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Abstract. In this paper, we argue that only using behavioural motion information,
we are able to predict the interest of observers when looking at face-to-face inter-
actions. We propose a set of movement-related features from body, face, and mouth
activity in order to define a set of higher level interaction features, such as stress,
activity, speaking engagement, and corporal engagement. Error-Correcting Output
Codes framework with an Adaboost base classifier is used to learn to rank the per-
ceived observer’s interest in face-to-face interactions. The automatic system shows
good correlation between the automatic categorization results and the manual rank-
ing made by the observers. In particular, the learning system shows that stress fea-
tures have a high predictive power for ranking interest of observers when looking
at of face-to-face interactions.

1. Introduction

For a long time, the scientific community has been focused on computer vision and
speech domains for analyzing individuals as isolated items. However, humans are social
beings by nature. Social communication relies on two communication channels. The di-
rect channel is related to the conscious level of the emitter and deals with semantic con-
ventions; Indirect channels are unconscious cognitive processes based mostly on non-
verbal communication cues – facial expressions, hand gestures, body postures, dynamic
speech patterns. For most of us, this social perception is used unconsciously for some
of the most important actions we take in our life: negotiating economic and affective re-
sources, making new friends, establishing credibility, or leadership. Thus, understanding
these social signals is the basis for understanding human-to-human interaction. Artificial
social perception is the discipline devoted to the analysis of these signals and the so-
cial messages they convey. Nowadays, works in artificial social perception are grouped
according to their underlying social theory in either emotion-based signaling or human
social signaling. The first trend [4] considers that affective states are a different source of
messages communicated by social signals. Following this line of thought different works
have been done considering emotions, such as emotion description, emotion detection,
or emotion-based applications [1].

On the other hand, human social signaling considers a wider set of cues as facili-
tators of the communication between people. These basic signals come from different
sources and include gestures, such as scratching, head nods, huh utterances or facial ex-



pressions. As such, automatic systems in this line of work benefit of technologies such as
face detection and localization, head and face tracking, facial expression analysis, body
detection and tracking, visual analysis of body gestures, posture recognition, activity
recognition, estimation of audio features such as pitch, intensity, and speech rate, and
the recognition of non-linguistic vocalizations like laughs, cries, sighs, and coughs [12].
However, humans group these basic signals to form social messages (i.e. dominance,
trustworthiness, friendliness, etc). The detection of social messages has recently received
attention – i.e. in [8] dominance is estimated from multimodal sources.

In this article, we give an approximation of the quantification of interest from the
point of view of an external observer exclusively analyzing visual cues. The term inter-
est is often used to designate people’s internal states related to the degree of engage-
ment that individuals display, consciously or not, during their interaction. Such displayed
engagement can be the result of many factors, ranging from interest in a conversation,
attraction to the interlocutor(s), and social rapport [6]. In the specific context of group
interaction, the degree of interest that the members of a group collectively display during
their interaction is an important state to extract from formal meetings and other conver-
sational settings. Segments of conversations where participants are highly engaged (e.g.
in a discussion) are likely to be of interest to other observers too.

With the purpose of quantifying the level of interest of an external observer, we base
our features in the works of Pentland et al.[11,10]. In their research, the authors propose a
small set of social signals, such as activity level, stress, speaking engagement, and corpo-
ral engagement for analyzing nonverbal speech patterns during dyadic interactions. We
extend and propose an implementation of the concepts proposed in those works. We iden-
tify different basic social signals – motion-related features from body, face, and mouth
activity – that allow to build up the four high level interaction features – stress, activity,
speaking engagement, and corporal engagement. We argue that only using behavioural
motion information, we are able to predict the perceived interest by observers. These fea-
tures are included in an Error-Correcting Output Codes design, which learn the different
levels of interest perceived by observers when looking at face-to-face interactions. The
automatic system shows good correlation between the automatic categorization results
and the manual ranking made by the observers.

The layout of the article is as follows: Section 2 describes the basic social signal
features extracted from the videos. We propose an approach to compute the higher level
interaction social signals starting from those basic features. Section 3, introduces the
machine learning framework used in the paper. Section 4 shows the experimental settings
and results. Finally, section 5 concludes the paper.

2. Visual dyadic features

In order to predict the level of interest perceived by observers when looking at face-to-
face interaction video sequences, first, we define a set of basic visual features. These
features are based on the movement of the individual subjects. Then, a post-processing is
applied in order to regularize the movement features. These features will serve as bases
to build higher level interaction features, namely stress, activity, speaking engagement,
and corporal engagement.



2.1. Movement-based basic features

Given a video sequence S = {s1, .., se}, where si is the ith frame in a sequence of e
frames with a resolution of h×w pixels, we define four individual signal features: global
movement, face movement, body movement, and mouth movement.

• Global movement: Given two frames si and sj , the global movement GMij is
estimated as the accumulated sum of the absolute value of the subtraction between two
frames si and sj :

GMij =
∑

k

|sj,k − si,k| (1)

where si,k is the kth pixel in frame si, k ∈ {1, .., h · w}. Figure 1(a) shows a frame
from a dialog, and Fig. 1(b) its corresponding GMij image, where i and j are consecutive
frames in a 12 FPS video sequence.

• Face movement: Since the faces that appear in our dialog sequences are almost all
of them in frontal view, we can make use of the state-of-the-art face detectors. In particu-
lar, the face detector of Viola & Jones [9] is one of the most widely applied detectors due
to its fast computation and high detection accuracy, at the same time that it preserves a
low false alarm rate. We use the face detector trained using a Gentle version of Adaboost
with decision stumps [9]. The Haar-like features and the rotated ones have been used
to define the feature space [9]. Figure 1(c) shows an example of a detected face of size
n×m, in the ith frame of a sequence, denoted by Fi ∈ {0, .., 255}n×m. Then, the face
movement feature FMij at ith frame is defined as follows:

FMij =
1

n ·m
∑

k

|Fj,k − Fi,k| (2)

where Fi,k is the kth pixel in face region Fi, k ∈ {1, .., n ·m}, and the term n ·m
normalizes the face movement feature. An example of faces substraction |Fj − Fi| is
shown in Fig. 1(d).

• Body movement: We define the body movement BM as follows:

BMij =
∑

k

|si,k − sj,k| −
∑

fk∈F ij

fk (3)

In this case, the pixels fk corresponding to the bounding box F ij which contains
both faces Fi and Fj are removed from the set of pixels that defines the global movement
image of frame i. An example of a body image substraction is shown in Fig. 1(e).

•Mouth movement: In order to avoid the bias that can appear due to the translation
of mouth detection between consecutive frames, computing the mouth movement MMiL

at frame i, we estimate an accumulated substraction of l mouth regions previous to the
mouth at frame i. From the face region Fi ∈ {0, .., 255}n×m detected at frame i, the
mouth region is defined as Mi ∈ {0, .., 255}n/2×m/2, which corresponds to the center
bottom half region of Fi. Then, given the parameter L, the mouth movement feature
MMiL is computed as follows:



MMiL =
1

n ·m/4

i−1∑

j=i−L

∑

k

|Mi,k −Mj,k| (4)

where Mi,k is the kth pixel in a mouth region Mi, k ∈ {1, .., n ·m/4}, and n ·m/4
is a normalizing factor. The accumulated subtraction avoids false positive mouth activity
detection due to noisy data and translation artifacts of the mouth region. An example of a
detected mouth Fi is shown in Fig. 1(f), and its corresponding accumulated substraction
for L = 3 is shown in Fig. 1(g).

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. (a) ith frame from dialog, (b) Global movement GMij , (c) Detected face Fi, (d) Face movement
FMij , (e) Body movement BMij , (f) Mouth detection Mi, and (g) Mouth movement MMij .

2.2. Post-processing

After computing the values of GMij , FMij , BMij , and MMiL for a sequence of e
frames (i, j ∈ [1, .., e]), we filter the responses. Fig. 2(c) and (d) correspond to the global
movement features GMij in a sequence of 5000 frames at 12 FPS for the speakers of
Fig. 2(a) and (b), respectively. At the post-processing step, first, we filter the features in
order to obtain a 3-value quantification. For this task, all feature values from all speakers
for each movement feature are considered together to compute the corresponding feature
histogram (i.e. histogram of global movement hGM ), which is normalized to estimate the
probability density function (i.e. pdf of global movement PGM ). Then, two thresholds
are computed in order to define the three values of movement, corresponding to low,
medium, and high movement quantifications:

t1 :
∫ t1

0

PGM =
1
3
, t2 :

∫ t2

0

PGM =
2
3

(5)

The result of this step is shown in Fig. 2(e) and (f), respectively.
Finally, in order to avoid abrupt changes in short sequences of frames, we apply a

sliding window filtering of size q using a majority voting rule. The smooth result of this
step is denoted by V (Fig. 2(g) and (h), respectively).
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Figure 2. (a)(b) Two speakers, (c)(d) initial global movement, (e)(f) 3-levels post-processing, and (g)(h) fil-
tering using window slicing, respectively. The x-axis corresponds to the frame number.

2.3. Interaction-based indirect features

In [11], the authors define a set of interaction-based features obtained from audio infor-
mation. In this paper, we re-formulate these features from a visual point of view using
the movement-based features defined at the previous section.

• Activity: This feature refers to how much an emitter participates in the conversa-
tion. We compute this feature as:

A =
∑

k

V MM
i , k ∈ {1, .., e} (6)

where V MM
i is the mouth movement vector of speaker i ∈ {1, 2}. This measure

corresponds to the total mouth movement, codifying the speaking time weighted by the
movement degree. This feature is computed for each speaker separately (A1 and A2).

• Speaking engagement: This feature refers to the involvement of a participant in
the communication. In this case, we compute the engagement based on the activity of
both speakers’ mouths. Then, this feature is computed as:

E = V MM
1 · V MM

2 (7)

where ’·’ stands for the scalar product between vectors, and V MM
1 and V MM

2 are
the mouth movement vectors of first and second speaker, respectively.

•Corporal engagement: This feature refers to when one participant subconsciously
copies another participant behavior. We approximate this feature as:

M = V GM
1 · V GM

2 + V FM
1 · V FM

2 + V BM
1 · V BM

2 (8)

taking into account that we consider that engagement appears when there exists
simultaneous activity of face, body, or global movement, being V GM , V FM , and V BM

the global, face, and body movement vectors, respectively.



• Stress: This feature refers to the variation in emphasis (that is, the amount of
corporal movement of a participant while he is speaking). We compute this feature as:

∀k ∈ {1, .., e}, V MM
i,k := min(1, V MM

i,k ), S =
(
V MM

i · V GM
i

)
/

∑

k

V MM
i,k (9)

where i ∈ {1, 2} is the speaker, k ∈ {1, .., e}, and V GM and V MM are
the global and mouth movement vectors, respectively. This measure corresponds to the
global movement of each person only taking into account when he is speaking, and nor-
malizing this value by the speaking time. This feature is computed for each speaker sep-
arately (S1 and S2).

3. Learning to rank the interest of face-to-face interactions

In this paper, we split the observer’s interest in three levels. In order to predict the degree
of interest of a new observer when looking at a particular face-to-face interaction, we
define a multi-class categorization procedure based on Error-Correcting Output Codes.
In this section, we briefly overview the details of this framework.

3.1. Error-Correction Output Codes

The Error-Correcting Output Codes (ECOC) framework [3] is a simple but powerful
framework to deal with the multi-class categorization problem based on the embedding
of binary classifiers. Given a set of Nc classes, the basis of the ECOC framework consists
of designing a codeword for each of the classes. These codewords encode the member-
ship information of each binary problem for a given class. Arranging the codewords as
rows of a matrix, we obtain a "coding matrix" Mc, where Mc ∈ {−1, 0, 1}Nc×k, being k

the length of the codewords codifying each class. From the point of view of learning, Mc

is constructed by considering k binary problems, each one corresponding to a column of
the matrix Mc. Each of these binary problems (or dichotomizers) splits the set of classes
in two partitions (coded by +1 or -1 in Mc according to their class set membership, or 0
if the class is not considered by the current binary problem).

At the decoding step, applying the k trained binary classifiers, a code is obtained for
each data point in the test set. This code is compared to the base codewords of each class
defined in the matrix Mc, and the data point is assigned to the class with the "closest"
codeword.

In our case, though different base classifiers can be applied to the ECOC designs,
we use the Gentle version of Adaboost on the one-versus-one ECOC design [3]. We use
Adaboost since at the same time that it learns the system splitting classes it works as a
feature selection procedure. Then, we can analyze the selected features to observe the
influence of each feature to rank the perceived interest of dyadic video communication.
Concerning the decoding strategy, we use the Loss-weighted decoding [5], which has
recently shown to outperform the rest of state-of-the-art decoding strategies.



4. Experiments and Results

In order to evaluate the performance of the proposed methodology, first we discuss the
data, methods, validation protocol, and experiments.

•Data: The data used for the experiments consists of dyadic video sequences from
the public New York Times opinion video library [7]. In each conversation, two speak-
ers with different points of view discuss about a specific topic (i.e. "In the fight against
terrorism, is an American victory in sight?"). From this data set, 18 videos have been
selected. These videos are divided into two mosaics of nine videos to avoid the bias in-
troduced by the order of visualization. The two mosaics are shown in Fig. 3. To compare
videos at similar conditions, all speakers are mid-age men. Each video has a frame rate
of 12 FPS and a duration of seven minutes, which corresponds to 5040 frames video
sequences.

Figure 3. Mosaics of dyadic communication.

• Methods: We compute the six interaction-based indirect features A1, A2, E, S1,
S2, and M for each of the 18 previous dyadic sequences. The one-versus-one Error-
Correcting Output coding design [3] with Exponential Loss-Weighted decoding [5] and
100 runs of Gentle Adaboost [9] base classifier is used to learn the interest categories.

• Validation protocol: We apply two 9-fold cross-validation (one for each mosaic of
9 videos) and test for the confidence interval at 95% with a two-tailed t-test. We also use
the Friedman test to look for statistical difference among observers’ interest.

• Experiments: First, we analyze the correlation among observers when ranking the
interest in both mosaics scenarios. And second, we perform an automatic ranking using
the interaction-based features based on the observers’ decisions.

4.1. Analyzing observers’ ranking

In order to rank the conversations of Fig. 3, 40 people from 10 different nationalities
categorized the videos of both mosaics, separately, from one (highest interest) to 9 (low-
est interest). In each mosaic, the nine conversations are displayed simultaneously during
seven minutes, omitting audio. The only question made to the observers was: "In which
order would you like to see the following videos based on the interest you think the con-
versation has?" Table 1 shows the mean rank and confidence interval of each dialog con-
sidering the observers’ interest. The ranks are obtained estimating each particular rank
rj
i for each observer i and each video j, and then, computing the mean rank R for each

video as Rj = 1
P

∑
i rj

i , where P is the number of observers.



Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Video 7 Video 8 Video 9

Mosaic 1 5.4(1.0) 5.3(0.8) 4.3(0.9) 3.3(0.6) 2.7(0.6) 6.7(0.8) 6.4(1.0) 3.1(1.0) 7.9(0.6)
Mosaic 2 3.4(0.9) 4.3(0.8) 4.8(0.9) 7.2(1.0) 4.2(1.2) 5.9(1.0) 4.2(1.0) 6.8(0.8) 4.3(0.9)

Table 1. Ranking positions and confidence interval of dyadic interactions.

In order to reject the null hypothesis that the measured ranks are due to randomness
in the results, we use the Friedman test. The Friedman statistics value is computed as:

X2
F =

12P

k(k + 1)


∑

j

R2
j −

k(k + 1)2

4


 (10)

In our case, with k = 9 videos to compare on each mosaic, X2
F = 136.8 for the first

mosaic and X2
F = 78.7 for the second mosaic. Since this value is undesirable conserva-

tive, Iman and Davenport proposed a corrected statistics [2]:

FF =
(P − 1)X2

F

P (k − 1)−X2
F

(11)

Applying this correction, we obtain FF = 29.1 and FF = 12.7 for the two mosaics,
respectively. With nine videos and 40 observers, FF is distributed according to the F
distribution with 8 and 312 degrees of freedom. The critical value of F (8, 312) for 0.05
is 2.18. As the value of FF for both mosaics is higher than 2.18, we can reject the null
hypothesis. Then, we can state that there exist correlation among observers’ opinion.

4.2. Automatic ranking of dyadic sequences

After determining that there exist statistical evidences confirming the correlation among
observers’ perceived interest, we define two experiments, one for each mosaic. In each
case, three categories are determined using the observers’ ranks: high, medium, and low
interest. The categories are shown in Table 2. For each mosaic, the number of the video
with its corresponding mean rank and confidence interval is shown. One can see that
in the case of the first mosaic there exist three clear clusters, meanwhile in the case of
the second mosaic, though the low interest category seems to be split from two first
categories, high and medium categories are not clearly discriminable in terms of their
mean ranks.

High interest Medium interest Low interest High interest Medium interest Low interest

Mosaic 1 5 - 2.7(0.6) 3 - 4.3(0.9) 7 - 6.4(1.0) Mosaic 2 1 - 3.4(0.9) 9 - 4.3(0.9) 6 - 5.9(1.0)
8 - 3.1(1.0) 2 - 5.3(0.8) 6 - 6.7(0.8) 5 - 4.2(1.2) 2 - 4.3(0.8) 8 - 6.8(0.8)
4 - 3.3(0.6) 1 - 5.4(1.0) 9 - 7.9(0.6) 7 - 4.2(1.0) 3 - 4.8(0.9) 4 - 7.2(1.0)

Table 2. Interest categories for the two mosaics of Fig. 3 based on the observers’ criterion.

Now, we use the one-versus-one ECOC design with Exponential Loss-weighted de-
coding to test the multi-class system. For each mosaic, we used eight samples to learn
and the remaining one to test, and repeat for each possibility (nine classifications). For
each sequence, the six interaction-based indirect features A1, A2, E, S1, S2, and M are
computed based on the movement-based features. Concerning the movement-base fea-
tures, the values are computed among consecutive frames, and the faces are detected us-



ing a cascade of weak classifiers of six levels with 100 runs of Gentle Adaboost with de-
cision stumps, considering the whole set of Haar-like features computed on the integral
image. 500 positive faces were learnt against 3000 negative faces from random Google
background images at each level of the cascade. Finally, the size of the windows for the
post-processing of movement-based vectors was q = 5. The obtained results are shown
in the following confusion matrices:

CM1 =




2 1 0
1 1 1
0 0 3


 CM2 =




1 1 1
2 1 0
0 0 3


 (12)

for the two mosaics, respectively. In the case of the first mosaic, six from the nine
video samples were successfully classified to their corresponding interest class. In the
case of the second mosaic, five from the nine categories were correctly categorized.
These percentages show that the interaction-based features are useful to generalize the
observers’ opinion.

Furthermore, miss-classifications involving adjacent classes can be admissible. Note
that nearer classes have nearer interest rank than distant classes. In order to take into
account this information, we use the distances among neighbor classes centroids to mea-
sure an error cost EC: EC(Ci, Cj) = dij∑

k dik
, where EC estimates the error cost of

classifying a sample from class Cj as class Ci. The term dij refers to the Euclidean dis-
tance between centroids of classes Ci and Cj , and k ∈ [1, 2, 3]\i in the case of three
categories. Note that this measure returns a value of zero if the decision is true, and an
error cost relative to the distance to the correct class Cj , being one if the predicted class
is not adjacent to the correct one. Then, applying the previous measure to our two 3-class
problems we obtain the following error cost matrices:

ECCM1 =




0 0.49 1
0.49 0 0.51
1 0.51 0


 ECCM2 =




0 0.2 1
0.2 0 0.8
1 0.8 0


 (13)

If we use the information from the previous confusion matrices and the error
cost matrices, we can estimate a relative performance RF for the first mosaic of
RF=83.38% and of RF=82.30% for the second mosaic. Moreover, in 17 of the 18 dyadic
sequences analyzed, features related to the mouth and body movement are selected by the
Adaboost ECOC base classifier. In particular, the stress feature seems to maximize the
correlation among the observers’ ranks. Thus, it shows to be one of the most important
features to obtain a correct interest rank, as expected.

5. Conclusions

In this paper, we showed the correlation of observers’ interest when they rank dyadic
conversation based on indirect visual communication channels. We gave a first evidence
to be able to automatically quantify observers’ interest. We defined a set of simple mo-
tion features from body, face, and mouth activity to define a set of interaction-related
features which were used to learn a set of interest categories from dyadic videos. Up



to our knowledge, for first time ranking of subjective interest is automatically predicted
by Computer Vision and Machine Learning techniques. Error-Correcting Output Codes
framework with an Adaboost base classifier was used to learn to rank the perceived inter-
est of face-to-face interactions. The automatic system shown good correlation between
the automatic categorization results and the manual ranking made by the observers. In
particular, the learning system showed that stress features have a high predictive power
for ranking observer’s interest when looking at face-to-face interactions, being comple-
mented by engagement and activity for a more robust analysis.
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