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Abstract

This paper describes the application of
Case-Based Reasoning and Genetic Algo-
rithms to diagnose a mammogram in cancer-
ous or not. Our work is based on a previous
one, which detects a set of microcalcifica-
tions that appear in a mammogram. This
paper is focused on the automatic classifi-
cation of the different sets of microcalcifi-
cations using machine learning techniques.
Our goal is to improve the previous results
obtained and propose new points of view
into the Case-Based Reasoning and the Ge-
netic Algorithms usage.

Keywords: Machine Learning, Case-Based
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1 Description of the problem

The incidence of breast cancer varies greatly among
countries, but recent statistics show that every year
720.000 new cases will be diagnosed world-wide.
Breast cancer screening has been proved as a good
practical tool for detecting and removing breast can-
cer prematurely and also for increasing the survival
percentage in women [15]. However, a low percentage
of women that suffers breast cancer can be detected
using mammography methods. Therefore, it is neces-
sary to develop new strategies to detect breast cancer
formation in early stages.

The main idea is to introduce CAD systems
(Computer Aided Diagnosis) in the preliminary di-
agnosis. The work presented in this paper is based

on microcalcifications. A microcalcification (Ca++)
usually appears, in the mammographies, as small,
bright, arbitrarily shaped regions on the large vari-
ety of breast texture background. Thus their analysis
and characterisation are performed throughout the
extraction of features and visibility descriptors by
means of several image processing techniques [12],
such as grey-level image analysis, signal processing
algorithms or morphological methods.

The main guidelines of the CAD system used can
be described as: (1) digitising the mammography im-
age, (2) processing the image, (3) doing microcalci-
fication identification and feature extraction, and fi-
nally (4) using machine learning techniques in order
to diagnose automatically the processed mammog-
raphy. Figure 1 shows an original mammographic
image and the clustered microcalcifications after seg-
mentation.

This paper focuses its work on the last part of the
CAD system. We present here two machine learning
techniques, Case-Based Reasoning (CBR) and Ge-
netic Algorithms (GA), applied to the automatic di-
agnosis of the processed mammography images. The
previous image processing phases can be found in [9].
Both systems use as input information, a set of pro-
cessed images (or samples). Each sample contains
the description of several Ca++ present in the im-
age.

For each of these microcalcifications there are 23
real valued features related to the shape of individ-
ual microcalcifications (see the table 1). Shape of
individual microcalcifications as long as shape of the
cluster and number of microcalcifications have been
pointed out as the three main indicators for malig-
nacy. In other words, the input information used is



(a) Original

(b) Segmented

Figure 1: Digitisation and segmentation processes transform the original grey-level image into a binary image,
where the background tissue has been removed and clustered microcalcificacions appear.

a set of m x 23 real valued matrixes, where m (we
want to remark that the number of Ca++ (m) can
be different for each mammogram) is the number of
Ca++ present on the image. Using this input in-
formation, CBR and GA play the backend role of
diagnosing a sample into one of the following classes:
malign, benign, do not know.

The following two sections describe the machine
learning techniques used, Cased-Based Reasoning
and Genetic Algorithms, and the systems that im-
plement those techniques.

2 (CaB-CS: Case-Based Classi-
fier System

Case-Based Reasoning (CBR) integrates in one sys-
tem two different characteristics: machine learning
capabilities and problem solving capabilities. CBR
uses a similar philosophy to that which humans
sometimes use: it tries to solve new cases (exam-
ples) of a problem by using old previously solved
cases [10]. The process of solving new cases con-
tributes with new information and new knowledge
to the system. This new information can be used for
solving other future cases. The basic method can be
easily described in terms of its four phases [1]. The
first phase retrieves old solved cases similar to the
new one. In the second phase, the system tries to
reuse the solutions of the previously retrieved cases
for solving the new case. The third phase revises
the proposed solution. Finally, the fourth phase re-
tains the useful information obtained when solving
the new case.

In a Case-Based Classifier System, it is possible
to simplify the reuse phase. Reuse can be done by
classifying the new case with the same class as the
most similar retrieved case.

2.1 CaB-CS and extensions

We use CaB-CS (Case-Based Classifier System) [2,
3, 5] and some extensions [11]. CaB-CS allows the
user to test several variants of CBR. The variants
presented in this paper are focused on the retrieval
phase (phase 1).

Phase 1 retrieves the most similar case or cases
to the new case. Obviously, the meaning of most
stmilar will be a key concept in the whole system.
Similarity between two cases is computed using dif-
ferent similarity measures.

For the problem that we present in this paper,
we use the main similarity functions of the CaB-CS
[5], and some extensions presented in [11]. The dif-
ferent similarity functions can be classified in two
groups: 1) Similarity functions based on the dis-
tance concept: Minkowski’s metric (Hamming, Eu-
clidean and Cubic distance), Clark’s distance, and
Cosine distance; and 2) Similarity functions based
on spheres: Sphere of Proximity, MinMax Sphere
and Mean Sphere (these functions were proposed by
Golobardes in [5]).

2.2 Similarity functions based on dis-
tance
The most used similarity function is the Nearest

Neighbour (NN) algorithm, which computes the sim-
ilarity between two cases using a global similarity



Feature

Description

Area,
Perimeter
Compactness

Box Min. X,Y; Max. XY

Feret X|Y
Feret Minimum Diameter
Feret Maximum Diameter

Feret Mean Diameter
Feret Elongation

Number of Holes
Convex Perimeter

The number of pixels in the microcalcification

The total length of boundaries of the microcalcification

Derived from the perimeter (P) and area (A) of a microcalcification, it is equal
to 417-:4

The coordinates of the extreme left, top, right, and bottom pixels, respectively,
of the microcalcification

The dimensions of the minimum bounding box of the microcalcification in the
horizontal and vertical directions, respectively

The smallest Feret diameter found after checking a certain number of angles
(maximum 64)

The largest Feret diameter found after checking a certain number of angles
The average Feret diameter at all angles checked

A measure of the shape of the microcalcification, it is equal to
FeretMax.Diameter
FeretMin.Diameter

The number of holes in the microcalcification
An approximation of the perimeter of the convex hull of the microcalcification

Roughness | A measure of the roughness, it is equal to Cm’; :;?;f,zf;e o
Length | A measure of the true length of the microcalcification
Breadth | A measure of the true breadth
Elongation | Equal to gffag;fh

Centroid X,Y
Principal Axis
axis of symmetry).
longest axis

Secondary Axis

The (z,y) position of the center of gravity of the microcalcification
The angle at which a microcalcification has the least moment of inertia (the
For elongated microcalcifications, it is aligned with the

The angle perpendicular to the principal axis

Table 1: Initial feature set used to characterise the segmented microcalcifications.

measure. The practical implementation (used in
CaB-CS) of this function is based on the Minkowski’s
metric [5], and some extensions of CaB-CS [11] in-
cludes the Clark’s distance and the Cosine distance.

2.2.1 Minkowski’s metric

The Minkowski’s metric is defined as:

e

|33i _Z/i|r

(1)
Where Cuse_z and Case_y are two cases, whose
similarity is computed; F'is the number of features
that describes the case; z;, y; represent the value of
the ith feature of cases Case_z and Case_y respec-
tively; and w; is the weight of the ith feature.

In this study we test the Minkowsky’s metric for
three different values of r: Hamming distance for
r = 1, Euclidean distance for r = 2, and Cubic dis-
tance for r = 3.

Similarity(Case_x,Case_y)

2.2.2 Clark’s distance

The Clark’s distance is defined as:

Similarity(Casex, Case_y)

(2)

Where Case_x and Case_y are two cases, whose

similarity is computed; F' is the number of features

that describes the case; and x;, y; represent the value

of the ith feature of cases Case_x and Case_y respec-
tively.

2.2.3 Cosine distance

The Cosine distance is based on vector properties in
an Euclidean space. It measures the Cosine angle in
an n-dimensional vector space. This metric is defined



as:
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(3)

Where F represents the number of features that

describes the cases; and x;,y; represent the value of

the ith feature of cases Case_z and Case_y respec-
tively.

Similarity(Case_x, Case_y) =

2.3 Similarity functions based on
spheres

CaB-CS proposes other similarity functions based on
the sphere concepts [5]. These functions search some
sphere able to explain the new case -that we want to
solve-. The first and the second function proposed,
the Sphere of Proximity and the MinMazx Sphere,
compute the similarity between two cases using a
local similarity measure, but the third function, the
Mean Sphere, computes the similarity using a global
similarity measure.

2.3.1 Sphere of Proximity

The Sphere of Proximity searches cases from the case
memory that are into a delimited sphere that de-
scribes the new case, feature by feature. So, we say
that two cases are similar if they are also similar
feature by feature. The sphere boundaries are com-
puted using the variance -of the class which belongs
to the retrieval case- for each feature. In this sense,
we select the cases from the case memory if they sat-
isfy the following condition:

iteration
include this case in the list_of_selected_cases;

If VYa; : A%a; < threshold x (w) then

Where a; is the ith feature; A2a; is the squared dif-
ference between both values of the ith feature -for
the new case and the retrieved case-; the threshold
weighs the relevance of the ith feature; the iteration
represents the number of tries that the function com-
putes in order to obtain a correct classification; the
list_of _selected_cases is the list where the function
retains the “similar” cases; and the variance of the
feature a; is computed as:

N =2
2= (@i — Ti)
Vari N=== 7 @ 5
ariance(a;) N1 (5)
Where N is the cardinality of the case memory (the
number of cases); x;; is the value of the feature ¢ for
the case j; and T; is the mean of the ith feature.

(4)

If we obtain an empty list_of_selected_cases then
we can not classify the new case, otherwise we can
use different criteria in order to choose the most sim-
ilar case to the new case.

2.3.2 MinMax Sphere

The MinMax Sphere computes one sphere for each
class -in which we can classify the new case-. Each
sphere -of any class C- contains information for each
feature about the minimum and maximum values,
based on the cases of the case memory that belong
to this class:

feaea { Yo
MinMazx Sphere
- Class © Minimum
feature { Mazimum

(6)

In this sense, this similarity function classifies a

new case in the class C if, for all features, it satisfies
that:

Ya; : (value_min(C,a;) % threshold-min) <
value(New_case,a;) < (7)
(value-max(C, a;) X threshold-max)

Where F is the number of features that describes
the case; a; is the feature i; value_min(C,a;) and
value-max(C,a;) are the minimum value and the
maximum value of the sphere of the class C for
the ith feature; value(New-case,a;) represents the
value of the ith feature of the new case; and the
threshold_min and the threshold_-max weighs the
relevance of the ith feature for the minimum value
and the maximum value respectively.

2.3.3 Mean Sphere

The Mean Sphere also computes one sphere for each
class -in which we can classify the new case-. Each
sphere -of any class C- contains information for each
feature about the mean value based on the cases of
the case memory that belongs to this class:

Mean Sphere feature_l { Mean

- Class C (8)

feature_F { Mean

Now, the Mean Sphere function uses a similarity
function based on distance (e.g. Hamming distance)
in order to retrieve the “most similar sphere” to the
new case. In this sense, we say that this function
uses a global similarity measure.



3 GENIFER: GENetic based clas-

sIFiER system

GENIFER [8] uses a Genetic Algorithm (GA) [7, 4]
in order to obtain a set of rules that solves our clas-
sification problem. The application of Genetic Algo-
rithms to Machine Learning problems has been ad-
dressed from two different points of view: the Pitts-
burgh approach and the Michigan approach, early
exemplified by LS-1 [13] and CS-1 [6] respectively.
In the Pittsburgh approach, each individual of
the population represents a complete solution to the
problem, which is a whole set of rules. In contrast,
the Michigan approach codifies only one rule in each
individual. Therefore, the solution consists on all the
population. This difference in representation leads
to significant differences between the two systems.
Using the first approach, the GA can be applied di-
rectly. But in the Michigan approach, the GA is lim-
ited to the exploration of new points of the search
space (new rules) and the learning process is per-
formed by other algorithms (e.g. Bucket Brigade Al-
gorithm [6], Q-Learning technique [14], etc.).

3.1 GENIFER overview

GENIFER [8] is a general purpose classifier system
based on GAs. It is designed to be applied to prob-
lems with real-valued attributes. The starting point
is the GeB-CS (Genetic-Based Classifier System) |2,
3]. GENIFER aim is to obtain a set of classification
rules that solves the classification problem described
by a set of examples. Like GeB-CS, GENIFER is
also a Pittsburgh based classifier system, but it is de-
signed to face problems with real-valued features.

The GeB-CS ideas are the base for the GENIFER
system. The aim is to look for a change in knowl-
edge representation of classification rules. In GeB-
CS a binary codification of PCy (Predicate Calcu-
lus of zero order) rules is used as GA individuals.
These Condition — Action rules are redefined in
GENIFER. The sought goal is to adapt those rules
to the real-value nature of features. The implications
of this idea are: (1) looking for a new rule represen-
tation (and its genetic codification), (2) choosing a
good matching function, (3) adapting the GA fitness
functions, and (4) designing new genetic operators
capable to deal with the new genetic rule codifica-
tion.

From the set of current GENIFER |[8] variants, we
choose two of them in order to solve the mammog-
raphy classification problem presented in this paper.
They can be found, in bold font, in table 2. These
two variants were chosen in order to obtain a first

GENIFER-MDA | Minimal Distance Activation
GENIFER-MDAA | Minimal Distance Adapt. Activation
GENIFER-RA | Representative Attributes
GENIFER-DIA | Diploid based Incremental Approach

Table 2: GENIFER used variants

evaluation of the system. GENIFER-MDA obtains
classification rules, so a pure performance evaluation
can be obtained from the problem. On the other
hand, GENIFER-RA builds classification rules and,
at the same time, it is able to select the most relevant
features involved in each rule.

Both, GENIFER-MDA and GENIFER-RA vari-
ants, are based on a two-phase approach to the clas-
sification problem. They are divided in the training
phase, where rules are obtained using a training set
of correctly classified samples, and the test phase,
where rules are exploited. An incremental approach,
where train and test have been merged, can be found
in [8].

3.2 GENIFER-MDA

3.2.1 System overview

In a classification problem where all features belong
to R, an n-dimensional space can be defined, so all
the examples belong to it. The question is: Can any
affinity be defined in this space? In other words, is
it possible to identify space regions that share the
same classification concept?

GENIFER-MDA (Minimal Distance Activation)
searches a way of splitting the n-dimensional space,
described by the problem features, into space regions
that share the same classification concept. In order
to reach this aim, we use what we call significant
points. These points are linked to a classification
concept, in this paper: a class. If we want to classify
an example m;, the process of obtaining its associ-
ated class can be seen as the process of identifying the
concept/class region where it belongs. This process
can be defined easily as finding which is the nearest
significant point to the m; sample. Once it is ob-
tained, the class where m; belongs is the class linked
to the nearest significant point recovered. This pro-
cess can be seen as an analogy of some similarity
functions used in Case Based Reasoning Systems [5].

Under this new point of view, a redefinition of
rule representation used by the GA is needed. As it
can be seen, GENIFER-MDA does not look for PCY
rules. Instead, it looks for significant points of the
n-dimensional space defined by the set of features.

This revision modifies: (1) rule representation
and its associated matching function (the key of the



classification process) and (2) the GA structure and
the codification of individuals.

Representation

In GENIFER-MDA a classification rule has the form:
Condition — Concept. The condition part is an or-
dered set of real values (as many as the number of
problem features). This condition expresses a signifi-
cant point of the features in the n-dimensional space.
The concept identifies the class linked to the signifi-
cant point described in the condition part of the rule.

Matching
The rule matching process can be described as:
1. Let m; be the sample to classify.

2. Let R be the rule set that solves the problem,
and z a rule that x € R.

3. Let Dist! be the similarity function between a
sample and a significant point. In GENIFER-
MDA, Dist is the Euclidean distance:

Dist(m;,z) =

4. Find the rule r that satisfies:

Dist(m;,r) < \glier}%(Dist(mi,az)) (10)

5. Classify m; as a member of the associated class
to rule r.

3.2.2 GA modifications

Due to the new proposal in rule representation, some
modification must be introduced in the GA. They
can be summarised as:

1. The introduction of a new operator that prunes
the rules not used in the training set classifica-
tion. Useless rules can easily appear due to the
proximity between significant points.

2. The fitness function used is:

fitness(ind;) = (%CorrectClassified)’
(11)

3. The crossover and mutation operators were sli-
ghtly modified to enable them to manipulate
real coded individuals.

IThe Dist function used in the GA approach is equivalent
as the Similarity function used in the CBR approach.

3.3 GENIFER-RA
3.3.1 System overview

The aim of GENIFER-RA (Representative Attributes)
is to exploit the adaptive behaviour of GAs. GA is
modified in order to obtain: (1) a rule set that solves
the classification problem and (2) a representative set
of features for each rule. GENIFER-RA proposes a
GA that is in charge of choosing which features are
used in the nearest neighbour metric function. In
other words, the choice to be done for each feature
involved in a rule is a binary decision: use it or do
not use it.

In order to include the previous considerations,
the Dist function must be slightly modified. It is
defined as follows:

Dist(m;, z,w) = \/Zle val (wj, mj, x;)

0 if w; =0,
(mij — iL’j)2 if wj; = 1.

(12)
In the Dist function, m; is the example to be classi-
fied and z the significant point. A W vector is added
to discard which features are not representative. The
contribution of each feature is computed using the
val function. As it can be observed in equation 12,
w is defined by setting Yw; € {0,1}. So W becomes
binary valued.

val(w;, mij, ;) = {

3.3.2 GA modifications

The main modification affects the individuals codifi-
cation. In order to use the adaptive behaviour of the
GA to adjust the @ vector 2, it must be codified in
the genotype of an individual.

4 Results

This section describes the results obtained from the
application of CaB-CS and GENIFER to the mam-
mography classification problem. First we present
the testbed and, second, the results obtained using
the CBR and the GA approaches respectively.

4.1 Testbed

The information used to feed the machine learning
systems, can be summarised as follows. After the
image processing phases, for each mammography, an
m X 23 real valued matrix is obtained. This ma-
trix contains as many rows, m, as the number of

2In other words, to choose which are the representative
features.



Sim. Function %Correct %Incorrect

Hamming 72.857 27.143
Euclidian 72.857 27.143
Cubic 74.286 25.714
Clark 74.286 25.714
Cosine® 64.286 25.714
Proximity 72.857 27.143
MinMax 72.857 27.143
Mean 72.857 27.143

Table 3: Results using the CBR, approach.

microcalcifications presents in the image. In order
to feed this information to the machine learning sys-
tems (CaB-CS and GENIFER), the matrix is flat-
tened into a vector. This process is achieved com-
puting the mean value of each feature of the micro-
calcifications present in the image. So an image can
be reduced to a real-valued vector with 23 features.

The human experts also decided which training
and test sets must be used. The training set contains
146 samples, while the test set has 70 samples.

4.2 Previous results

In [9] a statistical prediction model was developed.
This statistical model was based on regression, and a
logit function was used in order to obtain which fea-
tures are relevant to the classification process. The
results obtained never outperformed the 51% of suc-
cess that human experts were able to reach.

4.3 Results using CaB-CS

In this subsection we present the results using a CBR
approach. In fact, we present the results using the
CaB-CS system and their extensions.

The table 3 shows the results using the different
similarity functions: Hamming distance, Euclidean
distance, Cubic distance, Clark’s distance, Cosine
distance, Sphere of Proximity, MinMax Sphere and
Mean Sphere.

We want to remark that the different similarity
functions retrieve the most similar case to the new
case from the case memory, using very different poli-
cies. On one hand, we use the more classical view:
the similarity functions based on the distance. On
the other hand, we present the similarity functions
based on spheres, which retrieve the most similar
case using -again- different criteria. For example,
the function Mean Sphere, use the cases of the case

3The Cosine distance diagnose 64.286% correctly, 25.714%
incorrectly, and for a 10% is not clear their diagnostic. So it
diagnoses a 71.42% correctly among all the classified cases.

Variant %CA  %PA
MDA 69.178  72.857
RA 69.178 74.286

Table 4: GENIFER results using MDA and RA

memory in order to construct the spheres that rep-
resent the different classes, so these spheres do not
represent a real case. Although we use very different
points of view, we obtain -as table 3 shows - the same
results: 72.857% of Prediction Accuracy (PA). And
punctually, Cubic and Clark’s distances reach the
74.286% of PA. These results show that these differ-
ent criteria have similar behaviour on this problem.

Also, we want to remark that these results are the
best results after trying about 500 different options of
the CaB-CS and extensions. But, almost all results
are very very close. The different options consist,
for instance, on using different criteria in order to
weigh the features; or training previously the initial
case memory or not; or using different policies in the
retain phase; etc. [5].

4.4 Results using GENIFER

GENIFER is divided in two different working phases.
The first one, the training phase, is in charge of ob-
taining the classification rule that solve the classifi-
cation problem. When the rules are obtained, the
second phase, test phase, checks them using the test
set.

In table 4, the results obtained with GENIFER
MDA and RA are presented. For each GENIFER
variant, two results are presented. The Classification
Accuracy (CA) is the percentage of samples correctly
classified in the training phase. On the other hand,
the Prediction Accuracy (PA) is the percentage of
correctly classified samples in the test phase. As it
can be seen, the maximum system performance is
obtained using the RA variant, where the PA raises
up to a 74%. These results clearly outperform the
ones presented in section 4.2.

5 Conclusions and further work

If we analyse the results reached for both approaches
(Case-Based Reasoning and Genetic Algorithms) some
conclusions and further work can be deduced.

We must point out that our techniques outper-
form the prediction accuracy (51%) obtained in [9].
Both approaches ( Case-Based Reasoning and Genetic
Algorithms), implemented by CaB-CS and GENIFER



systems respectively, move about the 72.286% of PA,
and both -punctually- raise their PA up to 74.286%
when using Cubic and Clark’s distances for the CBR
approach and the GENIFER-RA variant for the GA
approach. So, we can conclude that we obtain suc-
cessful results.

On the other hand, the previous results presented
in [9] only classified a 55% of cases, where a 51% are
classified correctly and only a 4% are classified incor-
rectly. This means that a 92.7% have been correctly
diagnosed over the classified ones. Although the re-
sults obtained by the Cosine distance include this
idea, we are working to improve the reliability of our
results.
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