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tThis paper proposes how to in
orporate theRough Sets theory as a weighting method intoa Case-Based Classi�er System. This hybridsystem has been implemented into the plat-form 
alled BASTIAN (
ase-BAsed SysTem In
lAssi�
atioN), whi
h in
orporate both te
hniques.Thus, the main goals of the paper are: present-ing the BASTIAN system, des
ribing the hybridmethod; and analysing this proposal for di�erentdomains, extra
ted from the UCI repository.Keywords: Case-Based Reasoning, Ma
hineLearning, Diagnose, Knowledge Dis
overy1 Introdu
tionOur main goal is to develop, evaluate and improvethe 
lassi�er systems. In this paper we present ahybrid 
lassi�er system based on Case-Based Rea-soning and Rough Sets. The BASTIAN platform isa Case-Based Reasoning system that in
orporatesRough Sets 
apabilities in order to improve the pre-di
tion a

ura
y rate. Rough Sets theory is used inour system as a weighting method to sele
t the bestfeature relevan
e of the domain.Case-Based Reasoning (CBR)[1℄ have been usedin a wide variety of �elds and appli
ations. We useCBR as an automati
 
lassi�
ation system [4, 21℄.Rough Sets theory is a Data Mining te
hnique.The nature of Rough Sets theory has made them

useful for redu
ing the knowledge, extra
ting de-penden
ies in knowledge, reasoning about knowl-edge, pattern re
ognition, et
.The main resear
h trends in Rough Sets theory-whi
h tries to extend the 
apabilities of reasoningsystems- are:1. The treatment of in
omplete knowledge.2. The management of in
onsistent pie
es of in-formation.3. The manipulation of various levels of represen-tation, moving from re�ned universes of dis-
ourse to 
oarser ones and 
onversely.The paper is stru
tured as des
ribed. First, anoverview about the BASTIAN platform in se
tion2. Next se
tion proposes the Rough Sets theory asa weighting method for a Case-Based 
lassi�er sys-tem. Se
tions 4 and 5 expose the testbed used andthe results obtained respe
tively. Finally, the lastse
tion presents the 
on
lusions and further work.2 BASTIAN System des
rip-tionBASTIAN platform is a Case-Based Reasoning sys-tem used in 
lassi�
ation. Case-Based Reasoningintegrates in one system two di�erent 
hara
ter-isti
s: ma
hine learning 
apabilities and problemsolving 
apabilities. CBR uses a similar philoso-phy to that whi
h humans sometimes use: it tries



to solve new 
ases (examples) of a problem by us-ing old previously solved 
ases [16℄. The pro
ess ofsolving new 
ases 
ontributes with new informationand new knowledge to the system. This new infor-mation 
an be used for solving other future 
ases.The basi
 method, see Figure 1, 
an be easily de-s
ribed in terms of its four phases [1, 11℄:
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le.The �rst phase retrieves old solved 
ases sim-ilar to the new one. In the se
ond phase, thesystem tries to reuse the solutions of the previ-ously retrieved 
ases for solving the new 
ase. Thethird phase revises the proposed solution. Finally,the fourth phase retains the useful information ob-tained when solving the new 
ase. In a Case-BasedClassi�er System, it is possible to simplify the reusephase 
lassifying the new 
ase with the same 
lassas the most similar retrieved 
ase.BASTIAN system is an extension of CaB-CS(Case-Based Classi�er System) system [9, 7, 6℄. Itallows the user to test several variants of CBR. Tobe exa
t, the variant presented in this paper is fo-
used on two di�erent phases: the retrieval and theretain phase, and also on the 
ase memory organ-isation. BASTIAN has been developed in JAVAlanguage and the system is being improved withnew 
apabilities.2.1 General Stru
tureThe BASTIAN general stru
ture, see �gure 2,maintains the four phases des
ribed in [1℄. The sys-tem adds a previous phase StartupInterfa
e, not in-
orporate on the Case-Based Reasoning 
y
le, thatprepares the initial start-up of the system.
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Figure 2: General Stru
ture in BASTIAN.The system fun
tionalities are developed to workseparately and independent in 
o-operation amongthe rest. Ea
h fun
tionality des
ribed in the generalstru
ture has a des
ription of the general behaviourthat has to a
hieve. The main goal is to obtaina general stru
ture that 
ould 
hange dynami
allydepending on the type of Case-Based Reasoner wewant to develop. The main fun
tionalities are:� The CBRParamCon�guration allows us to
hange and get the 
on�guration. The 
on�g-uration 
ould be 
hanged independent of thesystem, this means that is not ne
essary to ex-e
ute the system in order to 
hange the 
on�g-uration and it 
an be 
hanged during the CBR
y
le too.� The CBRErrors is the error 
ontrol fun
tion-ality whi
h dete
ts all the possible problemsduring one exe
ution.� The CBRStatisti
s aims to develop all the pos-sible statisti
s during exe
ution of the system.It 
omputes the statisti
s in EXCEL, LATEXand EPS format.� The CaseMemory goal is to develop di�erent
ase memory organisations.� The SimilarityFun
tionInterfa
e 
on
entratesall the 
hara
teristi
s related to similarityfun
tions. It let us 
hange the similarity fun
-tion dynami
ally into the system during oneexe
ution.� The WeightingInterfa
e, 
ontains the mainabilities to 
ompute the feature relevan
e in aCase-Based Classi�er System. It is related to



the RetrievalInterfa
e and the SimilarityFun
-tionInterfa
e.� The fRetrieval, Reuse, Revise, Re-taingInterfa
e are the four phases of theCBR 
y
le. These interfa
es des
ribe thebehaviour of ea
h phase.The kernel in a Case-Based Reasoning system isthe retrieval phase (phase 1). Phase 1 retrieves themost similar 
ase or 
ases to the new 
ase. Obvi-ously, the meaning of most similar will be a key 
on-
ept in the whole system. Similarity between two
ases is 
omputed using di�erent similarity fun
-tions. Our aim is to improve this similarity fun
-tions a

ura
y using a weighting method that 
om-putes automati
ally the feature relevan
e [2, 5, 10℄.2.2 Similarity Fun
tionsFor our purpose in this paper, we use the similarityfun
tions based on the distan
e 
on
ept introdu
edin BASTIAN. The most used similarity fun
tion isthe Nearest Neighbour algorithm, whi
h 
omputesthe similarity between two 
ases using a global simi-larity measure [2, 3℄. The pra
ti
al implementation(used in our system) of this fun
tion is based ontheMinkowsky's metri
 [6, 12℄ and we also use theClark's distan
e and the Cosine distan
e [17℄.2.2.1 Minkowsky's metri
The Minkowsky's metri
 is de�ned as:Sim(Case x; Case y) = rvuut FXi=1 wi � jxi � yijr (1)Where Case x and Case y are two 
ases, whosesimilarity is 
omputed; F is the number of featuresthat des
ribes the 
ase; xi, yi represent the value ofthe ith feature of 
ases Case x and Case y respe
-tively; and wi is the weight of the ith feature.In this study we test the Minkowsky's metri
 forthree di�erent values of r: Hamming distan
e forr = 1, Eu
lidean distan
e for r = 2, and Cubi
distan
e for r = 3.2.2.2 Clark's distan
eThe Clark's distan
e is de�ned as:

Sim(Case x; Case y) = 2vuut FXi=1 wi � j (xi � yi) j2j (xi + yi) j2(2)Where Case x and Case y are two 
ases, whosesimilarity is 
omputed; F is the number of fea-tures that des
ribes the 
ase; and xi; yi representthe value of the ith feature of 
ases Case x andCase y respe
tively; and wi is the weight of the ithfeature.2.2.3 Cosine distan
eThe Cosine distan
e is based on ve
tor properties inan Eu
lidean spa
e. It measures the Cosine angle ina n-dimensional ve
tor spa
e. This metri
 is de�nedas:Sim(Case x; Case y) = wi� PFi=1(xi � yi)2q(PFi=1 x2i ) � (PFi=1 y2i )(3)Where F represents the number of features thatdes
ribe the 
ases; and xi; yi represent the value ofthe ith feature of 
ases Case x and Case y respe
-tively; and wi is the weight of the ith feature.2.3 Memory RepresentationThe 
ase memory stru
ture is spe
i�ed in �gure 3.As it 
an be seen, there are three stru
tures that
an be used in BASTIAN: the �rst one is a list,the se
ond one is a SingleList (a ve
tor) and thelast one is a tree. The memory representation usedin the experiments has been the �rst one, a list of
ases. The se
ond part of the �gure 3 shows theproblems that we have used in this work.The representation used in ea
h sample is basedon an attribute-value representation, see equation4. Case = fa0; a1; a2; � � �; an; CLASSg (4)Where ai are the value for the attribute i; andCLASS is the 
lass that the 
ase belongs to.2.4 Retain Poli
iesIn order to de
ide whether a 
ase is representativeenough to be stored in the 
ase memory, we usethree di�erent poli
ies, see �gure 4:
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ture in BASTIAN.� Test mode, in this mode system does notstore any new 
ase in the 
ase memory. This
riterion has been used for two reasons. On onehand, the results obtained using this mode 
anbe 
ompared, in equal 
onditions, to those ob-tained using other ma
hine learning methodsthat do not in
lude learning while solving newproblems. On the other hand, it allows us toevaluate the initial 
orpus of the 
ase memory.� DifSim mode, under this poli
y the systemstores the new 
ase if its similarity with theretrieved 
ase is not zero. In other words, thenew 
ase will be stored if there is not any iden-ti
al 
ase in the 
ase memory.� DifClass mode, this is an intermediate solu-tion between the previous ones. The systemwill store the new 
ase if it has been impossi-ble to 
lassify it 
orre
tly. Otherwise, it willnot be stored.
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Figure 4: Retain Stru
ture in BASTIAN.The system let us also to train the initial 
asememory to store only the most representative 
ases.

3 Feature Relevan
eBASTIAN in
ludes 3 variants to weight the featurerelevan
e. The �rst one is the Sample Correlation[9℄; the se
ond one is the Shannon Entropy [13℄; andthe third is the Rough Sets theory [18℄. The aim ofthis paper is to explain the integration of the thirdone into the BASTIAN system. The Rough Setsinto the BASTIAN system 
an be applied using twopoli
ies:� Stati
: we 
ompute the weight of the featuresonly using the initial 
ase memory. Our paperwill be fo
used on that variant.� Dynami
: the relevan
e is 
omputed in theinitial 
ase memory, and every time that a new
ase is learned by the system. It is an in
re-mental weighting method.The se
tion is divided in an introdu
tion to theRough Sets theory, the basis 
on
epts of Rough Setstheory and the in
orporation of Rough Sets into theCase-Based Reasoning System.3.1 Rough Sets TheoryZdzislaw Pawlak introdu
ed Rough Sets theory in1982 [14, 15, 20℄. The idea of the Rough Sets 
on-sists of the approximation of a set by a pair of sets,
alled the lower and the upper approximation ofthis set. In fa
t, these approximations are innerand 
losure operations in a 
ertain topology gen-erated by the available data about elements of theset.The nature of Rough Sets theory made them use-ful for redu
ing the knowledge, extra
ting depen-den
ies in knowledge, reasoning about knowledge,pattern re
ognition, et
.We use Rough Sets theory for redu
ing and ex-tra
ting the dependen
ies in the knowledge. Thesedependen
ies are the basis for 
omputing the rele-van
e of ea
h feature into the Case-Based Classi�erSystem.3.2 Rough Sets inside Case BasedReasoning SystemHow Rough Sets theory is in
orporated into ourCase-Based Classi�er System?First of all, we in
orporate some 
on
epts in thispaper to explain how the dependen
ies we are look-ing forward from the domain are obtained to sele
tthe best weighting.



3.2.1 Basi
 Con
epts and De�nitionsWe 
ompute from ourUniverse (U) (�nite set andnot null set of obje
ts that des
ribes our problem,the 
ase memory) the 
on
epts (obje
ts or 
ases)that form partitions of that Universe. The union ofall the 
on
epts make the entire Universe. Using allthe 
on
epts we 
an des
ribe all the equivalen
erelations (R) over the universe (U). Let an equiv-alen
e relation be a set of features that des
ribe aspe
i�
 
on
ept. U=R are the family of all equiva-len
e 
lasses of (R).The universe and the relations form the knowl-edge base (KB), de�ned as KB = < U, R̂ >.Where R̂ is the family of equivalen
e relations overU. Every relation over the universe is an elementary
on
ept in the knowledge base.All the 
on
epts are formed by a set of equiva-len
e relations that des
ribe them. Thus, we sear
hfor the minimum set of equivalen
e relations thatde�ne the same 
on
ept as the initial set.Definition 1 (Indis
ernibility Relations)It 
an be de�ned as IND(P̂ )= T R̂ where P̂ � R̂.The indis
ernibility relation is the interse
tion ofproperties over P . The indis
ernibility shows there�ned information over a 
on
ept and gives all theinformation about the equivalen
e relation thatexists in P̂ .Example 3.1If we 
onsider a set of 8 obje
ts in our Universe,U = (x1; x2; x3; x4; x5; x6; x7; x8), using as a familyof equivalen
e relations over U:R̂ = (P, Q, S).Where P are 
olours (green, blue, red, yellow); Qare sizes (small, large, medium); and S are shapes(square, round, triangular, re
tangular).U=P = ( (x1; x4; x5), (x2; x8), (x3),(x6; x7) )U=Q =( (x1; x3; x5), (x6), (x3; x4; x7; x8) )U=S = ( (x1; x5), (x6), (x2; x7; x8), (x3; x4) )As it 
an be seen, every indis
ernibility relationdivides the Universe in a di�erent way.Definition 2 (Basi
 Knowledge)The basi
 knowledge is the family of all equiva-len
e 
lasses of the equivalen
e relation IND(P̂ ).The basi
 knowledge shows all the knowledgeasso
iated with the family of equivalen
e relationP .

Definition 3 (P-basi
 
ategories)P-basi
 
ategories are those basi
 properties of theuniverse, whi
h 
an be expressed using knowledgefrom P . They are the building blo
ks of theexisting knowledge.Let K = (U; R̂) be a knowledge base.IND(K) = (IND(P̂ ): 0 6= P̂ � R̂) is the family ofall equivalen
e relations de�ned in K.Definition 4 (Equivalen
e, generalisation)(and spe
ialisation of knowledge)Let K i K' be two knowledge bases:� if IND(K) = IND(K'), it means that K and K'are equivalent.� if IND(K) � IND(K') then the knowledge baseK is �ner than K', so K' is a generalisation ofK.3.2.2 Rough SetsLet X � U and R be an equivalen
e relation. Wewill say that:� X is R-de�nable if X is the union of some R-basi
 
ategories; otherwiseX is R-unde�nable.� The R-de�nable sets are those subsets of theuniverse whi
h 
an be exa
tly de�ned in theknowledge base K, whereas the R-unde�nablesets 
annot be de�ned in this knowledge base.� The R-unde�nable set will be also 
alled R-rough.� The set X � U will be 
alled exa
t in K ifthere exists R 2 IND(K) su
h that X is R-exa
t, and X is 
alled to be rough in K, if X isR-rough for any R 2 IND(K).Approximations of Set This is the main ideaof rough sets, approximate a set by other sets. Thenext de�nitions will explain this idea.Suppose a given knowledge base K =< U; R̂ >.With ea
h subset X � U and an equivalen
e rela-tion R � IND(K) we asso
iate two subsets 
alled:� Lower approximation� Upper approximation



Definition 5 (Lower approximation)The lower approximation, de�ned as: RX = S fY 2 U/R : Y � Xg. The lower approximation isthe set of all elements of U whi
h 
an be 
ertainty
lassi�ed as elements of X in the knowledge R.Definition 6 (Upper approximation)The upper approximation, RX = S f Y 2 U/R :X T Y 6= ; g. The upper approximation is the setof elements of U whi
h 
an be possibly 
lassi�ed aselements of X , employing knowledge R.Definition 7 (Boundary)RX�RX is the boundary BNR(X). The boundaryis the set of elements, whi
h 
annot be 
lassi�edeither to X or to :X having knowledge R.Redu
t and Core of knowledge Intuitively, aredu
t of knowledge is its essential part, whi
h suf-�
es to de�ne all 
on
epts o

urring in the 
onsid-ered knowledge, whereas the 
ore is the most im-portant part of the knowledge.Let R̂ be a family of equivalen
e relations and letR 2 R̂. We will say that:� R is indispensable if IND(R̂) 6= IND(R̂ - R);otherwise it is dispensable.� The family R̂ is independent if ea
h R 2 R̂ isindispensable in R; otherwise it is dependent.Definition 8 (Redu
t)Q̂ 2 R̂ is a redu
t of R̂ if :1. Q̂ is independent.2. IND(Q̂) = IND(R̂). Using Q it is possibleapproximate the same as using R.Definition 9 (Core)The set of all indispensable relations in R will be
alled the 
ore of R, and will be denoted CORE(R).CORE(R̂) =\RED(R̂) (5)where RED(R̂) is the family of all redu
ts of R.Example 3.2We 
ontinue using the example 3.1 to �nd theredu
ts and the 
ore of the knowledge. Our equiv-alen
e 
lasses are:U=P = ( (x1; x4; x5), (x2; x8), (x3),(x6; x7) )U=Q =( (x1; x3; x5), (x6), (x3; x4; x7; x8) )

U=S = ( (x1; x5), (x6), (x2; x7; x8), (x3; x4) )Thus the relation IND(R) has the equivalen
e
lasses:U=IND(R̂) = ( (x1; x5); (x2; x8); (x3); (x4); (x6);(x7))The relation P is indispensable in R, sin
e:U=IND(R̂ � P ) = ( (x1; x5); (x2; x7; x8); (x3);(x4); (x6) ) 6= U/IND(R̂).U=IND(R̂ � Q) = ( (x1; x5); (x2; x8); (x3); (x4);(x6); (x7) ) = U/IND(R̂).The information obtained is equal, so the rela-tion Q is dispensable in R.U=IND(R̂ � S) = ( (x1; x5); (x2; x8); (x3); (x4);(x6); (x7) ) = U/IND(R̂).Hen
e the relation S is also dispensable in R.That means that the 
lassi�
ation de�ned by theset of three equivalen
e relations P;Q and S is thesame as the 
lassi�
ation de�ned by relation P andQ or P and S.So the redu
ts and the 
ore are:RED(R̂) = ((P,Q), (P,S))CORE(R̂) = (P)3.2.3 How introdu
e the RS in our CBRsystem?We 
an use the information of redu
ts and the 
oreto weigh the relevan
e of ea
h feature in the system.An attribute that does not appear in the redu
tshas a feature weight value of 0.0, whereas a featurethat appears in the 
ore has a feature weight valueof 1.0. The rest of attributes has a feature weightvalue depending on the proportional appearan
e inthe redu
ts. This is the weight feature informationused in the Case-Based Classi�er System.Figure 5 shows the meta-level pro
ess when theRough Sets are in
orporated into the CBR system.Rough Sets are divided in three steps: the �rstone dis
retises the examples, it is ne
essary to �ndthe most relevant information using the Rough Setstheory; the se
ond step sear
hes the redu
ts and the
ore of knowledge using the Rough Sets theory; and



�nally, the third step uses the 
ore and the redu
tsof knowledge to de
ide the feature relevan
e value.
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attributeFigure 5: High level pro
ess of Rough Sets.The RS theory has been introdu
ed as weight-ing method in two phases modi�ed of the CBR 
y-
le. The �rst phase modi�ed with Rough Sets isthe start-up phase and the se
ond one is the retainphase. The start-up phase 
ompute the weightsfrom the initial 
ase memory, these weights willbe used by the retrieval phase later. The retainphase 
omputes the weights from the 
ase mem-ory whether the new 
ase is stored and the systemworks dynami
ally. The 
ode of Rough Sets the-ory into the Case-Based Reasoning has been imple-mented using a publi
 Rough Sets Library [8℄.4 TestbedThe experiment has based on 3 data sets from theUCI repository ( e
ho
ardiogram, iris, breast 
an
erWis
onsin), and one data set from our own repos-itory (mammogram problem). See table 1 and ta-ble 2 whi
h show their 
hara
teristi
s. The mam-mogram problem 
onsists of dete
ting breast 
an-
er using the information found in a mammogra-phy [12, 13, 17℄. A mi
ro
al
i�
ation (�Ca) usuallyappears, in the mammographies, as small, bright,arbitrarily shaped regions on the large variety ofbreast texture ba
kground. Thus their analysisand 
hara
terisation are performed throughout theextra
tion of features and visibility des
riptors bymeans of several image pro
essing te
hniques [19℄.Ea
h example 
ontains the des
ription of several�Ca present in the image. For ea
h of these mi-
ro
al
i�
ations there are 23 real valued features.In other words, the input information used is a setof m � 23 real valued matrixes, where m is thenumber of �Ca present on the image. The data set
ontains 216 examples.The examples of ea
h data set have been groupedin two sets: the training set and the test set. Weuse the �rst one to train the system, and the se
-ond to test the system. The training set and thetest set are generated using di�erent proportions ofthe examples: 10% of the examples for the training

Table 1: Data set used for these experiments.Domain Referen
eE
ho
ardiogram EIris IBreast 
an
er (Wis
onsin) BCMammogram problem MTable 2: Chara
teristi
s of the data set used inthese experiments.Ref Sam- Fea- Cla- Missing In
on-ples tures sses Values sistentE 132 9 2 132 YesI 150 4 3 0 NoBC 699 9 2 9 YesM 216 23 2 0 Yesset and the rest (90%) for the test set, 20% of theexamples for the training set and the rest (80%) forthe test set, ..., until 90% for the training set and10% for the test set.We have test ea
h data set using the followingpoli
ies:� Similarity Fun
tions: Minkowski's metri
(Hamming, Eu
lidean and Cubi
 distan
e),Clark's distan
e and Cosine distan
e.� Retain Poli
ies: DifSim, DifClass and Test.� Training initial data set: training the initial
ase memory and maintaining the initial 
asememory.� Samples: we have 9 proportions of ea
h sam-ple and 10 versions for ea
h proportion.For ea
h data set is tested a total of 2700 runs.5 ResultsWe present in this se
tion the main results obtainedfor ea
h data set tested. Table 3 presents the resultsobtained during the exe
ution of the proportion90% training set and 10% test set. The �rst 
ol-umn is the results obtained using BASTIAN with-out weighting the attributes, the se
ond 
olumn



shows the results for the BASTIAN system usingthe Rough Sets theory as a weighting method. Thisproportion has been 
hosen for the a

urate rate ob-tained, we want to noti
e that the results presentedare the maximum value obtained during one run.Table 3: Maximum results obtained for ea
h dataset. Ref :W RS-WE 78.57% 78.57%I 100% 100%BC 98.71% 98.71%M 77.27% 81.81%The results presented obtain a good a

ura
yrate. We want to outline that the maximum a

u-ra
y per
entage obtained, using the Rough Sets asa weighting method, appears more frequently thanthe results obtained without weighting the features.Figure 6 shows the results obtained for all thetraining sets proportions in the mammogram prob-lem. As it 
an be seen, the weighting feature meth-ods needs a huge amount of 
ases to develop a goodweighting for the retrieval phase. However, the sys-tem a

ura
y rate in
reases when there are enoughinformation in the system to develop a good weight-ing 
riterion. Also, the system de
reases the stan-dard deviation value if it uses the Rough Sets theoryas a weighting method.We 
an also noti
e that it is very important tosele
t a good training of the initial 
ase memory toa
hieve better results. Thus, most of the best re-sults obtained have been a
hieved using an initialtraining. The training set has been de
reased fol-lowing this method. So, the 
ases 
hosen were themore representatives to explain the problem.Table 4 shows the results obtained in di�erenttraining sets proportions for the Iris problem. Theresults presented are the maximum and the meanvalues. As it 
an be seen there are few di�eren
esbetween the Rough Sets hybrid system and the orig-inal Case-Based Classi�er System. The results de-note also that it is very important the number of
ases in
luded into the 
ase memory to a
hieve agood a

ura
y in the weighting method.It is important to remark that the predi
tion a
-
ura
y depends on the 
ase memory size. This fa
t
an be seen in all the problems.Figure 7 shows the mean results obtained for thee
ho
ardiogram problem in all the training set pro-
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Figure 6: Maximum results obtained in the Mam-mogram problem.Table 4: Results for the Iris problem.Prop. Max Max Mean Meantrain :W RS-W :W RS-W40% 98,88 97,77 96,22 96,0060% 97,77 97,77 95,33 95,5070% 100,00 100,00 95,11 95,3380% 100,00 100,00 97,00 97,0090% 100,00 100,00 96,66 96,66portions. It also 7 denotes how important is thenumber of 
ases into the 
ase memory, and we 
analso observe that the results depend on the numberof missing values.The results obtained for the Breast Can
er Wis-
onsin problem 
an be found in the �gure 8. Theresults are very similar, it is due to the great num-ber of examples in this data set and to the datamissing.Finally, it is important to denote that all the dis-
retisation has been done using the same parame-ter. This parameter must be 
hanged depending onthe upper and lower bounds of ea
h feature. Thisdis
retisation in
uen
es the results.6 Con
lusions and furtherworkThis paper has proposed how to introdu
e theRough Sets theory into a Case-Based Classi�er Sys-
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Figure 7: Mean results obtained for the e
ho
ardio-gram problem.tem as a weighting method. The work related heredeals with two main ideas: proposing a platformthat in
orporate Case-Based Reasoning System andthe Rough Sets into BASTIAN, and improving thefeature relevan
e me
hanism.We have tested our feature relevan
e me
hanismwith di�erent data set from the UCI repository. Wehave noti
e that the Rough Sets weighting methodimproves the a

ura
y rate if there are enough in-formation into the system to extra
t the featurerelevan
e. However, the system only de
rease thea

ura
y rate if there are less than a 10% of the
ases in memory. The Rough Sets methods help thesystem to balan
e the results in the system, thereare not many di�eren
es between all the versionstested.Our further work in this area will be to a
hievebetter performan
e using di�erent 
riteria onweighting methods and improve the platform in-trodu
ing new fun
tionalities.A
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