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er-ous or not. Our work is based on a previousone, whi
h dete
ts a set of mi
ro
al
i�
a-tions that appear in a mammogram. Thispaper is fo
used on the automati
 
lassi�-
ation of the di�erent sets of mi
ro
al
i�-
ations using ma
hine learning te
hniques.Our goal is to improve the previous resultsobtained and propose new points of viewinto the Case-Based Reasoning and the Ge-neti
 Algorithms usage.Keywords: Ma
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are1 Des
ription of the problemThe in
iden
e of breast 
an
er varies greatly among
ountries, but re
ent statisti
s show that every year720.000 new 
ases will be diagnosed world-wide.Breast 
an
er s
reening has been proved as a goodpra
ti
al tool for dete
ting and removing breast 
an-
er prematurely and also for in
reasing the survivalper
entage in women [15℄. However, a low per
entageof women that su�ers breast 
an
er 
an be dete
tedusing mammographymethods. Therefore, it is ne
es-sary to develop new strategies to dete
t breast 
an
erformation in early stages.The main idea is to introdu
e CAD systems(Computer Aided Diagnosis) in the preliminary di-agnosis. The work presented in this paper is based

on mi
ro
al
i�
ations. A mi
ro
al
i�
ation (Ca++)usually appears, in the mammographies, as small,bright, arbitrarily shaped regions on the large vari-ety of breast texture ba
kground. Thus their analysisand 
hara
terisation are performed throughout theextra
tion of features and visibility des
riptors bymeans of several image pro
essing te
hniques [12℄,su
h as grey-level image analysis, signal pro
essingalgorithms or morphologi
al methods.The main guidelines of the CAD system used 
anbe des
ribed as: (1) digitising the mammography im-age, (2) pro
essing the image, (3) doing mi
ro
al
i-�
ation identi�
ation and feature extra
tion, and �-nally (4) using ma
hine learning te
hniques in orderto diagnose automati
ally the pro
essed mammog-raphy. Figure 1 shows an original mammographi
image and the 
lustered mi
ro
al
i�
ations after seg-mentation.This paper fo
uses its work on the last part of theCAD system. We present here two ma
hine learningte
hniques, Case-Based Reasoning (CBR) and Ge-neti
 Algorithms (GA), applied to the automati
 di-agnosis of the pro
essed mammography images. Theprevious image pro
essing phases 
an be found in [9℄.Both systems use as input information, a set of pro-
essed images (or samples). Ea
h sample 
ontainsthe des
ription of several Ca++ present in the im-age.For ea
h of these mi
ro
al
i�
ations there are 23real valued features related to the shape of individ-ual mi
ro
al
i�
ations (see the table 1). Shape ofindividual mi
ro
al
i�
ations as long as shape of the
luster and number of mi
ro
al
i�
ations have beenpointed out as the three main indi
ators for malig-na
y. In other words, the input information used is



(a) Original (b) SegmentedFigure 1: Digitisation and segmentation pro
esses transform the original grey-level image into a binary image,where the ba
kground tissue has been removed and 
lustered mi
ro
al
i�
a
ions appear.a set of m � 23 real valued matrixes, where m (wewant to remark that the number of Ca++ (m) 
anbe di�erent for ea
h mammogram) is the number ofCa++ present on the image. Using this input in-formation, CBR and GA play the ba
kend role ofdiagnosing a sample into one of the following 
lasses:malign, benign, do not know.The following two se
tions des
ribe the ma
hinelearning te
hniques used, Cased-Based Reasoningand Geneti
 Algorithms, and the systems that im-plement those te
hniques.2 CaB-CS: Case-Based Classi-�er SystemCase-Based Reasoning (CBR) integrates in one sys-tem two di�erent 
hara
teristi
s: ma
hine learning
apabilities and problem solving 
apabilities. CBRuses a similar philosophy to that whi
h humanssometimes use: it tries to solve new 
ases (exam-ples) of a problem by using old previously solved
ases [10℄. The pro
ess of solving new 
ases 
on-tributes with new information and new knowledgeto the system. This new information 
an be used forsolving other future 
ases. The basi
 method 
an beeasily des
ribed in terms of its four phases [1℄. The�rst phase retrieves old solved 
ases similar to thenew one. In the se
ond phase, the system tries toreuse the solutions of the previously retrieved 
asesfor solving the new 
ase. The third phase revisesthe proposed solution. Finally, the fourth phase re-tains the useful information obtained when solvingthe new 
ase.

In a Case-Based Classi�er System, it is possibleto simplify the reuse phase. Reuse 
an be done by
lassifying the new 
ase with the same 
lass as themost similar retrieved 
ase.2.1 CaB-CS and extensionsWe use CaB-CS (Case-Based Classi�er System) [2,3, 5℄ and some extensions [11℄. CaB-CS allows theuser to test several variants of CBR. The variantspresented in this paper are fo
used on the retrievalphase (phase 1).Phase 1 retrieves the most similar 
ase or 
asesto the new 
ase. Obviously, the meaning of mostsimilar will be a key 
on
ept in the whole system.Similarity between two 
ases is 
omputed using dif-ferent similarity measures.For the problem that we present in this paper,we use the main similarity fun
tions of the CaB-CS[5℄, and some extensions presented in [11℄. The dif-ferent similarity fun
tions 
an be 
lassi�ed in twogroups: 1) Similarity fun
tions based on the dis-tan
e 
on
ept: Minkowski's metri
 (Hamming, Eu-
lidean and Cubi
 distan
e), Clark's distan
e, andCosine distan
e; and 2) Similarity fun
tions basedon spheres: Sphere of Proximity, MinMax Sphereand Mean Sphere (these fun
tions were proposed byGolobardes in [5℄).2.2 Similarity fun
tions based on dis-tan
eThe most used similarity fun
tion is the NearestNeighbour (NN) algorithm, whi
h 
omputes the sim-ilarity between two 
ases using a global similarity



Feature Des
riptionArea The number of pixels in the mi
ro
al
i�
ationPerimeter The total length of boundaries of the mi
ro
al
i�
ationCompa
tness Derived from the perimeter (P ) and area (A) of a mi
ro
al
i�
ation, it is equalto P 24�ABox Min. X,Y; Max. X,Y The 
oordinates of the extreme left, top, right, and bottom pixels, respe
tively,of the mi
ro
al
i�
ationFeret X,Y The dimensions of the minimum bounding box of the mi
ro
al
i�
ation in thehorizontal and verti
al dire
tions, respe
tivelyFeret Minimum Diameter The smallest Feret diameter found after 
he
king a 
ertain number of angles(maximum 64)Feret Maximum Diameter The largest Feret diameter found after 
he
king a 
ertain number of anglesFeret Mean Diameter The average Feret diameter at all angles 
he
kedFeret Elongation A measure of the shape of the mi
ro
al
i�
ation, it is equal toFeretMax:DiameterFeretMin:DiameterNumber of Holes The number of holes in the mi
ro
al
i�
ationConvex Perimeter An approximation of the perimeter of the 
onvex hull of the mi
ro
al
i�
ationRoughness A measure of the roughness, it is equal to PerimeterConvexPerimeterLength A measure of the true length of the mi
ro
al
i�
ationBreadth A measure of the true breadthElongation Equal to LengthBreadthCentroid X,Y The (x; y) position of the 
enter of gravity of the mi
ro
al
i�
ationPrin
ipal Axis The angle at whi
h a mi
ro
al
i�
ation has the least moment of inertia (theaxis of symmetry). For elongated mi
ro
al
i�
ations, it is aligned with thelongest axisSe
ondary Axis The angle perpendi
ular to the prin
ipal axisTable 1: Initial feature set used to 
hara
terise the segmented mi
ro
al
i�
ations.measure. The pra
ti
al implementation (used inCaB-CS) of this fun
tion is based on theMinkowski'smetri
 [5℄, and some extensions of CaB-CS [11℄ in-
ludes the Clark's distan
e and the Cosine distan
e.2.2.1 Minkowski's metri
The Minkowski's metri
 is de�ned as:Similarity(Case x; Case y) = rvuut FXi=1 wi � jxi � yijr(1)Where Case x and Case y are two 
ases, whosesimilarity is 
omputed; F is the number of featuresthat des
ribes the 
ase; xi, yi represent the value ofthe ith feature of 
ases Case x and Case y respe
-tively; and wi is the weight of the ith feature.In this study we test the Minkowsky's metri
 forthree di�erent values of r: Hamming distan
e forr = 1, Eu
lidean distan
e for r = 2, and Cubi
 dis-tan
e for r = 3.

2.2.2 Clark's distan
eThe Clark's distan
e is de�ned as:Similarity(Case x; Case y) = 2vuut FXi=1 j (xi � yi) j2j (xi + yi) j2(2)Where Case x and Case y are two 
ases, whosesimilarity is 
omputed; F is the number of featuresthat des
ribes the 
ase; and xi; yi represent the valueof the ith feature of 
ases Case x and Case y respe
-tively.2.2.3 Cosine distan
eThe Cosine distan
e is based on ve
tor properties inan Eu
lidean spa
e. It measures the Cosine angle inan n-dimensional ve
tor spa
e. This metri
 is de�ned



as:Similarity(Case x; Case y) = PFi=1(xi � yi)2qPFi=1 x2i �PFi=1 y2i(3)Where F represents the number of features thatdes
ribes the 
ases; and xi; yi represent the value ofthe ith feature of 
ases Case x and Case y respe
-tively.2.3 Similarity fun
tions based onspheresCaB-CS proposes other similarity fun
tions based onthe sphere 
on
epts [5℄. These fun
tions sear
h somesphere able to explain the new 
ase -that we want tosolve-. The �rst and the se
ond fun
tion proposed,the Sphere of Proximity and the MinMax Sphere,
ompute the similarity between two 
ases using alo
al similarity measure, but the third fun
tion, theMean Sphere, 
omputes the similarity using a globalsimilarity measure.2.3.1 Sphere of ProximityThe Sphere of Proximity sear
hes 
ases from the 
asememory that are into a delimited sphere that de-s
ribes the new 
ase, feature by feature. So, we saythat two 
ases are similar if they are also similarfeature by feature. The sphere boundaries are 
om-puted using the varian
e -of the 
lass whi
h belongsto the retrieval 
ase- for ea
h feature. In this sense,we sele
t the 
ases from the 
ase memory if they sat-isfy the following 
ondition:If 8ai : 42ai � threshold� �varian
e(ai)iteration � thenin
lude this 
ase in the list of sele
ted 
ases; (4)Where ai is the ith feature; 42ai is the squared dif-feren
e between both values of the ith feature -forthe new 
ase and the retrieved 
ase-; the thresholdweighs the relevan
e of the ith feature; the iterationrepresents the number of tries that the fun
tion 
om-putes in order to obtain a 
orre
t 
lassi�
ation; thelist of sele
ted 
ases is the list where the fun
tionretains the \similar" 
ases; and the varian
e of thefeature ai is 
omputed as:Varian
e(ai) = PNj=1(xij � xi)2N � 1 (5)Where N is the 
ardinality of the 
ase memory (thenumber of 
ases); xij is the value of the feature i forthe 
ase j; and xi is the mean of the ith feature.

If we obtain an empty list of sele
ted 
ases thenwe 
an not 
lassify the new 
ase, otherwise we 
anuse di�erent 
riteria in order to 
hoose the most sim-ilar 
ase to the new 
ase.2.3.2 MinMax SphereThe MinMax Sphere 
omputes one sphere for ea
h
lass -in whi
h we 
an 
lassify the new 
ase-. Ea
hsphere -of any 
lass C- 
ontains information for ea
hfeature about the minimum and maximum values,based on the 
ases of the 
ase memory that belongto this 
lass:MinMax Sphere- Class C 8>>>><>>>>: feature 1 � MinimumMaximum...feature F � MinimumMaximum (6)In this sense, this similarity fun
tion 
lassi�es anew 
ase in the 
lass C if, for all features, it satis�esthat:8ai : (value min(C; ai)� threshold min) �value(New 
ase; ai) �(value max(C; ai)� threshold max) (7)Where F is the number of features that des
ribesthe 
ase; ai is the feature i; value min(C; ai) andvalue max(C; ai) are the minimum value and themaximum value of the sphere of the 
lass C forthe ith feature; value(New 
ase; ai) represents thevalue of the ith feature of the new 
ase; and thethreshold min and the threshold max weighs therelevan
e of the ith feature for the minimum valueand the maximum value respe
tively.2.3.3 Mean SphereThe Mean Sphere also 
omputes one sphere for ea
h
lass -in whi
h we 
an 
lassify the new 
ase-. Ea
hsphere -of any 
lass C- 
ontains information for ea
hfeature about the mean value based on the 
ases ofthe 
ase memory that belongs to this 
lass:Mean Sphere- Class C 8<: feature 1 � Mean...feature F � Mean (8)Now, the Mean Sphere fun
tion uses a similarityfun
tion based on distan
e (e.g. Hamming distan
e)in order to retrieve the \most similar sphere" to thenew 
ase. In this sense, we say that this fun
tionuses a global similarity measure.



3 GENIFER: GENeti
 based 
las-sIFiER systemGENIFER [8℄ uses a Geneti
 Algorithm (GA) [7, 4℄in order to obtain a set of rules that solves our 
las-si�
ation problem. The appli
ation of Geneti
 Algo-rithms to Ma
hine Learning problems has been ad-dressed from two di�erent points of view: the Pitts-burgh approa
h and the Mi
higan approa
h, earlyexempli�ed by LS-1 [13℄ and CS-1 [6℄ respe
tively.In the Pittsburgh approa
h, ea
h individual ofthe population represents a 
omplete solution to theproblem, whi
h is a whole set of rules. In 
ontrast,the Mi
higan approa
h 
odi�es only one rule in ea
hindividual. Therefore, the solution 
onsists on all thepopulation. This di�eren
e in representation leadsto signi�
ant di�eren
es between the two systems.Using the �rst approa
h, the GA 
an be applied di-re
tly. But in the Mi
higan approa
h, the GA is lim-ited to the exploration of new points of the sear
hspa
e (new rules) and the learning pro
ess is per-formed by other algorithms (e.g. Bu
ket Brigade Al-gorithm [6℄, Q-Learning te
hnique [14℄, et
.).3.1 GENIFER overviewGENIFER [8℄ is a general purpose 
lassi�er systembased on GAs. It is designed to be applied to prob-lems with real-valued attributes. The starting pointis the GeB-CS (Geneti
-Based Classi�er System) [2,3℄. GENIFER aim is to obtain a set of 
lassi�
ationrules that solves the 
lassi�
ation problem des
ribedby a set of examples. Like GeB-CS, GENIFER isalso a Pittsburgh based 
lassi�er system, but it is de-signed to fa
e problems with real-valued features.The GeB-CS ideas are the base for the GENIFERsystem. The aim is to look for a 
hange in knowl-edge representation of 
lassi�
ation rules. In GeB-CS a binary 
odi�
ation of PC0 (Predi
ate Cal
u-lus of zero order) rules is used as GA individuals.These Condition ! A
tion rules are rede�ned inGENIFER. The sought goal is to adapt those rulesto the real-value nature of features. The impli
ationsof this idea are: (1) looking for a new rule represen-tation (and its geneti
 
odi�
ation), (2) 
hoosing agood mat
hing fun
tion, (3) adapting the GA �tnessfun
tions, and (4) designing new geneti
 operators
apable to deal with the new geneti
 rule 
odi�
a-tion.From the set of 
urrent GENIFER [8℄ variants, we
hoose two of them in order to solve the mammog-raphy 
lassi�
ation problem presented in this paper.They 
an be found, in bold font, in table 2. Thesetwo variants were 
hosen in order to obtain a �rst

GENIFER-MDA Minimal Distan
e A
tivationGENIFER-MDAA Minimal Distan
e Adapt. A
tivationGENIFER-RA Representative AttributesGENIFER-DIA Diploid based In
remental Approa
hTable 2: GENIFER used variantsevaluation of the system. GENIFER-MDA obtains
lassi�
ation rules, so a pure performan
e evaluation
an be obtained from the problem. On the otherhand, GENIFER-RA builds 
lassi�
ation rules and,at the same time, it is able to sele
t the most relevantfeatures involved in ea
h rule.Both, GENIFER-MDA and GENIFER-RA vari-ants, are based on a two-phase approa
h to the 
las-si�
ation problem. They are divided in the trainingphase, where rules are obtained using a training setof 
orre
tly 
lassi�ed samples, and the test phase,where rules are exploited. An in
remental approa
h,where train and test have been merged, 
an be foundin [8℄.3.2 GENIFER-MDA3.2.1 System overviewIn a 
lassi�
ation problem where all features belongto R, an n-dimensional spa
e 
an be de�ned, so allthe examples belong to it. The question is: Can anyaÆnity be de�ned in this spa
e? In other words, isit possible to identify spa
e regions that share thesame 
lassi�
ation 
on
ept?GENIFER-MDA (Minimal Distan
e A
tivation)sear
hes a way of splitting the n-dimensional spa
e,des
ribed by the problem features, into spa
e regionsthat share the same 
lassi�
ation 
on
ept. In orderto rea
h this aim, we use what we 
all signi�
antpoints. These points are linked to a 
lassi�
ation
on
ept, in this paper: a 
lass. If we want to 
lassifyan example mi, the pro
ess of obtaining its asso
i-ated 
lass 
an be seen as the pro
ess of identifying the
on
ept/
lass region where it belongs. This pro
ess
an be de�ned easily as �nding whi
h is the nearestsigni�
ant point to the mi sample. On
e it is ob-tained, the 
lass where mi belongs is the 
lass linkedto the nearest signi�
ant point re
overed. This pro-
ess 
an be seen as an analogy of some similarityfun
tions used in Case Based Reasoning Systems [5℄.Under this new point of view, a rede�nition ofrule representation used by the GA is needed. As it
an be seen, GENIFER-MDA does not look for PC0rules. Instead, it looks for signi�
ant points of then-dimensional spa
e de�ned by the set of features.This revision modi�es: (1) rule representationand its asso
iated mat
hing fun
tion (the key of the




lassi�
ation pro
ess) and (2) the GA stru
ture andthe 
odi�
ation of individuals.RepresentationIn GENIFER-MDA a 
lassi�
ation rule has the form:Condition! Con
ept. The 
ondition part is an or-dered set of real values (as many as the number ofproblem features). This 
ondition expresses a signi�-
ant point of the features in the n-dimensional spa
e.The 
on
ept identi�es the 
lass linked to the signi�-
ant point des
ribed in the 
ondition part of the rule.Mat
hingThe rule mat
hing pro
ess 
an be des
ribed as:1. Let mi be the sample to 
lassify.2. Let R be the rule set that solves the problem,and x a rule that x 2 R.3. Let Dist1 be the similarity fun
tion between asample and a signi�
ant point. In GENIFER-MDA, Dist is the Eu
lidean distan
e:Dist(mi; x) =vuut FXj=1 (mij � xj)2 (9)4. Find the rule r that satis�es:Dist(mi; r) � min8x2R(Dist(mi; x)) (10)5. Classifymi as a member of the asso
iated 
lassto rule r.3.2.2 GA modi�
ationsDue to the new proposal in rule representation, somemodi�
ation must be introdu
ed in the GA. They
an be summarised as:1. The introdu
tion of a new operator that prunesthe rules not used in the training set 
lassi�
a-tion. Useless rules 
an easily appear due to theproximity between signi�
ant points.2. The �tness fun
tion used is:fitness(indi) = (%Corre
tClassified)2(11)3. The 
rossover and mutation operators were sli-ghtly modi�ed to enable them to manipulatereal 
oded individuals.1The Dist fun
tion used in the GA approa
h is equivalentas the Similarity fun
tion used in the CBR approa
h.

3.3 GENIFER-RA3.3.1 System overviewThe aim of GENIFER-RA (Representative Attributes)is to exploit the adaptive behaviour of GAs. GA ismodi�ed in order to obtain: (1) a rule set that solvesthe 
lassi�
ation problem and (2) a representative setof features for ea
h rule. GENIFER-RA proposes aGA that is in 
harge of 
hoosing whi
h features areused in the nearest neighbour metri
 fun
tion. Inother words, the 
hoi
e to be done for ea
h featureinvolved in a rule is a binary de
ision: use it or donot use it.In order to in
lude the previous 
onsiderations,the Dist fun
tion must be slightly modi�ed. It isde�ned as follows:Dist(mi; x; w) =qPFj=1 val (wj ;mij ; xj)val(wj ;mij ; xj) = � 0 if wj = 0;(mij � xj)2 if wj = 1: (12)In the Dist fun
tion, mi is the example to be 
lassi-�ed and x the signi�
ant point. A w ve
tor is addedto dis
ard whi
h features are not representative. The
ontribution of ea
h feature is 
omputed using theval fun
tion. As it 
an be observed in equation 12,w is de�ned by setting 8wi 2 f0; 1g. So w be
omesbinary valued.3.3.2 GA modi�
ationsThe main modi�
ation a�e
ts the individuals 
odi�-
ation. In order to use the adaptive behaviour of theGA to adjust the w ve
tor 2, it must be 
odi�ed inthe genotype of an individual.4 ResultsThis se
tion des
ribes the results obtained from theappli
ation of CaB-CS and GENIFER to the mam-mography 
lassi�
ation problem. First we presentthe testbed and, se
ond, the results obtained usingthe CBR and the GA approa
hes respe
tively.4.1 TestbedThe information used to feed the ma
hine learningsystems, 
an be summarised as follows. After theimage pro
essing phases, for ea
h mammography, anm � 23 real valued matrix is obtained. This ma-trix 
ontains as many rows, m, as the number of2In other words, to 
hoose whi
h are the representativefeatures.



Sim. Fun
tion %Corre
t %In
orre
tHamming 72.857 27.143Eu
lidian 72.857 27.143Cubi
 74.286 25.714Clark 74.286 25.714Cosine3 64.286 25.714Proximity 72.857 27.143MinMax 72.857 27.143Mean 72.857 27.143Table 3: Results using the CBR approa
h.mi
ro
al
i�
ations presents in the image. In orderto feed this information to the ma
hine learning sys-tems (CaB-CS and GENIFER), the matrix is 
at-tened into a ve
tor. This pro
ess is a
hieved 
om-puting the mean value of ea
h feature of the mi
ro-
al
i�
ations present in the image. So an image 
anbe redu
ed to a real-valued ve
tor with 23 features.The human experts also de
ided whi
h trainingand test sets must be used. The training set 
ontains146 samples, while the test set has 70 samples.4.2 Previous resultsIn [9℄ a statisti
al predi
tion model was developed.This statisti
al model was based on regression, and alogit fun
tion was used in order to obtain whi
h fea-tures are relevant to the 
lassi�
ation pro
ess. Theresults obtained never outperformed the 51% of su
-
ess that human experts were able to rea
h.4.3 Results using CaB-CSIn this subse
tion we present the results using a CBRapproa
h. In fa
t, we present the results using theCaB-CS system and their extensions.The table 3 shows the results using the di�erentsimilarity fun
tions: Hamming distan
e, Eu
lideandistan
e, Cubi
 distan
e, Clark's distan
e, Cosinedistan
e, Sphere of Proximity, MinMax Sphere andMean Sphere.We want to remark that the di�erent similarityfun
tions retrieve the most similar 
ase to the new
ase from the 
ase memory, using very di�erent poli-
ies. On one hand, we use the more 
lassi
al view:the similarity fun
tions based on the distan
e. Onthe other hand, we present the similarity fun
tionsbased on spheres, whi
h retrieve the most similar
ase using -again- di�erent 
riteria. For example,the fun
tion Mean Sphere, use the 
ases of the 
ase3The Cosine distan
e diagnose 64.286% 
orre
tly, 25.714%in
orre
tly, and for a 10% is not 
lear their diagnosti
. So itdiagnoses a 71.42% 
orre
tly among all the 
lassi�ed 
ases.

Variant %CA %PAMDA 69.178 72.857RA 69.178 74.286Table 4: GENIFER results using MDA and RAmemory in order to 
onstru
t the spheres that rep-resent the di�erent 
lasses, so these spheres do notrepresent a real 
ase. Although we use very di�erentpoints of view, we obtain -as table 3 shows - the sameresults: 72.857% of Predi
tion A

ura
y (PA). Andpun
tually, Cubi
 and Clark's distan
es rea
h the74.286% of PA. These results show that these di�er-ent 
riteria have similar behaviour on this problem.Also, we want to remark that these results are thebest results after trying about 500 di�erent options ofthe CaB-CS and extensions. But, almost all resultsare very very 
lose. The di�erent options 
onsist,for instan
e, on using di�erent 
riteria in order toweigh the features; or training previously the initial
ase memory or not; or using di�erent poli
ies in theretain phase; et
. [5℄.4.4 Results using GENIFERGENIFER is divided in two di�erent working phases.The �rst one, the training phase, is in 
harge of ob-taining the 
lassi�
ation rule that solve the 
lassi�-
ation problem. When the rules are obtained, these
ond phase, test phase, 
he
ks them using the testset.In table 4, the results obtained with GENIFERMDA and RA are presented. For ea
h GENIFERvariant, two results are presented. The Classi�
ationA

ura
y (CA) is the per
entage of samples 
orre
tly
lassi�ed in the training phase. On the other hand,the Predi
tion A

ura
y (PA) is the per
entage of
orre
tly 
lassi�ed samples in the test phase. As it
an be seen, the maximum system performan
e isobtained using the RA variant, where the PA raisesup to a 74%. These results 
learly outperform theones presented in se
tion 4.2.5 Con
lusions and further workIf we analyse the results rea
hed for both approa
hes(Case-Based Reasoning and Geneti
 Algorithms) some
on
lusions and further work 
an be dedu
ed.We must point out that our te
hniques outper-form the predi
tion a

ura
y (51%) obtained in [9℄.Both approa
hes (Case-Based Reasoning andGeneti
Algorithms), implemented by CaB-CS and GENIFER



systems respe
tively, move about the 72.286% of PA,and both -pun
tually- raise their PA up to 74.286%when using Cubi
 and Clark's distan
es for the CBRapproa
h and the GENIFER-RA variant for the GAapproa
h. So, we 
an 
on
lude that we obtain su
-
essful results.On the other hand, the previous results presentedin [9℄ only 
lassi�ed a 55% of 
ases, where a 51% are
lassi�ed 
orre
tly and only a 4% are 
lassi�ed in
or-re
tly. This means that a 92.7% have been 
orre
tlydiagnosed over the 
lassi�ed ones. Although the re-sults obtained by the Cosine distan
e in
lude thisidea, we are working to improve the reliability of ourresults.A
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