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Abstract. Sequential learning is that discipline of machine learrirg deals with

dependent data. In this paper, we use the Multi-scale Sia8kguential Learning
approach (MSSL) to solve the task of pixel-wise classiftcatbased on contex-
tual information. The main contribution of this work is afsinig technique applied
during the testing phase that makes possible, thanks tolaemmages, to clas-
sify objects at different sizes. The results show that tlipesed method robustly
classifies such objects capturing their spatial relatigussh
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Introduction

Sequential learning [4] assumes that samples are not indepdy drawn from a joint
distribution of the data sampl&§ and their labeld”. In sequential learning the training
data actually consists of sequences of pgt:g/), so that neighboring examples display
some correlation. Usually sequential learning appliceticonsider one-dimensional re-
lationship support, but this kind of relationships appeay\requently in other domains,
such as images, or video. Consider the case of object re@myim image understand-
ing. It is clear that if one pixel belongs to a certain objeategory, it is very likely that
neighboring pixels also belong to the same object (with #oeption of its borders).

In literature, sequential learning has been addressed different perspectives:
from the point of view of graphical models, using Hidden MariModels or Conditional
Random Fields (CRF) [8,7,5,12] for inferring the joint omdlitional probability of the
sequence. Graph Transformer Networks [2], considers thet iand output as a graph
and looks for the transformation that minimizes a loss fiomcof the training data us-
ing a Neural Network. From the point of view of meta-learngagjuential learning has
been addressed by means of sliding window techniques restwliding windows [4] or
stacked sequential learning (SSL) [3]. In our previous Wad, we identified that the
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main step of the relationship modeling proposed in [3], i& ttoe extended set is created.
Thus we formalized a general framework for the SSL called M&8ere a multi-scale
decomposition is used in such step.

In this work, we focus on pixel-wise classification based ontextual information.
This is, to classify each pixel of an input testing image toeaain class. Generally,
classes are objects inside the image or background. Sus$esl@an be of any size in
any context. General contextual classification aims to firtlexploit any range of inter-
actions. Observe that this concept depends explicitly emdtion of distance relative to
the pattern of interest. The MSSL framework is able to leaichgelationship between
patterns implicitly as long as all the instances of suchepagtholds similar relationships
at the same range. However any successful sequential nedelaiming algorithm must
be independent of this range value, at least while testirsgem instances. This is one
of the big challenges in sequential learning. To addressgtoblem, we propose the
shifting technique applied at testing step. Thanks to #thnique and the concept of
template training set, the system becomes independent @fttbolute range of interac-
tions. Additionally, the MSSL framework is extended usingeav multi-scale decompo-
sition based on a multi-resolution approach that uses gaufiters and a measure of
likelihood for pixel classification is used instead of baabdl predictions.

The paper is organized as follows: First we formalize the M88&mework. Section
2 discusses the use sfiftingtechnique for object classification at multiples scales. In
the experimental section we test our system in two diffeseeharios and finally, last
section concludes the paper and discusses future work.

1. Multiscale stacked sequential learning

SSL [3] is a meta-learning framework [11] consisting in tvieps, first a base classifier
is trained and tested with the original data. Then, an exddmthta set is created which
joins the original training data features with the predidigbels produced by the base
classifier considering a window around the example. Aftedsa second classifier is
trained with this new feature set. In [10] SSL is generaliag@mphasizing the key role
of neighborhood relationship modeling. The framework présd includes a new block
in the pipeline of the basic SSL. Figure 1 shows the Genadl&tacked Sequential
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Figure 1. Generalized stacked sequential learning.

Learning process. A classifiér, (z) is trained with the input data sék,y) and the
set of predicted labelg is obtained. The next block defines the policy for creatirgy th
neighborhood model of the predicted labels= J(y', p,0) : R — R™ is a function that
captures the data interaction with a model parameterizetiby neighborhoog. The
result of this function is a-dimensional value, where is the number of elements in the
support lattice of the neighborhoedin the case of defining the neighborhood by means



of a window,w is the number of elements in the window. Then, the output(gf, p, 0)
is joined with the original training data creating the exted training se{x®*t,y) =
((x, 2),y). This new set is used to train a second classifigx®**) with the goal of
producing the final prediction’’. The proposed definition of (y/, p, 8) consists of two
steps: first the multi-scale decomposition that answers toomodel the relationship
between neighboring locations, and second, the samplaigtiswers how to define the
support lattice to produce the final set

The scale space is a very well-known tool for image analysd @rocessing. Its
goal is to exploit the high correlation that exists in theghdioring pixels of an image
and represent them in an efficient way. Observe that thisigaary similar to the ob-
jective of sequential learning in which we want to chardzteand learn the relationship
between examples according to their labels. We apply theeadlenulti-scale decompo-
sition upon predicted labels obtained by the first classifier the decomposition we use
a multiresolution gaussian approach. Each level of themgoaition is generated by the
convolution of the label field by a gaussian mask of variahiheres defines the scale
of the decomposition. This means that the bigger the signthédonger interactions are
considered. Thus, at each level of decomposition all thelpixave information from the
rest, accordingly to the sigma parameter. Given a s&t of {0y, ..., 0,,} € RT and the
predicted label sequengé(x) of length L, each level of the decomposition is computed
as follows,

§* (%) = g7 (x) * §°(x) )

where g7 (x) is defined as a multidimensional isotropic gaussian filtehwero
mean,
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Once we have the multi-scale decomposition, we define theastfattice. This is,
the sampling performed over the multi-scale represemtatioorder to obtain the ex-
tended data. Our choice is to use a scale-space sliding wingler the multi-scale de-
composition. The selected window has a fixed radius withtlengfined byr in each
dimension and with origin in the current prediction exampleus, the elements covered
by the window isw = (2r + 1)? around the origin. For the sake of simplicity, we use a
fixed radius of lengthr = 1. Then, for each scaleconsidered in the previous decom-
position ¢; ¢ = 1...n), the window is stretched in each direction using a displace
ment proportional to the scale we are analyzing. In this pageuse a displacement
0; = 30; +0.5. This displacement at each scale forces that each poinidesad around
the current prediction has very small influence from presiaoeighbor points. In this
way, the number of features belonging to the extended daisesgual to(2r+1)7 x |3].
Now, we can compute the value af= J(g;, p, 8) defined above for the bi-dimensional
case withr = 1 as follows,
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1.1. Extending the basic model: using likelihoods

In the MSSL model we use the predicted labels as the inpdfgf p, #). An extension
of this idea is to use a likelihood-based measure for ead iattead of label prediction.
The use of likelihoods gives a more precise information alttoel decisions of the first
classifier than just its predictions. In the bi-class cadeen the set of possible labels
is L = {\1, A2}, we have two membership likelihoods:= J({F(y = A\ |x), F(y =
X2|z)}, p, ). The multi-scale decomposition and the sampling phasetharsame, but
now, each step is applied for each label, resulting in as ™dangmposition sequences as
labels, and thus, the number of features in the extende@seties2r+1)% x || x | £].
This information can be taken into account by the secondsifias and then a more
accurate prediction can be given, specially in those césdgte first classifier has few
support for deciding the predicted label.

In order to obtain these values we need the base clagsifiej to generate not only
a class prediction, but also its likelihood. Unfortunatelgt all kind of classifiers can
give a likelihood for its predictions. However, classifignat work with margins such as
Adaboost or SVM can be used [6]. In these cases, it is negetssaonvert the margins
used by these classifiers to a measure of likelihood. In dassreg Adaboost, we apply a
sigmoid function that normalizes Adaboost margins fromitierval[—oo, co] to [—1, 1]
by means of the following equatiorf{x) = }::727": wherem, is the margin given
by Adaboost algorithm for the exampie and a constant that governs the transition:
B == 1()5(2%'56). It depends on the number of iteratianthat Adaboost performs, and an
arbitrary small constart Now, we use a soft distance to convert the normalized vatues
alikelihood in the rangfo, 1] for each labeh as follows:f (z|y = \;) = e~ @=L,/ (),
f(zly = Xo) = e 4L/ (#)) 'wherea = —In(e) /2, ande is an arbitrarily small constant
(i.ee =1073).

2. Learning at multiple scales
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Figure 2. Architecture of theshiftingtechnique.

In MSSL the choice of the scales is critical. The more scalesalected, the better
performance is obtained. This is because different pattetrdifferent scales can be de-



_ Original_ Adaboost

sl

T

F- . ;‘:';-. Kl

Figure 3. Examples of horse classification. Second column shows Amahpgrediction. Third and
forth uses MSSL over the images with and without shifting.

tected. Nonetheless, if we learn a pattern with a concrege $ien when a new sequence
at different size (smaller for example) is classified thedfron would not be correct us-
ing such scales. This is because the ranges of interactisplaiged in the test sequence
are not comparable with the ones displayed in the trainirgsphdue to the fact that
MSSL learns absolute interaction ranges. In order to é¥felgtlearn interactions in the
pattern of interest we must ensure that the training setalighese interactions at the
same range. We call this particular training set a templdbsvever, during the testing
phase objects can be found at different sizes, thus disgadifferent interaction ranges
than the ones that appear on the template. In order to stichgsspe with this problem
we propose an ensemble architecture at testing time. Fyshews this architecture. It
is based on the aggregation of the responses of the tempdated system considering
different relative range of interactions. If the interactirange set defined in MSSL by
Y. follows a geometric progressian = ko;_1, then testing at different ranges can be
simply regarded as a shifting process of the extended festat. For example, given the
features{y®2, y*4, y*8 } belonging to the extended set created during the trainirggh
using template images of side, y) with 3, = {2,4,8} and a set of test image¥

of size (x/2,y/2), then during the testing phase we use the same= {2,4,8} and
¥, = {1,2,4} we can observe that using the fitstthe features in both extended sets
(training and testing) do not fit because the relationshgte/éen them are now halved.
However, by using the secontinow the test features have been shifted and they fit with
those used for learning. Finally all results are combinet amn aggregation function, for
example taking the maximum value among all the likelihoapomses for each sample.

3. Experiments and Results

In this section we test our methodology in two public datakaonsisting of horse and
flower images [1,9].

3.1. Horse image classification using shifting

In order to validate our framework, first we define a toy prablasing the Weizmann
horse database [1], which consist in classify RGB horse @adgit rescaled to half size



with respect to the ones used during the training phase. ifede is labelled according
to the horse silhouette. We selected 100 images of horsestfre database. Then, we
define 5 random partitions of samples, each one consistitigdfalf ofimages for train-
ing and the remaining for testing. As a pre-processing stepescale all the horses im-
ages to the same resolutiv®0 x 100. The feature vector is composed of RGB attributes.
All configurations use Adaboost with 100 iterations of degisstumps. For each image
in the training set we perform a stratified samplingr660 pixels per image. This data
is classified by the first base classifier applying leave-iomage-out. Using the gener-
ated predicted labels we perform a multi-scale decompositith ¥ = {2,4,8,16}.
The extended data set is created choosing the 8-neighbeesbfpixel on each level of
decomposition. Finally, both classifiers are trained uigsame feature samples with-
out and with the extended set, respectively. Table 1 shosustseof predictions whether
shifting is applied or not. For assessing the validity of tsults we use th®verlap-
ping, defined a%. First row shows the metrics using Adaboost. As sensi-
tivity and specificity show up, the classification of the lexrgVSSI) fails, because the
system have learned the relative distance with respeceteitle of the training horses.
Now, we use the shifting approach by sliding the scales tteatised in the testing phase
to ¥ = {1,2,4,8}. As we can observe in Figure 3, applying this scale decortiposi
the model we trained before is able to classify the smalldwappropriately without the
need of retraining the system. Table 1 shows the improvenfahe results classifying
the small horses with the shifting approach.

Table 1. Results of prediction using Adaboost and MSSL with and wittshifting technique.

| Method || Acc | Over | Sens | Spec | Prec | NPV |
Adatboost 0.7789 | 0.4417| 0.8237| 0.6559 | 0.8681| 0.5749
MSSL 0.7465| 0.0588 | 0.9963 | 0.0594 | 0.7444 | 0.8561

MSSL shift || 0.8734 | 0.6448 | 0.8777 | 0.8617 | 0.9458 | 0.7193

3.2. Flowers classification using shifting

In this experiment we test our architecture in a free envirent in which flowers can be
found in different number and size [9]. For the training get,define a flower template,
this is, we select a group of similar flowers in size and shhpefrom different types
and colors. Each image is labelled according to the flowbogitte whether it is flower
class or background class. For the testing set we chooserfloelated to the defined
template but at different size and color. We use 16 imagegdaring and 25 for test.
As a pre-processing step, we rescale all the images to the sgsulution on the x-axis,
maintaining the same proportion in the y-axis. The feat@wetar is only composed of
RGB attributes. All configurations use Adaboost with 10@&t®ns of decision stumps.
For each image in the training set we perform a stratified sampf 3000 pixels

per image. This data is classified by the first base classifiglyeng leave-one-image-
out. Using the generated predicted labels we perform a facdtie decomposition with
¥ = {18,27,41}. The extended data set is created choosing the 8-neighbeexh
pixel on each level of decomposition. Finally, both classfiare trained using the same
feature samples without and with the extended set, respictiVe have performed sev-
eral testing phases using always the same trained modedaEbrtesting phase, we use a
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Figure4. Predictions using Adaboost and MSSL.

Table 2. Results using Adaboost and MSSL.

Method | Acc | Over | Sens | Spec | Prec | NPV |
ADABoost | 0,8773| 0,5621 | 0,9207 | 0,7217| 0,9222 | 0,7176
CRF 0,8568 | 0,5840 | 0,8430| 0,9052 | 0,9689 | 0,6220
MSSL 0,9012 | 0,6243 | 0,9427 | 0,7524 | 0,9317| 0,7858

three scale decomposition from the rartge= {0.5, 3,5, 8,12, 18,27, 41}. This makes

a total of 6 test rounds per image. At the end of each test ratenthke the measures
of the likelihood of each image. Examples of background amaldt likelihoods images
at different rounds are shown in Figure 4. We calculate theimmam for all rounds, re-
sulting in two images. The roMSSLshows the result of joining both images using the
greater than operation. The figure also shows the originagj@vand its resulting classifi-
cation using Adaboost and CRF [8]. Table 2 shows the mewicthese methods. MSSL
approach beats the non-sequential Adaboost approachdbmeetric and it also beats
CRF in accuracy and overlapping. The rest of metrics poihtitat our method is better
defining the flower class than the CRF method.



4. Conclusions

In this paper we adapted Multi-scale stacked sequentiadilega(MSSL) for classifying
objects at different sizes. First, we introduced a gaussiask for the creation of the
multi-scale decomposition and a measure of likelihood &ptaring spatial relations of
data points. And second we proposed shédtingtechnique at testing time. This allows
to correctly classify objects at different sizes than tteened ones. Results show the ro-
bustness and better performance of the presented metlgydolcomparison to classical
approaches.
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