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Circular Blurred Shape Model for Multiclass
Symbol Recognition

Sergio Escalera, Alicia Fornés, Oriol Pujol, Josep Lladós, and Petia Radeva

Abstract—In this paper, we propose a circular blurred shape
model descriptor to deal with the problem of symbol detection and
classification as a particular case of object recognition. The feature
extraction is performed by capturing the spatial arrangement of
significant object characteristics in a correlogram structure. The
shape information from objects is shared among correlogram re-
gions, where a prior blurring degree defines the level of distortion
allowed in the symbol, making the descriptor tolerant to irregular
deformations. Moreover, the descriptor is rotation invariant by
definition. We validate the effectiveness of the proposed descriptor
in both the multiclass symbol recognition and symbol detection
domains. In order to perform the symbol detection, the descriptors
are learned using a cascade of classifiers. In the case of multi-
class categorization, the new feature space is learned using a set
of binary classifiers which are embedded in an error-correcting
output code design. The results over four symbol data sets show
the significant improvements of the proposed descriptor compared
to the state-of-the-art descriptors. In particular, the results are
even more significant in those cases where the symbols suffer from
elastic deformations.

Index Terms—Error-correcting output codes, multiclass catego-
rization, object detection, symbol description, symbol recognition.

I. INTRODUCTION

O BJECT RECOGNITION can be divided into two main
problems: object detection and object categorization. The

object detection techniques must be able to locate the target
object while discarding most part of the image; meanwhile,
the multiclass categorization must classify the object by its
corresponding true class, given a large set of possible classes.
Symbol recognition is a particular problem of object recogni-
tion. Symbols are graphical entities made by humans to be read
by humans. The problem of symbol recognition is a classical
interest among the community of document image analysis and
recognition. The recognition of technical documents or logo
spotting for document database retrieval is a typical application.
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In the last years, symbol recognition has also been focused
on the images of natural scenes (e.g., traffic signs). The ro-
tation, partial occlusions, elastic deformations, intraclass and
interclass variations, and high variability among symbols due to
different writing styles (in the case of handwritten documents)
are just a few problems in this domain.

Shape is one of the most important visual cues for describing
objects, and as well as color or texture, it is widely used for
describing the content of the object. There is an increasing
interest in the development of good shape recognition methods
in the area of pattern recognition. In general, the design of a
shape-based approach can be divided into two main steps: the
definition of expressive and compact shape descriptors and the
formulation of robust classification methods for the detection
and classification.

Shape representation is a difficult task because of several
object distortions, such as occlusions, elastic deformations, dis-
continuities, or noise. A good shape descriptor should guarantee
interclass compactness and intraclass separability, even when
describing noisy and distorted shapes. The main techniques for
shape recognition are reviewed in [1]. They are mainly clas-
sified into continuous and structural approaches. The Zernike
moments and angular radial transform (ART) are examples
of continuous approaches, which extract information from the
whole shape region. The Zernike moments [2] maintain the
properties of the shape and are invariant to the rotation, scale,
and deformations. The angular radial transform [3] decomposes
the shape in an orthogonal basis, making use of a radial and
angular function. It has good performance for general shapes
and uses few features by the descriptor. On the contrary, other
continuous approaches only use the external contour (silhou-
ette) for computing the features, i.e., the curvature scale space
(CSS) or shape context [4]. The CSS [5] is a standard of the
MPEG-7 [6] that is tolerant to rotation, but it can only be
used for closed curves. The shape context [4] can work with
nonclosed curves and has good performance in hand-drawn
symbols because it is tolerant to deformations, but it requires
point-to-point alignment of the symbols.

The structural approaches are used to represent the shapes
with relational information between the compounding primi-
tives. The straight lines and arcs are usually the basic primitives,
which approximate the contours and skeletons. The strings,
graphs, or trees represent the relations between these primitives.
The similarity measure is performed by string, tree, or graph
matching. The attributed graph grammars, deformable models,
and region adjacency graphs are a few examples of the struc-
tural approaches. The attributed graph grammars [7] can cope
with repetitive subpatterns while the region adjacency graphs
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[8] reach good performance in front of distortions in the hand-
drawn documents. The deformable models on the graph-based
representations of vectorized line drawings [9] are invariant
to distortions and rotation but require good initialization and
robust edge detection.

The symbol descriptors robust to some affine transformations
and occlusions are not effective enough when dealing with
elastic deformations. Thus, the research of a descriptor that can
cope with elastic deformations and nonuniform distortions is
still required. In the work of Escalera et al. [10], the blurred
shape model (BSM) was presented. It is a descriptor that can
deal with soft, rigid, and elastic deformations, but it is sensitive
to rotation.

In this paper, we present an evolution of the BSM de-
scriptor, which not only copes with distortions and noise but
also is rotation invariant. The circular BSM (CBSM) codifies
the spatial arrangement of the object characteristics using a
correlogram structure. Based on a prior blurring degree, the
object characteristics are shared among correlogram regions.
By rotating the correlogram so that the major descriptor den-
sities are aligned to the x-axis, the descriptor becomes rotation
invariant. We validate the descriptor in two scenarios: symbol
detection and categorization. In order to deal with the problem
of symbol detection [11], different pattern recognition methods
are proposed in the literature such as geometric features, region-
based approaches using connected components, or structural
symbol representation [12]. In our case, the new descriptor is
learned using a cascade of classifiers with Adaptive Boosting
(AdaBoost) and tested with a windowing strategy in order to lo-
cate the target object. The validation of the detection procedure
is performed over architectural and old-music-score image data
sets. In this case, our method shows a better performance than
the standard scale-invariant feature transform (SIFT) descriptor
by tolerating large changes in the symbol orientations. More-
over, the original BSM descriptor requires the object alignment
previous to its description, which considerably increases the
computational cost in comparison to the proposed circular
approach.

Referring to the categorization of several object classes,
many classification techniques have been developed. One of the
most well-known techniques is the AdaBoost algorithm, which
has been shown to be suitable for feature selection and achieves
high performance when applied to binary categorization tasks
[13]. The extension of this approach to the multiclass case
is usually solved by combining the binary classifiers in a
voting procedure, such as the one-versus-one or one-versus-
all voting schemes. In order to extend the binary classifiers
to the multiclass case, Dietterich and Bakiri [13] proposed the
error-correcting output code (ECOC) framework, which ben-
efits from the error correction properties, obtaining successful
results [14]. In this paper, we learn the CBSM features by a
dichotomizer based on the AdaBoost classifier, and then, we
combine the binary problems in an ECOC configuration, which
extends the system to deal with the multiclass categorization
problems. The multiclass classification methodology has been
used to compare the state-of-the-art descriptors–BSM, Zernike,
Zoning, and SIFT–on the public MPEG-7 and grey-level-
symbol data sets.

Fig. 1. (a) CBSM correlogram parameters. (b) Region distribution. (c) Region
centroid definition. (d) Region neighbors. (e) Object point analysis. (f) Descrip-
tor vector update after the analysis of point x.

This paper is organized as follows. Section II presents the
CBSM descriptor. Section III shows the multiclass categoriza-
tion and object detection methodologies considered to evaluate
the CBSM descriptor. Section IV presents the experimental
evaluation on different binary and grey-level multiclass symbol
categorization and detection problems. Finally, the concluding
remarks and perspectives are presented in Section V.

II. CBSM

In this section, we present a circular formulation of the BSM
descriptor [10]. By defining a correlogram structure from the
center of the object region, the spatial arrangement of object
parts is shared among the regions defined by circles and sec-
tions. The method aims to achieve a rotation invariant descrip-
tion by rotating the correlogram according to the predominant
region density, which implies the full redefinition of the BSM
descriptor. We divide the description of the algorithm into three
main steps: the definition of the correlogram parameters, the
descriptor computation, and the rotation invariant procedure.

Correlogram definition: Given a number of concentric cir-
cles C, a radius R, a number of sections S, and an image region
I , a correlogram B = {b{1,1}, . . . , b{C,S}} is defined as a radial
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Fig. 2. Correlogram structures obtained for different C × S sizes. (a) 4 × 4.
(b) 10 × 10. (c) 16 × 16.

distribution of the subregions of the image, as shown in Fig. 1(a)
and (b). Each region b is defined by its centroid coordinates
b∗ [see Fig. 1(c)]. Then, the regions around b are defined as
the neighbors of b. Note that, depending on the spatial location
of the analyzed region, different numbers of neighbors can be
defined [see Fig. 1(d)]. Different correlogram structures are
shown in Fig. 2 for different values of C and S.

Descriptor computation: In order to compute the CBSM
descriptor, first, a preprocessing of the input region I to obtain
the shape features is required. For several symbols, the relevant
shape information can be obtained by means of a contour
map (though based on the object properties, we can define a
different preprocessing step). In this paper, we use the Canny
edge detector procedure.

Given the object contour map, each point of the image
belonging to a contour is taken into account in the description
process [see Fig. 1(e)]. First of all, the distances from the
contour point x to the centroids of its corresponding region
and neighboring regions are computed. The inverse of these
distances is normalized by the sum of the total distances. These
values are then added to the corresponding positions of the de-
scriptor vector ν [see Fig. 1(f)]. This makes the description tol-
erant to irregular deformations. Concerning the computational
complexity, note that, for a correlogram of C × S sectors and
k contour points considered for obtaining the CBSM descriptor,
only the O(k) simple operations are required. The description
procedure is detailed in Algorithm 1.

Algorithm 1 CBSM description algorithm.

Require: a binary image I (of dimensions Y xZ), a number of
concentric circles C, and a number of sections S.

Ensure: the descriptor vector ν and the set of bins B.
1: Define R = max(Y/2, Z/2) as the radius of the most

outer concentric circle.
2: Define d = R/C and g = S/360 as the distance between

the consecutive concentric circles and the degrees between
the consecutive sectors, respectively [see Fig. 1(a)].

3: Define B = {b{1,1}, . . . , b{C,S}} as the set of bins for the
circular description of I , where bc,s is the bin of B
between distances [(c− 1)d, c · d) to the origin of coor-
dinates o and between interval angles [(s− 1)g, s · g) to
the origin of the coordinates o and x-axis [see Fig. 1(b)].

4: Define b∗{c,s} = (sin α d, cos α d) as the centroid coordi-
nates of bin b{c,s} and B∗ = {b∗{1,1}, . . . , b

∗
{C,S}} as the set

of centroids in B [see Fig. 1(c)].

5: Define Xb{c,s} = {b1, . . . , bc·s} as the sorted set of the
elements in B∗ so that d(b∗{c,s}, b

∗
i ) ≤ d(b∗{c,s}, b

∗
j), i < j.

6: Define N(b{c,s}) as the neighbor regions of b{c,s}, defined
by the initial elements of Xb{c,s}

N(b{c,s}) =

⎧⎨
⎩

X ′, |X ′| = S + 3 if b{c,s} ∈ IN
X ′, |X ′| = 9 if b{c,s} ∈MI
X ′, |X ′| = 6 if b{c,s} ∈ EX

where IN , MI , and EX are the inner, middle, and
outer regions of B, respectively [see Fig. 1(d)].

7: Initialize νi = 0, i ∈ [1, . . . , C · S], where the order of
indices in ν are as follows:

8: ν = {b{1,1}, . . . , b{1,S}, b{2,1}, . . . , b{2,S}, . . . , b{C,1}, . . . ,
b{C,S}}

9: for each point x ∈ I , I(x) = 1 [see Fig. 1(e)] do
10: D = 0
11: for each bi ∈ N(bx)do
12: di = d(x, bi) = ‖x− b∗i‖2
13: D = D + (1/di)
14: end for
15: Update the probability vector ν positions as follows [see

Fig. 1(f)]:
16: ν(bi) = ν(bi) + (1/diD), ∀i ∈ [1, . . . , C · S]
17: end for
18: Normalize the vector ν as follows:
19: d′ =

∑C·S
i=1 νi, νi = νi/d′, ∀i ∈ [1, . . . , C · S].

Rotation invariant descriptor: In order to obtain a rota-
tion invariant description, a second step is included in the
description process. We look for the main diagonal Gi of the
correlogram B that maximizes the sum of the descriptor values.
This diagonal is then taken as a reference for rotating the
descriptor. The orientation in the rotation process, so that Gi

is aligned to the x-axis, is the one corresponding to the highest
density of the descriptor at both sides of Gi. This procedure is
detailed in Algorithm 2.

Algorithm 2 Rotation invariant ν description.

Require: a number of circles C, a number of sections S, and
a set of bins B.

Ensure: the rotation invariant descriptor vector νk.
1: Define G = {G1, . . . , GS/2} as the S/2 diagonals of B,

where Gi = {ν(b{1,i}), . . . , ν(b{C,i}), . . . , ν(b{1,i+S/2}),
. . . , ν(b{C,i+S/2})}

2: Select Gi so that
∑2C

j=1 Gi(j) ≥
∑2C

j=1 Gk(j), ∀k ∈
[1, . . . , S/2]

3: Define LG and RG as the left and right areas of the
selected Gi as follows:

4: LG =
∑

j,k ν(b{j,k}, j ∈ [1, . . . , C], k ∈ [i + 1, . . . , i +
S/2− 1]

5: RG =
∑

j,k ν(b{j,k}, j ∈ [1, . . . , C], k ∈ [i + S/2 +
1, . . . , i + S − 1]

6:
7: if LG > RG then
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Fig. 3. Examples of image descriptors at different sizes for two object
instances. The more regions used for the description, the more local information
about the shape obtained. Notice that the two descriptors are correctly rotated
and aligned.

8: B is rotated k = i + S/2− 1 positions to the left
9: νk ={ν(b{1,k+1}), . . . , ν(b{1,S}), ν(b{1,1}), . . . ,

ν(b{1,k}), . . .,
10: . . . , ν(b{C,k+1}), . . . , ν(b{C,S}), ν(b{C,1}), . . . ,

ν(b{C,k})}
11: else
12: B is rotated k = i− 1 positions to the right
13: νk = {ν(b{1,S}), . . . , ν(b{1,S−k+1}), ν(b{1,1}), . . . ,

ν(b{1,S−k}), . . . ,
14: . . . , ν(b{C,S}), . . . , ν(b{C,S−k+1}), ν(b{C,1}), . . . ,

ν(b{C,S−k})}
15: end if

A visual result of the rotation invariant process can be observed
in Fig. 3 in which two bats with different descriptor orientations
are rotated and aligned.

In this way, the output descriptor ν for an input region
I represents a distribution of the probabilities of the symbol
structure considering the spatial distortions, where the number
of regions (defined by parameters C and S) defines the blurring
degree allowed. The blurring degree defines the degree of spa-
tial information taken into account in the description process.
In Fig. 3, a bat instance from the public MPEG-7 data set
[15] is described with different C × S correlogram sizes. Note
that, when we increase the number of regions, the description
becomes more local. Thus, the optimal parameters of C and S
should be obtained for each particular problem (e.g., via cross
validation, splitting the training data into two subsets, one to
train and the remaining one to validate the method parameters).
The selected number of regions (and, consequently, the blurring
degree) is the one which attains the highest performance on
the validation subset, defining the optimum number of sizes,
encoding the different distortions on each particular problem,
and offering the required tradeoff between the interclass and
intraclass variabilities in a problem-dependent way.

The CBSM correlogram is defined by means of a number
of sectors S and a number of concentric circles C in a linear
correlogram design. It implies that the area of the outer sectors
is higher than the area corresponding to the inner sectors. Since
we define the same importance to all analyzed shape points, it
seems intuitive to define the sectors with the same area. How-
ever, in this paper, we define a linear concentric circle definition
which implies a more local description on the center of the

Fig. 4. Symbol classification system. In the training step, the CBSM de-
scriptor is computed for all the symbols, and the ECOC encoding matrix is
constructed for defining the combination of classifiers. In the testing step, the
CBSM descriptor is computed for the input symbols, and after their alignment,
they are classified using the ECOC decoding algorithm.

description; meanwhile, the distortion degree allowed at the
external sectors is increased. We use this approximation based
on the fact that the outer appearance of the symbols is usually
higher compared to the inner variabilities (i.e., the external
strokes in the hand-drawn symbols). On the other hand, if we
want to define a correlogram structure where all the sectors have
the same area, we simply need to change the distance among the
correlogram sectors to satisfy the new constraints.

III. CBSM DETECTION AND CLASSIFICATION SYSTEM

For the sake of completeness, in this section, we overview
the object categorization and symbol detection methodologies
considered for validating the proposed descriptor.

A. Symbol Classification System

The proposed symbol classification system consists of two
different stages: description and classification. For the first
stage, the previously described rotation invariant CBSM de-
scriptor is computed. For the second stage, the ECOC frame-
work is used. The whole process is shown in Fig. 4.

ECOCs [13] are a metalearning strategy that divides a mul-
ticlass problem into a set of binary problems, solves them
individually, and aggregates their responses into a final mul-
ticlass framework. The ECOCs have been successfully applied
to many machine vision tasks [16]–[19], showing interesting
properties in statistical learning, reducing both the bias and the
variance of the base classifiers [20].

The ECOC metalearning algorithm consists of two steps:
the learning/coding step, where an ECOC encoding matrix is
constructed in order to define the combination of classifiers
in the coding matrix T, and the decoding step, where a new
sample x is classified according to the set of binary classifiers of
T. Formally, given a set of N training samples X = {x1, . . . ,
xN}, where each xi belongs to a class Ci ∈ {C1, . . . , CK},
the ECOC encoding consists of constructing M binary prob-
lems using the original K classes. Each binary problem splits
into two metaclasses, and values +1 and −1 are assigned
to each class belonging to the first and second metaclasses,
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respectively. If a class does not belong to any metaclass, the
membership value is set to 0. This creates a K ×M matrix T.
When a new sample must be classified, the outputs of the
classifiers trained on each binary problem (columns of the
matrix T) are used to construct the code word that is compared
with each row of the matrix T. The class code word with
the minimum distance is selected as the classifier output. The
ECOC scheme allows to represent in a common framework
the well-known strategies, such as the one-versus-all or all-
pair (one-versus-one) voting schemes, as well as the more
sophisticated problem-dependent encodings, namely, the dis-
criminant ECOC [21] or the subclass ECOC [14], without a
significant increment of the code word length. The literature
shows that one of the most straightforward and well-performing
approaches disregarding the properties of the particular base
learner is the one-versus-one strategy.

The final part of the ECOC process is based on defining
a suitable distance for comparing the output of the classifiers
with the base code words. Escalera et al. [22] have recently
shown that weighted decoding achieves the minimum error
with respect to the most state-of-the-art decoding measures.
The weighted decoding strategy decomposes the decoding step
of the ECOC technique into two parts: a weighting factor for
each code position and any general decoding strategy. In [22],
Escalera et al. have shown that, for obtaining a successful
decoding, two conditions must be fulfilled: The bias induced
by the zero symbol should be zero, and the dynamic range of
the decoding strategy must be constant for all the code words.
The complete decoding strategy weights the contribution of the
decoding at each position of the code word by the elements
of a weighting matrix W that ensures that both conditions are
fulfilled. As such, the final decoding strategy is defined as

δ (y,T(i, ·)) =
M∑

j=1

W(i, j) · L (T(i, j) · hj(x))

where

w(i, j) =
{

ri (S,T(·, j),T(i, j)) , T(i, j) 	= 0
0 otherwise

M∑
j=1

w(i, j) = 1, ∀i ∈ {1, . . . , K}.

We define the metaclass relative accuracy (r value) of class
k on the set S given the definition of the metaclass ρ as (1),
shown at the bottom of the page, where ρ defines which classes
belong to which metaclass.

The second part of the weighting decoding relies on a base
decoding strategy. In this paper, we use the linear loss-based
decoding as the base decoding strategy. The linear loss-
based decoding was introduced by Allwein et al. [23] and is
defined as follows: Given the input sample x and the binary
code y which is the result of applying all the dichotomizers

Fig. 5. Symbol detection system. In the training step, the CBSM descriptor
is computed for all the symbols, and the cascade of classifiers is used for
learning the positive and negative object instances. In the testing step, the
CBSM descriptor is computed for all the candidate subregions, and the cascade
of classifiers is used for detecting the regions containing the target object.

(h1, h2, . . . , hM ) to the input test sample, the decoding value
is defined as

δ (y,T(i, ·)) =
M∑

j=1

L (T(i, j) · hj(x))

where T(i, ·) denotes the code word for class i, hj(x) is the
prediction value for dichotomizer j, and L is a loss function
that represents the penalty due to the misclassification. In the
case of the linear loss-based decoding, we have L(ρ) = −ρ.

Note that the ECOC framework just requires K ·M tests to
perform the multiclass classification, with K being the number
of possible object categories and M being the number of trained
classifiers.

B. Symbol Detection System

In order to design a symbol detection methodology, two
stages must be defined. The first stage (namely, the training)
should learn to distinguish among the target object and back-
ground (i.e., learning a binary classifier). The second stage
(namely, the testing) should perform a search over the whole
image using the trained classifier in order to locate those regions
containing the target object. The whole process is shown in
Fig. 5.

For the first step, we propose to learn a binary classifier
using AdaBoost [24] with a set of positive and negative object
instances. Since we need to apply this classifier to a huge
number of regions in the second step, the final detection time for
an image is very high. In order to address this limitation, Viola
and Jones introduced a cascade architecture of multiple strong
classifiers [25]. The underlying idea is to use only the necessary
computation cost in order to reject the nonobject regions while

rk(S, ρ, i) =
# elements of class k classified as metaclass i in the set S

# elements belonging to class k in the set S
(1)
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more complex analysis is performed in the unclear cases. Those
regions that arrive to the last stage of the cascade are classified
as objects and then selected as object regions; meanwhile, the
rest of the regions are rejected. Each stage of the cascade only
analyzes the objects accepted by the previous stages, and thus,
the nonobjects are analyzed only until they are rejected by a
stage. The number of applied classifiers is reduced exponen-
tially due to the cascade architecture. This strategy is detailed
in Algorithm 3.

Algorithm 3 Attentional cascade training algorithm.

Require: a set of positive examples P , a set of negative
examples N , a maximum false alarm rate f , a minimum
accuracy a, and a number of cascade levels L.

Ensure: a cascade of strong classifiersh.
1: fori = 1 to L do
2: Fi ← 1, ni ← 0
3: whileFi > f do
4: ni ← ni + 1
5: Use P and N to train a classifier with ni features

using AdaBoost
6: Fi ← Evaluate the current cascaded classifier on

the validation set
7: Decrease the threshold for the ith classifier until

the current cascaded classifier satisfies a detection
rate of a (this also affects Fi)

8: end while
9: N ← 0
10: Evaluate the current cascaded detector on the set of

nonobject images and put any false detections into
the set N .

11: end for

Once the cascade of classifiers is learned, a windowing
strategy is applied on the whole test image. The method is
described in Algorithm 4.

Algorithm 4 Object detection using a cascade of classifiers.

Require: an image I , a cascade of classifiers h, an initial
window size SI , a final window size SF , a shift s, and
an increment i.

Ensure: the target object regions R.
1: for windows W of size SI , increasing by i to SF do
2: for each region r in I of size W with shift s among

the regions, increasing by i do
3: test cascade h over region r
4:

h(r) =

{ 1 if detected as positive (object instance)
save region→ R = R ∪ r

0 if detected as negative (background)

5: end for
6: end for

IV. EXPERIMENTAL EVALUATION

We divide the experimental evaluation into two main blocks:
multiclass symbol categorization and symbol detection.

A. Multiclass Symbol Categorization

In order to present the multiclass categorization results, we
discuss the data, methods, and validation of the experiments.

1) Data: For comparing our CBSM multiclass methodology,
we used two multiclass data sets: The first is the public
70-class MPEG-71 binary repository data set [15], which
contains a high number of classes with different appear-
ances of the symbols from the same class, including
rotation. The second data set is a 17-class data set of grey-
level symbols,2 which contains the common distortions
from real environments, such as the illumination changes,
partial occlusions, or changes in the point of view.

2) Methods: The descriptors considered in the comparison
results are the SIFT [26], BSM [10], Zoning [1], and
Zernike moments [2]. The details of the descriptors used
for the comparison results are discussed in the following
sentences. The optimum correlogram size of the CBSM
descriptor is estimated by applying a cross validation over
the training set, using 10% of the samples to validate
the different sizes of S = {8, 12, 16, 20, 24, 28, 32} and
C = {8, 12, 16, 20, 24, 28, 32}. For the sake of fairness,
the Zoning and BSM descriptors are set to the same
number of regions as the CBSM descriptor. The rotation
invariance for the BSM descriptor is achieved by means
of the principal component alignment before the descrip-
tor computation [10]. Concerning the Zernike moment
descriptor, seven moments are used. A Gentle AdaBoost
with 50 decision stumps [24] is used for training the
binary problems of the one-versus-one ECOC design
[23] with the loss-weighted (LW) decoding [22] to solve
the multiclass categorization problems. We also consider
a support vector machine (SVM) with a radial basis
function (RBF) base classifier for the ECOC design with
C = 1 and γ = 1 and a three-nearest-neighbor (3-NN)
classifier in the comparison results. The regularization
parameter C and the γ parameter are set to one for the
experiments. We selected this parameter after a prelimi-
nary set of evaluations. We decided to keep the parameter
fixed for the sake of simplicity and easiness of the repli-
cation of the experiments, although we are aware that this
parameter might not be optimal for the analyzed data sets.

3) Validation: The classification score is computed by means
of a stratified ten-fold cross validation [27], testing for
95% of the confidence interval CI with a two-tailed t-test
[28], computed as

CI =
1.96 σXj√

NT
(2)

1MPEG-7 Repository Database: http://www.cis.temple.edu/ latecki/research.
html

2These data sets and ground truths are publicly available under request to the
authors of this paper.

http://www.cis.temple.edu/ latecki/research.html
http://www.cis.temple.edu/ latecki/research.html
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Fig. 6. MPEG-7 samples.

TABLE I
CLASSIFICATION ACCURACY AND CONFIDENCE INTERVAL (IN BRACKETS)

ON THE 70 MPEG-7 SYMBOL CATEGORIES FOR THE DIFFERENT

DESCRIPTORS USING A 3-NN CLASSIFIER AND THE

ONE-VERSUS-ONE ECOC SCHEME WITH GENTLE ADABOOST

AND RBF SVM AS THE BASE CLASSIFIERS

where σXj
is the standard deviation of the performance

of the tests Xj and NT is the number of tests.

Next, we describe the experiments performed, comparing
our descriptor with the state-of-the-art descriptors over two
multiclass categorization problems (with binary and grey-level
symbols).

1) MPEG-7 Multiclassification Data Set: In this experi-
ment, we used the 70 object categories from the public
MPEG-7 binary object data set [15] to compare the whole set
of descriptors in a multiclass categorization problem. A pair of
samples of some classes of this data set are shown in Fig. 6.

The classification results and confidence interval after testing
using a stratified ten-fold cross validation with a 3-NN classifier
and the ECOC configuration with Gentle AdaBoost and RBF
SVM base classifiers are shown in Table I. The values in
brackets correspond to the confidence interval. Note that the
best performance is obtained by the CBSM descriptor for all
the classifiers, followed in all cases by the BSM descriptor.
Moreover, the ECOC configurations always obtain a higher
performance than classifying with a nearest neighbor classifier.
On the other hand, the AdaBoost performs better than the RBF
SVM as an ECOC base classifier in this data set.

2) Grey-Scale Multiclassification Symbol Data Set: The
second data set of symbols consists of grey-level samples from
17 different classes, with a total of 550 samples acquired with
a digital camera from real environments. The samples are taken
so that there are large affine transformations, partial occlusions,
background influence, and high illumination changes. A pair
of samples for each of the 17 classes are shown in Fig. 7.
Some examples of the data set of this experiment and their
corresponding CBSM descriptors are shown in Fig. 8. In this
type of data sets, the SIFT descriptor has shown to be the one
which attains the highest performance in comparison to the
state-of-the-art descriptors. For this reason, we compare our
CBSM with the SIFT descriptor [26] as well as with the BSM
descriptor [10].

Fig. 7. Grey-scale symbol data set samples.

Fig. 8. CBSM descriptors from samples of the grey-level symbols data set.

TABLE II
CLASSIFICATION ACCURACY AND CONFIDENCE INTERVAL OF THE

CBSM, BSM, AND SIFT DESCRIPTORS ON THE GREY-SCALE SYMBOLS

DATA SET USING A ONE-VERSUS-ONE ECOC SCHEME WITH

GENTLE ADABOOST AS THE BASE CLASSIFIER

Table II shows the performances and confidence intervals
obtained in this experiment using a ten-fold cross validation
with the CBSM, BSM, and SIFT descriptors in a one-versus-
one ECOC scheme with Gentle AdaBoost as the base classifier
and LW decoding. One can see that the result obtained by the
CBSM descriptor adapted to grey-scale symbols outperforms
the result obtained by the SIFT and BSM descriptors. This
difference is produced in this data set because of the high
changes in the point of view of the symbols and the background
influence, which produce significant changes of the SIFT orien-
tations. Moreover, the rotation invariance of the CBSM descrip-
tor makes it faster and more robust than the BSM descriptor
with previous alignment based on the principal components.

B. Symbol Detection

In order to show the evaluation of the detection results, we
first describe the test data, the methods that have been compared
with our algorithm, and the validation framework to measure
the experimental evaluation.

1) Data: To test the detection CBSM methodology, we se-
lected the predefined architectural plan files of the Smart-
Draw software [29] and the old handwritten musical
scores from a collection of modern and old handwritten
musical scores (19th century) of the Archive of the Sem-
inar of Canet de Mar, Barcelona.3

3These data sets and ground truths are publicly available under request to the
authors of this paper.
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Fig. 9. Two examples of door positive images and their corresponding CBSM
visual descriptors.

2) Methods: The descriptors considered in the comparison
results are the SIFT [26] and the BSM [10]. The parame-
ters used are the same as that in the previous experiment.
We trained ten levels of the cascade with the Gentle
AdaBoost classifier with 50 decision stumps [24], and
5000 random background images from Google were used
as the negative set.

3) Validation: We apply the evaluation framework of
Mikolajczyk et al. [30] for the detection rate criterion.
The detection rate measures how correct the detector
selects the target regions, which have been previously
manually labeled. Then, the accuracy is measured by the
amount of overlapping between the detected region and
the labeled one. We consider that two regions are matched
if they satisfy

1− Rd ∩Ro

Rd ∪Ro
< ε (3)

where Rd is the detected region and Ro is the original
one. We set the maximum overlap error ε to 40%, as in
[30]. Moreover, we introduce the false alarm rate crite-
rion, defined as the ratio between the number of detected
regions that do not match with the original labeled ones
(false positives) and the total number of detected regions.
This measure should be as small as possible.

Next, we describe the experiments performed, comparing our
descriptor with the state-of-the-art descriptors on two binary
and grey-level symbol detection problems.

1) Symbol Detection in Raster Images of Scanned Archi-
tectural Plans: In this experiment, we used 20 predefined
architectural plan files of the SmartDraw software [29]. We
trained a cascade of classifiers with the parameters previously
defined for the CBSM, BSM, and SIFT descriptors. We used
30 positive door symbol samples for training the cascade. Since
there will be many overlapped detections, we will define an
accepted positive region as the region which has a minimum
of three positive detections with an intersection area greater
than 70% of the area of the smallest overlapped detection.
Note that many positive windows can appear around the target
object. In this way, we also discard the false positive isolated
detection. Two examples of doors and their CBSM rotation
invariant descriptors are shown in Fig. 9.

Some visual results testing the CBSM detection procedure
with a window shift of five pixels (which has been experi-
mentally set) are shown in Fig. 10. Note that all the doors are
detected even when connected with different types of walls and
on different rotation degrees. The numerical detection results

Fig. 10. SmartDraw architectural plan images and door symbol detection.

Fig. 11. (a) Detection results over the architectural plan images. (b) Detection
results over the musical score images.

for the three descriptors are shown in Fig. 11(a). From the total
number of doors in the 20 architectural plan images, the 32 test
doors were successfully detected by the three descriptors using
the measure of (3), obtaining a hit ratio of 100%. Moreover,
only one false positive region was detected in the case of the
CBSM descriptor, corresponding to 3% of the detected regions.
Note that one positive region from the thousands of analyzed
regions is insignificant.4

2) Symbol Detection in Old Handwritten Musical Scores:
In this last experiment, we used 20 old handwritten musical
scores from a collection of modern and old handwritten musical
scores (19th century) of the Archive of the Seminar of Canet
de Mar, Barcelona. We trained a cascade of classifiers with the
parameters previously defined for the CBSM, BSM, and SIFT
descriptors. We compare with the SIFT descriptor since it is
most widely applied on grey-level intensity images. We used
144 positive music clef samples for training the cascade.

As in the previous experiment, we consider a region as a
positive region if there is a minimum of three intersections
and discard the false positive isolated detection. Some results
testing the CBSM detection procedure with a window shift
of also five pixels on different staffs are shown in Fig. 12.
Note that all the clefs are detected. One false positive is shown
at the end of the music sheet. Notice that under this false

4A video file showing the learning and symbol detection process for the
architectural symbols has been submitted together with this paper.
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Fig. 12. Clef detection in old handwritten music score images. A false positive
is shown at the bottom of the figure.

positive, a rotation of the region appears so that it looks as
the beginning of a staff, where a clef can appear. It is the
main reason why the detection procedure confuses the region.
The numerical detection results for the three descriptors are
shown in Fig. 11(b). In this case, the degradation of the images
reduces the accuracy of the three descriptors in comparison to
the previous case. In particular, from the total number of 30 test
clefs in the images, the best accuracy is obtained by the CBSM
descriptor, detecting 28 symbols using the measure of (3),
which corresponds to a hit ratio of 93.33%. Regarding the false
positives, the lowest false alarm rate is also obtained by the
CBSM descriptor, detecting only seven false positive regions.

V. CONCLUSIONS AND PERSPECTIVES

In this last section, we summarize the contributions of our
work and present open issues.

A. Conclusions

In this paper, a CBSM descriptor has been presented. The
new descriptor is suitable to describe and recognize, in a fast
way, the symbols that can suffer from several distortions, such
as occlusions, rigid or elastic deformations, discontinuities, or
noise. The descriptor encodes the spatial arrangement of the
symbol characteristics using a correlogram structure. A prior
blurring degree defines the level of degradation allowed to the
symbol. Moreover, the descriptor correlogram is rotated, guided
by the major density, becoming rotation invariant.

The new descriptor is used to solve the object detection and
multiclass categorization problems. In the case of multiclass
symbol recognition, the new symbol descriptions are learned
using the AdaBoost binary classifiers and embedded in an
ECOC framework. The experimental results on different binary
and grey-level multiclass categorization problems show that the

CBSM descriptor obtains a higher performance than the state-
of-the-art descriptors, particularly when classifying a high num-
ber of symbol classes that suffer from irregular deformations.

For the detection problem, the descriptor is learned using a
cascade of classifiers with AdaBoost to discard the nonobject
regions and tested over whole images, detecting the target
objects. The symbol detection procedure presented in this paper
has been shown to robustly locate the object instances in
documents, such as the binary symbols in architectural plans
and the grey-level symbols in old handwritten musical scores,
outperforming the accuracy of the state-of-the-art descriptors
and reducing the false alarm rate.

B. Perspectives

Contour map image points have been used in this paper.
However, depending on the kind of objects to be described,
different types of features could be considered and blurred
among the CBSM sectors. In this sense, the contours could
be labeled based on the different structure properties (such as
those defined in [31]), and then, the CBSM descriptor could be
defined from this new set of features.
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