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Abstract. Sequential learning is that discipline of machine learningthat deals with
dependent data. In this paper, we use the Multi-scale Stacked Sequential Learning
approach (MSSL) to solve the task of pixel-wise classification based on contex-
tual information. The main contribution of this work is a shifting technique applied
during the testing phase that makes possible, thanks to template images, to clas-
sify objects at different sizes. The results show that the proposed method robustly
classifies such objects capturing their spatial relationships.
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Introduction

Sequential learning [4] assumes that samples are not independently drawn from a joint
distribution of the data samplesX and their labelsY . In sequential learning the training
data actually consists of sequences of pairs(x, y), so that neighboring examples display
some correlation. Usually sequential learning applications consider one-dimensional re-
lationship support, but this kind of relationships appear very frequently in other domains,
such as images, or video. Consider the case of object recognition in image understand-
ing. It is clear that if one pixel belongs to a certain object category, it is very likely that
neighboring pixels also belong to the same object (with the exception of its borders).

In literature, sequential learning has been addressed fromdifferent perspectives:
from the point of view of graphical models, using Hidden Markov Models or Conditional
Random Fields (CRF) [8,7,5,12] for inferring the joint or conditional probability of the
sequence. Graph Transformer Networks [2], considers the input and output as a graph
and looks for the transformation that minimizes a loss function of the training data us-
ing a Neural Network. From the point of view of meta-learningsequential learning has
been addressed by means of sliding window techniques, recurrent sliding windows [4] or
stacked sequential learning (SSL) [3]. In our previous work[10], we identified that the
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main step of the relationship modeling proposed in [3], is how the extended set is created.
Thus we formalized a general framework for the SSL called MSSL where a multi-scale
decomposition is used in such step.

In this work, we focus on pixel-wise classification based on contextual information.
This is, to classify each pixel of an input testing image to a certain class. Generally,
classes are objects inside the image or background. Such classes can be of any size in
any context. General contextual classification aims to find and exploit any range of inter-
actions. Observe that this concept depends explicitly on the notion of distance relative to
the pattern of interest. The MSSL framework is able to learn such relationship between
patterns implicitly as long as all the instances of such patterns holds similar relationships
at the same range. However any successful sequential machine learning algorithm must
be independent of this range value, at least while testing unseen instances. This is one
of the big challenges in sequential learning. To address this problem, we propose the
shifting technique applied at testing step. Thanks to this technique and the concept of
template training set, the system becomes independent of the absolute range of interac-
tions. Additionally, the MSSL framework is extended using anew multi-scale decompo-
sition based on a multi-resolution approach that uses gaussian filters and a measure of
likelihood for pixel classification is used instead of bare label predictions.

The paper is organized as follows: First we formalize the MSSL framework. Section
2 discusses the use ofshifting technique for object classification at multiples scales. In
the experimental section we test our system in two differentscenarios and finally, last
section concludes the paper and discusses future work.

1. Multiscale stacked sequential learning

SSL [3] is a meta-learning framework [11] consisting in two steps, first a base classifier
is trained and tested with the original data. Then, an extended data set is created which
joins the original training data features with the predicted labels produced by the base
classifier considering a window around the example. Afterwards a second classifier is
trained with this new feature set. In [10] SSL is generalizedby emphasizing the key role
of neighborhood relationship modeling. The framework presented includes a new block
in the pipeline of the basic SSL. Figure 1 shows the Generalized Stacked Sequential

Figure 1. Generalized stacked sequential learning.

Learning process. A classifierh1(x) is trained with the input data set(x, y) and the
set of predicted labelsy′ is obtained. The next block defines the policy for creating the
neighborhood model of the predicted labels.z = J(y′, ρ, θ) : R → Rw is a function that
captures the data interaction with a model parameterized byθ in a neighborhoodρ. The
result of this function is aw-dimensional value, wherew is the number of elements in the
support lattice of the neighborhoodρ. In the case of defining the neighborhood by means



of a window,w is the number of elements in the window. Then, the output ofJ(y′, ρ, θ)
is joined with the original training data creating the extended training set(xext, y) =
((x, z), y). This new set is used to train a second classifierh2(x

ext) with the goal of
producing the final predictiony′′. The proposed definition ofJ(y′, ρ, θ) consists of two
steps: first the multi-scale decomposition that answers howto model the relationship
between neighboring locations, and second, the sampling that answers how to define the
support lattice to produce the final setz.

The scale space is a very well-known tool for image analysis and processing. Its
goal is to exploit the high correlation that exists in the neighboring pixels of an image
and represent them in an efficient way. Observe that this goalis very similar to the ob-
jective of sequential learning in which we want to characterize and learn the relationship
between examples according to their labels. We apply the idea of multi-scale decompo-
sition upon predicted labels obtained by the first classifier. For the decomposition we use
a multiresolution gaussian approach. Each level of the decomposition is generated by the
convolution of the label field by a gaussian mask of variableσ, whereσ defines the scale
of the decomposition. This means that the bigger the sigma is, the longer interactions are
considered. Thus, at each level of decomposition all the pixels have information from the
rest, accordingly to the sigma parameter. Given a set ofΣ = {σ0, ..., σn} ∈ R

+ and the
predicted label sequencêy0(x) of lengthL, each level of the decomposition is computed
as follows,

ŷsi(x) = gσi(x) ∗ ŷ0(x) (1)

wheregσi(x) is defined as a multidimensional isotropic gaussian filter with zero
mean,

gσi(x) =
1

(2π)d/2σ
1/2
i

e−
1

2
x

T σ−1

i
x (2)

Once we have the multi-scale decomposition, we define the support lattice. This is,
the sampling performed over the multi-scale representation in order to obtain the ex-
tended data. Our choice is to use a scale-space sliding window over the multi-scale de-
composition. The selected window has a fixed radius with length defined byr in each
dimension and with origin in the current prediction example. Thus, the elements covered
by the window isw = (2r + 1)d around the origin. For the sake of simplicity, we use a
fixed radius of lengthr = 1. Then, for each scalei considered in the previous decom-
position (σi i = 1 . . . n), the window is stretched in each direction using a displace-
ment proportional to the scale we are analyzing. In this paper we use a displacement
δi = 3σi +0.5. This displacement at each scale forces that each point considered around
the current prediction has very small influence from previous neighbor points. In this
way, the number of features belonging to the extended data set is equal to(2r+1)d×|Σ|.
Now, we can compute the value ofzi = J(ŷi, ρ, θ) defined above for the bi-dimensional
case withr = 1 as follows,
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(s0)
(x+δ0,y−δ0)

, . . . , ŷ
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1.1. Extending the basic model: using likelihoods

In the MSSL model we use the predicted labels as the input ofJ(y′, ρ, θ). An extension
of this idea is to use a likelihood-based measure for each label instead of label prediction.
The use of likelihoods gives a more precise information about the decisions of the first
classifier than just its predictions. In the bi-class case, where the set of possible labels
is L = {λ1, λ2}, we have two membership likelihoods:z = J({F (y = λ1|x), F (y =
λ2|x)}, ρ, θ). The multi-scale decomposition and the sampling phases arethe same, but
now, each step is applied for each label, resulting in as manydecomposition sequences as
labels, and thus, the number of features in the extended set becomes(2r+1)d×|Σ|×|L|.
This information can be taken into account by the second classifier, and then a more
accurate prediction can be given, specially in those cases that the first classifier has few
support for deciding the predicted label.

In order to obtain these values we need the base classifierh1(x) to generate not only
a class prediction, but also its likelihood. Unfortunately, not all kind of classifiers can
give a likelihood for its predictions. However, classifiersthat work with margins such as
Adaboost or SVM can be used [6]. In these cases, it is necessary to convert the margins
used by these classifiers to a measure of likelihood. In case of using Adaboost, we apply a
sigmoid function that normalizes Adaboost margins from theinterval[−∞,∞] to [−1, 1]

by means of the following equation,f(x) = 1−e−βmx

1+e−βmx
, wheremx is the margin given

by Adaboost algorithm for the examplex, and a constant that governs the transition:
β = − ln(0.5ǫ)

0.25t . It depends on the number of iterationst that Adaboost performs, and an
arbitrary small constantǫ. Now, we use a soft distance to convert the normalized valuesto
a likelihood in the range[0, 1] for each labelλ as follows:f(x|y = λ1) = e−αd(−1,f(x)),
f(x|y = λ2) = e−αd(1,f(x)), whereα = − ln(ǫ)/2 , andǫ is an arbitrarily small constant
(i.e ǫ = 10−3).

2. Learning at multiple scales

Figure 2. Architecture of theshiftingtechnique.

In MSSL the choice of the scales is critical. The more scales are selected, the better
performance is obtained. This is because different patterns at different scales can be de-
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Figure 3. Examples of horse classification. Second column shows Adaboost prediction. Third and
forth uses MSSL over the images with and without shifting.

tected. Nonetheless, if we learn a pattern with a concrete size, then when a new sequence
at different size (smaller for example) is classified the prediction would not be correct us-
ing such scales. This is because the ranges of interactions displayed in the test sequence
are not comparable with the ones displayed in the training phase, due to the fact that
MSSL learns absolute interaction ranges. In order to effectively learn interactions in the
pattern of interest we must ensure that the training set display these interactions at the
same range. We call this particular training set a template.However, during the testing
phase objects can be found at different sizes, thus displaying different interaction ranges
than the ones that appear on the template. In order to successfully cope with this problem
we propose an ensemble architecture at testing time. Figure2 shows this architecture. It
is based on the aggregation of the responses of the template trained system considering
different relative range of interactions. If the interaction range set defined in MSSL by
Σ follows a geometric progressionσi = kσi−1, then testing at different ranges can be
simply regarded as a shifting process of the extended features set. For example, given the
features{ys2 , ys4 , ys8} belonging to the extended set created during the training phase
using template images of size(x, y) with Σ0 = {2, 4, 8} and a set of test imagesX
of size(x/2, y/2), then during the testing phase we use the sameΣ0 = {2, 4, 8} and
Σ1 = {1, 2, 4} we can observe that using the firstΣ the features in both extended sets
(training and testing) do not fit because the relationships between them are now halved.
However, by using the secondΣ now the test features have been shifted and they fit with
those used for learning. Finally all results are combined with an aggregation function, for
example taking the maximum value among all the likelihood responses for each sample.

3. Experiments and Results

In this section we test our methodology in two public databases consisting of horse and
flower images [1,9].

3.1. Horse image classification using shifting

In order to validate our framework, first we define a toy problem using the Weizmann
horse database [1], which consist in classify RGB horse images but rescaled to half size



with respect to the ones used during the training phase. Eachimage is labelled according
to the horse silhouette. We selected 100 images of horses from the database. Then, we
define 5 random partitions of samples, each one consisting ofthe half of images for train-
ing and the remaining for testing. As a pre-processing step,we rescale all the horses im-
ages to the same resolution150×100. The feature vector is composed of RGB attributes.
All configurations use Adaboost with 100 iterations of decision stumps. For each image
in the training set we perform a stratified sampling of7500 pixels per image. This data
is classified by the first base classifier applying leave-one-image-out. Using the gener-
ated predicted labels we perform a multi-scale decomposition with Σ = {2, 4, 8, 16}.
The extended data set is created choosing the 8-neighbors ofeach pixel on each level of
decomposition. Finally, both classifiers are trained usingthe same feature samples with-
out and with the extended set, respectively. Table 1 shows results of predictions whether
shifting is applied or not. For assessing the validity of theresults we use theOverlap-
ping, defined as TP

FN+FP+TP . First row shows the metrics using Adaboost. As sensi-
tivity and specificity show up, the classification of the horses (MSSL) fails, because the
system have learned the relative distance with respect to the size of the training horses.
Now, we use the shifting approach by sliding the scales that are used in the testing phase
to Σ = {1, 2, 4, 8}. As we can observe in Figure 3, applying this scale decomposition
the model we trained before is able to classify the small horses appropriately without the
need of retraining the system. Table 1 shows the improvementof the results classifying
the small horses with the shifting approach.

Table 1. Results of prediction using Adaboost and MSSL with and without shifting technique.

Method Acc Over Sens Spec Prec NPV

Adatboost 0.7789 0.4417 0.8237 0.6559 0.8681 0.5749

MSSL 0.7465 0.0588 0.9963 0.0594 0.7444 0.8561

MSSL shift 0.8734 0.6448 0.8777 0.8617 0.9458 0.7193

3.2. Flowers classification using shifting

In this experiment we test our architecture in a free environment in which flowers can be
found in different number and size [9]. For the training set,we define a flower template,
this is, we select a group of similar flowers in size and shape,but from different types
and colors. Each image is labelled according to the flower silhouette whether it is flower
class or background class. For the testing set we choose flowers related to the defined
template but at different size and color. We use 16 images fortraining and 25 for test.
As a pre-processing step, we rescale all the images to the same resolution on the x-axis,
maintaining the same proportion in the y-axis. The feature vector is only composed of
RGB attributes. All configurations use Adaboost with 100 iterations of decision stumps.

For each image in the training set we perform a stratified sampling of 3000 pixels
per image. This data is classified by the first base classifier applying leave-one-image-
out. Using the generated predicted labels we perform a multi-scale decomposition with
Σ = {18, 27, 41}. The extended data set is created choosing the 8-neighbors of each
pixel on each level of decomposition. Finally, both classifiers are trained using the same
feature samples without and with the extended set, respectively. We have performed sev-
eral testing phases using always the same trained model. Foreach testing phase, we use a



O
ri

g
in

al
A

d
ab

o
o

st
C

R
F

M
S

S
L

B
ac

kg
ro

u
n

d
F

lo
w

er

Figure 4. Predictions using Adaboost and MSSL.

Table 2. Results using Adaboost and MSSL.

Method Acc Over Sens Spec Prec NPV

ADABoost 0,8773 0,5621 0,9207 0,7217 0,9222 0,7176

CRF 0,8568 0,5840 0,8430 0,9052 0,9689 0,6220

MSSL 0,9012 0,6243 0,9427 0,7524 0,9317 0,7858

three scale decomposition from the rangeΣ = {0.5, 3, 5, 8, 12, 18, 27, 41}. This makes
a total of 6 test rounds per image. At the end of each test roundwe take the measures
of the likelihood of each image. Examples of background and flower likelihoods images
at different rounds are shown in Figure 4. We calculate the maximum for all rounds, re-
sulting in two images. The rowMSSLshows the result of joining both images using the
greater than operation. The figure also shows the original image and its resulting classifi-
cation using Adaboost and CRF [8]. Table 2 shows the metrics for these methods. MSSL
approach beats the non-sequential Adaboost approach for each metric and it also beats
CRF in accuracy and overlapping. The rest of metrics point out that our method is better
defining the flower class than the CRF method.



4. Conclusions

In this paper we adapted Multi-scale stacked sequential learning (MSSL) for classifying
objects at different sizes. First, we introduced a gaussianmask for the creation of the
multi-scale decomposition and a measure of likelihood for capturing spatial relations of
data points. And second we proposed theshifting technique at testing time. This allows
to correctly classify objects at different sizes than the learned ones. Results show the ro-
bustness and better performance of the presented methodology in comparison to classical
approaches.
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