SIMON: A strategy with norm generation + evaluation + refinement.

 8. Removing collisions: Example 3

TrafficJunction norm synthesis example 3

Let’s define a norm synthesis strategy that avoids all possible collisions by always returning this
Normative System:

Set NormSynthesisExample defaultValue=«3» in parameters.xml (in NormLabSimulators project,
repast-settings/TrafficJunction.rs)

N1: IF left(*) & front(^) & right(*) THEN prohibition(go)
N2: IF left(>) & front(-) & right(*) THEN prohibition(go)
N3: IF left(<) & front(<) & right(*) THEN prohibition(go)

Tick i Tick i+1

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

 9. Developing your own strategy

How are all these examples implemented? We will now develop our own norm synthesis strategy as
the one from example 1, which returns an empty normative system.

To do so, we first parameterise NormLab to use a custom norm synthesis strategy:

1. In Eclipse (NormLabSimulators project), go to directory repast-settings/TrafficJunction.rs
2. Open file parameters.xml by doing right click > Open with > Text Editor. This file defines the

NormLab parameters.
3. Search for the parameter «NormSynthesisExample» and set the field defaultValue=«0». This will

indicate NormLab that we do not want to load a pre-designed example.
4. Search for the parameter «NormSynthesisStrategy» and set the field defaultValue=«0». This will

indicate NormLab that we will provide a custom norm synthesis strategy.
5. Save the file

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

 2.- Adding interface
 es.csic.iiia.nsm.strategy.NormSynthesisStrategy

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

 2.- Adding interface
 es.csic.iiia.nsm.strategy.NormSynthesisStrategy

3.- Cheking the constructor creation

 9. Developing your own strategy

Now, create your own norm synthesis strategy MyFirstStrategy.java:

• In NormLabSimulators project, go to package es.csic.iiia.normlab.traffic.custom in src/traffic .
• There, right-click New > Class to create a new Java class MyFirstStrategy.java that implements

NormSynthesisStragegy interface by:

 1.- Naming it MyFirstStrategy

 2.- Adding interface
 es.csic.iiia.nsm.strategy.NormSynthesisStrategy

3.- Cheking the constructor creation

4.- Creating inherited abstract method execute()
 (check “Inherited abstract methods”)

 9. Developing your own strategy

And implement the norm synthesis strategy class:

1. In the class, add a Normative Network attribute :
 private NormativeNetwork normativeNetwork;

The Norm Synthesis Machine contains the Normative Network which includes the Normative System:
• Normative Network: contains all synthesised norms.
• Normative System: set of (active) norms
 given to the agents.

 9. Developing your own strategy

And implement the norm synthesis strategy class:

1. In the class, add a Normative Network attribute :
 private NormativeNetwork normativeNetwork;
2. In the constructor, add the parameter es.csic.iiia.nsm.NormSynthesisMachine nsm and use it to

initialize (to empty) the Normative Network attribute:
 this.normativeNetwork = nsm.getNormativeNetwork();

The Norm Synthesis Machine contains the Normative Network which includes the Normative System:
• Normative Network: contains all synthesised norms.
• Normative System: set of (active) norms
 given to the agents.

 9. Developing your own strategy

And implement the norm synthesis strategy class:

1. In the class, add a Normative Network attribute :
 private NormativeNetwork normativeNetwork;
2. In the constructor, add the parameter es.csic.iiia.nsm.NormSynthesisMachine nsm and use it to

initialize (to empty) the Normative Network attribute:
 this.normativeNetwork = nsm.getNormativeNetwork();

The Norm Synthesis Machine contains the Normative Network which includes the Normative System:
• Normative Network: contains all synthesised norms.
• Normative System: set of (active) norms
 given to the agents.

3. Strategy execution: return the empty
 Normative System in method execute():

return this.normativeNetwork.getNormativeSystem();

 9. Developing your own strategy

Congratulations! You have created your first norm synthesis strategy, which returns an empty
normative system. Your code should now look like this:

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Invoking your strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

 10. Invoking your strategy

But, how does NormLab invoke our new norm synthesis strategy?
The Traffic Simulator includes (in package es.csic.iiia.normlab.traffic.agent) an agent
DefaultTrafficNormSynthesisAgent whose:

A. Constructor creates the Norm Synthesis Machine and configures it to use our strategy
B. step() method invokes our strategy at every simulation tick.

A

B

 10. Invoking your strategy (A)

Specifically, the constructor (A) DefaultTrafficNormSynthesisAgent() is in charge of:
1. Creating the norm synthesis machine.
2. Adding a set of sensors to the norm synthesis machine in order to perceive the scenario.
3. Setting the norm synthesis strategy.

1

2

3

A

 10. Invoking your strategy (A.1)

The invocation to the constructor of the NormSynthesisMachine (A.1) requires :

i. NormSynthesisSettings: The settings for the norm synthesis machine.
ii. PredicatesDomains: Agents’ language: predicates and terms describing the scenario from the

agents’ local point of view.
iii. DomainFunctions: Some domain-dependent functions that the Norm Synthesis Machine requires

to synthesise norms (e.g., conflict detection, norm applicability).

1

A

i ii

iii

 10. Invoking your strategy (A.1.i)

NormSynthesisSettings (A.1.i) : An interface to be implemented (located in package
es.csic.iiia.nsm.config in NormSynthesisMachine project)

• getNormSynthesisStrategy(): Returns the norm synthesis strategy to use.
• getSystemGoals(): A list of system goals. In traffic, the only goal is “to avoid collisions”.
• isNormGenerationReactiveToConflicts(): True if NSM tries to add a new norm upon the detection of each non-

regulated conflict. False if it creates the nom but does not add it to the Normative System immediately.
• getNormsDefaultUtility(): Norms’ default utility (0.5 by default).
• getNormEvaluationLearningRate(): The α rate in IRON and SIMON to evaluate norms (0.1 recom.).
• getNormsPerformanceRangesSize(): The size of the window to compute norms’ performance ranges.
• getNormGeneralisationMode(): SIMON’s norm generalisation mode (Shallow/Deep).
• public int getNormGeneralisationStep(): SIMON’s norm generalisation step: number of norm predicates that can

be simultaneously generalised.
• getGeneralisationBoundary(Dimension dim, Goal goal): Minimum value of effectiveness/necessity that a norm’s

performance must reach to be generalised. It corresponds to the threshold αgen in [1].
• getSpecialisationBoundary(Dimension dim, Goal goal): Value of Effectiveness/necessity under which a norm

can be specialised. It corresponds to the threshold αspec described in [1].
• getSpecialisationBoundaryEpsilon(Dimension dim, Goal goal): LION’s epsilon to create, together with the

specialisation boundaries, a norm deactivation band.
• getNumTicksOfStabilityForConvergence(): Number of simulation ticks without conflicts nor changes in the

normative system to converge.

An implementation of these settings for the traffic simulator is located in (NormLabSimulators project,
src/traffic) package es.csic.iiia.normlab.traffic.normsynthesis, in class TrafficNormSynthesisSettings

[1] Minimality and Simplicity in the On-line Automated Synthesis of Normative Systems. Javier Morales; Maite López-Sánchez; Juan A.
Rodríguez-Aguilar; Michael Wooldridge; Wamberto W. Vasconcelos. AAMAS '14:, p.109-116 (2014)

 10. Invoking your strategy (A.1.ii)

PredicatesDomains (A.1.ii) : Contains the predicates and terms that the agents employ to describe
the MAS from their local point of view. Located in package es.csic.iiia.nsm.agent.language
(NormSynthesisMachine project, src/).

The traffic simulator creates predicates and their domains in class TrafficSimulator
(NormLabSimulators project, src/traffic) from package es.csic.iiia.normlab.traffic, method
createPredicatesDomains().

• Three different predicates (l, f, r) that represent the left, front and right positions in front of a car.
• Seven different terms {<, ^, >, v, -, *, w} representing: cars with different headings {<, ^, >, v},

nothing (-), anything (*), and wall (w).

Reference car

Car perception:
 l(>)&f(-)&r(-)

left front right

 10. Invoking your strategy (A.1.ii)

PredicatesDomains (A.1.ii) : class TrafficSimulator, method createPredicatesDomains():

 10. Invoking your strategy (A.1.iii)

DomainFunctions (A.1.iii) : An interface to be implemented. Located in package
es.csic.iiia.nsm.config (NormSynthesisMachine project, src/).

• isConsistent(SetOfPredicatesWithTerms agentContext): Returns true if a set of predicates with

terms is consistent with the domain scenario. E.g.: (left(>),front(-),right(-)) is consistent (possible)
but (left(>),front(<),right(-)) is not consistent, since two cars can not drive in opposite directions in
the same lane.

• agentContextFunction(long agentId, View view): Returns the local perception of a given agent
(i.e., its context) from the observation (view) of the state of the simulated scenario.

• agentActionFunction(long agentId,ViewTransition viewTransition): Returns a list of actions
performed by an agent in the transition from a state st to a state st-1

• getConflicts(Goal goal,ViewTransition viewTransition): Receives a transition between two states, a
system goal (e.g., to avoid collisions) and returns the conflicts that have arisen in that transition
with respect to the system goal (e.g., returns the collisions).

• hasConflict(View view, long agentId, Goal goal): Returns true if a given agent is in conflict in a
given system state (i.e., View).

An implementation of the domain functions for the traffic simulator is located on
(NormLabSimulators project, src/traffic) es.csic.iiia.normlab.traffic.normsynthesis,

TrafficDomainFunctions class.

 10. Invoking your strategy (recap)

The Traffic Simulator includes DefaultTrafficNormSynthesisAgent agent whose:
A. Constructor

1. Creates the Norm Synthesis Machine (NSM).
2. Adds a set of sensors to SNM to perceive the scenario.
3. Sets the norm synthesis strategy in the NSM.

B. step() method invokes our strategy at every simulation tick.

B

1

2

3

A

 10. Invoking your strategy (A.3, B)

The Traffic Simulator includes DefaultTrafficNormSynthesisAgent agent whose:
A. Constructor

1. Creates the Norm Synthesis Machine (NSM).
2. Adds a set of sensors to SNM to perceive the scenario.
3. Sets the norm synthesis strategy in the NSM: Method SetNormSynthesisStrategy() invokes

 method createCustomNormSynthesisStrategy()
 (located in the same class DefaultTrafficNormSynthesisAgent):

• Implement this method by creating and returning your norm synthesis strategy:

B. step() method invokes our strategy at every simulation tick.

• Execute the simulation as you did for examples 1, 2 and 3 (NormLabSimulators project,
launchers/: TrafficJunctionSimulator.launch > Run As …)

Congratulations! You are using your own strategy!

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

 11. Adding norms to your strategy

Let’s now add some norms. We will add the left-side-priority norm from example 2.

1. Crate a new norm synthesis strategy MySecondStrategy.java by Copying (cut&paste+rename)

your first strategy MyFirstStrategy.java
 Your code should look like this:

 11. Adding norms to your strategy

2. Implement a method createNormativeSystem() in MySecondStrategy.java to create norms with:
• Preconditions: a set of predicate-term pairs and
• Postconditions: a modality (prohibition/obligation) over an action
i. Create a new norm precondition: IF l(>) & f(*) & r(*)

left front right
any-
thing

any-
thing

 11. Adding norms to your strategy

2. Implement a method createNormativeSystem() in MySecondStrategy.java to create norms with:
• Preconditions: a set of predicate-term pairs and
• Postconditions: a modality (prohibition/obligation) over an action
i. Create a new norm precondition: IF l(>) & f(*) & r(*)
ii. Create a new norm n1 with this precondition and as postcondition: THEN Prohition(Go)

left front right
any-
thing

any-
thing

 11. Adding norms to your strategy

2. Implement a method createNormativeSystem() in MySecondStrategy.java to create norms with:
• Preconditions: a set of predicate-term pairs and
• Postconditions: a modality (prohibition/obligation) over an action
i. Create a new norm precondition: IF l(>) & f(*) & r(*)
ii. Create a new norm n1 with this precondition and as postcondition: THEN Prohition(Go)
iii. Add norm n1 to the Normative Network and activate it so it becomes part of the Normative

System

left front right
any-
thing

any-
thing

 11. Adding norms to your strategy

3. Invoke method createNormativeSystem() at the end of MySecondStrategy constructor

At each tick, the strategy will return the
norms that are active in the normative
network (i.e., the normative system).

 11. Adding norms to your strategy

4. Change method createCustomNormSynthesisStrategy() from DefaultTrafficNormSynthesisAgent
(in package es.csic.iiia.normlab.traffic.agent, NormLabSimulators project, src/traffic) to use your
new strategy.

• Recall that the traffic norm synthesis agent in the traffic simulator creates the norm

synthesis machine and executes the strategy at every simulation tick.

5. Execute the Traffic Simulator (NormLabSimulators project, launchers/: TrafficJunctionSimulator.launch > Run As …)

 to observe that this second strategy works as example 2.
• The normative system contains a single norm N1.

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with automatic norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

 12. Your strategy with automatic norm generation

How can we automatically generate norms on-line?

Example 4 (TrafficNSExample4_NSStrategy in package es.csic.iiia.normlab.traffic.examples.ex4,
NormLabSimulators project) uses operators (methods defined in TrafficNSExample4_NSOperators) to
create, add and activate norms the Normative Network:

• Activate (norm): sets the state of norm to «Active»

• Add (norm): adds norm into the Normative Network and activates it.

• Create (Conflict, Goal):

 - Applies Case-Based Reasoning (CBR) to create a norm aimed at avoiding future conflicts.
 - If the norm does not exist in the Normative Network, then it adds (and activates) it.

Otherwise, if the norm is not active (nor represented)in the NN , then it activates it.

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

2. Returns the Normative System.

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

1. Perceives the scenario

2. Returns the Normative System.

ViewTransition: description
of partial scenario transition

from time t-1 to time t
(current tick)

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

1. Perceives the scenario
2. Detects non regulated conflicts

2. Returns the Normative System.

Conflict detection through
getConflicts() domain function

Each conflict has a
ViewTransition with a conflict

at tick t and an involved
(responsible) agent.

 12. Your strategy with automatic norm generation

TrafficNSExample4_NSStrategy uses
operators to synthesize norms :

Everytime the strategy is executed, it:
1. Generates norms

1. Perceives the scenario
2. Detects non regulated conflicts
3. Creates norms for each conflict.

2. Returns the Normative System.

 12. Your strategy with automatic norm generation

Execute the strategy:
1. Set NormSynthesisExample defaultValue=«4» in parameters.xml (in NormLabSimulators project,

repast-settings/TrafficJunction.rs) and save the file.
2. Execute the simulator

• NormLabSimulators project, launchers/: TrafficJunctionSimulator.launch > Run As …
3. Observe how, as long as cars collide, it generates norms to avoid these collisions

• Norms are never evaluated (select a norm and click on button Show performance ranges).

Example:

• 16 norms generated so
far (4943 ticks)

• Current tick: norms 7, 8,
9, and 11 apply.

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with automatic norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

 13. Automatic norm generation + evaluation

Are generated norms good enough?

Let’s see example 5: TrafficNSExample5_NSStrategy (in NormLabSimulators project,
src/traffic es.csic.iiia.normlab.traffic.examples.ex5 package) :

Whenever the strategy is executed:

• It generates norms (as example 4)
• It evaluates norms: how?

 13. Automatic norm generation + evaluation

For each viewTransition,

normReasoner computes the
norms that apply to each agent

by using DomainFunctions

Norm Evaluation (TrafficNSExample5_NSStrategy) :

1. Retrieve the norms that applied to each agent in the simulation at time t-1:

 13. Automatic norm generation + evaluation
Norm Evaluation (TrafficNSExample5_NSStrategy):

2. Norm compliance: Did agents complied with their applicable norms? Did that lead to conflicts?

normReasoner.
checkNormComplianceAndOutcomes

 13. Automatic norm generation + evaluation
Norm Evaluation (TrafficNSExample5_NSStrategy):

3. Update norms’ utilities based on norm compliance

evaluate(…) method in

TrafficNSExample5_NSUtilityFunction
(in NormLabSimulators project, src/traffic

es.csic.iiia.normlab.traffic.examples.ex5 package)

 13. Automatic norm generation + evaluation
Norm Evaluation (TrafficNSExample5_NSStrategy):

3. Update norms’ utilities based on norm compliance

Evaluates each norm in terms of system goals: Is it useful to avoid conflicts?
(e.g. traffic: avoids car collisions?). Two dimensions:

• Effectiveness: when complied, is it effective to avoid conflicts?
• If complied + no conflicts  Effective
• If complied + conflicts  Ineffective

• Necessity: when infringed, did some conflicts actually arise?
• If infringed + no conflicts  Unnecessary
• If infringed + conflicts  Necessary

 13. Automatic norm generation + evaluation

Execute the strategy:
1. Set NormSynthesisExample defaultValue=«5» in parameters.xml (in NormLabSimulators project,

repast-settings/TrafficJunction.rs) and save the file.
2. Execute the simulator

• NormLabSimulators project, launchers/: TrafficJunctionSimulator.launch > Run As …
3. Observe how it generates norms and evaluates them.

• Effectiveness and necessity of each norm change along time (select a norm and click on
button Show performance ranges).

 Tutorial outline

NormLab execution:

6-8. Execution examples
6. Example strategy 1: NormLab execution: Returns an empty set of norms.
7. Example strategy 2: Adding norms: Returns a fixed set of 1 norm.
8. Example strategy 3: Removing collisions: Returns a fixed set of 3 norms.

9-14. Guided development of different norm synthesis strategies

9. Development of example strategy 1: Empty set of norms.
10. Executing your own strategy
11. Development of example strategy 2: Adding norms to your strategy (1 norm)
12. Example 4: A strategy with automatic norm generation.
13. Example 5: A strategy with norm generation + evaluation.
14. SIMON: A complete strategy with norm generation + evaluation + refinement.

 14. SIMON: generation + evaluation + refinement

SIMON is a complete norm synthesis strategy that uses norm evaluation to refine norms

SIMONStrategy (in NormSynthesisMachine project, src es.csic.iiia.nsm.strategy.simon package) :

Whenever the strategy is executed:

• It generates norms
• It evaluates norms
• It refines them : how?

step(…) method in
SIMONNormRefiner

(in NormSynthesisMachine project, src
es.csic.iiia.nsm.strategy.simon package)

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised

if their (effectiveness and
necessity) > threshold.

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised

if their (effectiveness and
necessity) ≥ gen. threshold.

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars

NN0

n3 n1

Normative system
NS0={n1, n2, n3}

n2

 emergency

ambulance fire-brigade police-car

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised

if their (effectiveness and
necessity) ≥ gen. threshold.

 emergency

ambulance fire-brigade police-car

NN0

n3 n1 n2

NN1

n3 n1

New Normative
system NS1={n4}

n2

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

Increases
Compactness

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised
2. Norms are specialised

if their (effectiveness or
necessity) < esp. threshold

 14. SIMON: generation + evaluation + refinement

Norm refinement:

1. Norms are generalised
2. Norms are specialised

if their (effectiveness or
necessity) < esp. threshold

NN1

n3 n1 n2

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

Normative
System

NS1= {n4}

 14. SIMON: generation + evaluation + refinement

Removes
Under-performing norms

Norm refinement:

1. Norms are generalised
2. Norms are specialised

if their (effectiveness or
necessity) < esp. threshold

Normative
System

NS1= {n4}

NN1

n3 n1 n2

n4 NN2

n3 n1 n2

New Normative
System

 NS2={n1, n2}

n4

n1: Give way to ambulances
n2: Give way to fire brigade
n3: Give way to police cars
n4: Give way to emergency vehicles

 14. SIMON. A complete norm synthesis strategy

Execute SIMON strategy:
1. In parameters.xml (in NormLabSimulators project, repast-settings/TrafficJunction.rs) set:

• NormSynthesisExample defaultValue=«0»
• NormSynthesisStrategy defaultValue=«2» (2 stands for SIMON strategy)
• NormGeneralisationMode defaultValue=«1» (Deep norm generalisation)
• NormGeneralisationStep defaultValue=«1» (generalises 1 predicate at a time)
• Save the file.

2. Execute the simulator
• NormLabSimulators project, launchers/:
TrafficJunctionSimulator.launch > Run As …

3. Observe how it generates norms, evaluates,
 and refines them.

• Compact Normative System.

Normative System: 6 norms
Normative Network: 55 norms
Generalisations: 98 relationships
• Ex: n41 generalises n38, n10, n7 and n39
Covergence at tick 9428

Norm Synthesis Competition

Challenge: Can you improve
the synthesis strategy?

Participate!
July 2015: http://www.maia.ub.es/~maite/Teaching.html

	Tutorial on �Norm Synthesis �in Normative �Multi-Agent Systems
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Tutorial Outline
	Tutorial Outline
	Tutorial Outline
	Tutorial Outline
	Norms
	Norm categories
	Norms in MAS
	Norms in MAS
	Norms in MAS
	Norms in MAS
	Norms in MAS
	Normative MAS
	Design questions
	Design questions
	Design questions
	Design questions
	Norm changes
	Applications
	Norm design
	Tutorial Outline
	Off-line norm design
	Off-line norm design
	Off-line norm design
	Off-line norm design
	Offline norm design
	Tutorial Outline
	Norm emergence
	Norm emergence
	Norm emergence issues
	Norm emergence
	Norm emergence
	Tutorial Outline
	Norm design
	Norm agreement
	Norm learning
	Genetic Algorithms
	Genetic Algorithms
	CBR: P2P sharing network
	Norm design
	Tutorial Outline
	Research Problem
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line generation
	On-line norm generation
	Número de diapositiva 57
	On-line norm generation
	Norm syntax
	Norm creation
	Número de diapositiva 61
	Automated norm synthesis
	Automated norm synthesis
	Automated norm synthesis
	On-line norm generation
	Norm Synthesis Machine
	Norm Synthesis Machine
	Norm Synthesis Machine
	Automated norm synthesis
	On-line norm generation
	Normative Network Operators
	Normative Network Operators
	Normative Network Operators
	Normative Network Operators
	On-line norm generation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Norm generalisation
	Número de diapositiva 86
	Empirical evaluation
	Empirical evaluation
	Empirical evaluation
	Empirical evaluation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	On-line norm generation
	Tutorial Outline
	Número de diapositiva 96
	Número de diapositiva 97
	Número de diapositiva 98
	Número de diapositiva 99
	Número de diapositiva 100
	Número de diapositiva 101
	Número de diapositiva 102
	Número de diapositiva 103
	Número de diapositiva 104
	Número de diapositiva 105
	Número de diapositiva 106
	Número de diapositiva 107
	Número de diapositiva 108
	Número de diapositiva 109
	Número de diapositiva 110
	Número de diapositiva 111
	Número de diapositiva 112
	Número de diapositiva 113
	Número de diapositiva 114
	Número de diapositiva 115
	Número de diapositiva 116
	Número de diapositiva 117
	Número de diapositiva 118
	Número de diapositiva 119
	Número de diapositiva 120
	Número de diapositiva 121
	Número de diapositiva 122
	Número de diapositiva 123
	Número de diapositiva 124
	Número de diapositiva 125
	Número de diapositiva 126
	Número de diapositiva 127
	Número de diapositiva 128
	Número de diapositiva 129
	Número de diapositiva 130
	Número de diapositiva 131
	Número de diapositiva 132
	Número de diapositiva 133
	Número de diapositiva 134
	Número de diapositiva 135
	Número de diapositiva 136
	Número de diapositiva 137
	Número de diapositiva 138
	Número de diapositiva 139
	Número de diapositiva 140
	Número de diapositiva 141
	Número de diapositiva 142
	Número de diapositiva 143
	Número de diapositiva 144
	Número de diapositiva 145
	Número de diapositiva 146
	Número de diapositiva 147
	Número de diapositiva 148
	Número de diapositiva 149
	Número de diapositiva 150
	Número de diapositiva 151
	Número de diapositiva 152
	Número de diapositiva 153
	Número de diapositiva 154
	Número de diapositiva 155
	Número de diapositiva 156
	Número de diapositiva 157
	Número de diapositiva 158
	Número de diapositiva 159
	Número de diapositiva 160
	Número de diapositiva 161
	Número de diapositiva 162
	Número de diapositiva 163
	Número de diapositiva 164
	Número de diapositiva 165
	Número de diapositiva 166
	Número de diapositiva 167
	Número de diapositiva 168
	Número de diapositiva 169
	Número de diapositiva 170
	Número de diapositiva 171
	Número de diapositiva 172
	Número de diapositiva 173
	Norm Synthesis Competition

