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’ Sequential learning it e e
» Classification task. ®
* Non i.i.d. samples.
labels « Neighboring samples have some

kind of relationship.
* Neighboring labels also have some
kind of relationship.

samples  4p g time/sequence relationship,

2D SL- spatial relationship.

Application: Object Classification
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' Not to be confused with ... ... mgﬂ

Time series prediction .
Sequence classification

a

Associated with region division
according to some homogeneity
criterion
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‘C lassifying Objects with SSL ... g

W. Cohen and V. R. de Carvalho, Stacked sequential learning,
Proc. of IJCAI 2005, pp. 671-676, 2005.
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Combination by increasing the input spacg with data of the neighboring labels

But when classifying objects, each pixel is an example, and
quite often relationships between pixels are long-distance
relationships inside an object.
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« MSSL.: Stacked Sequential Learning that can
effectively identify and use long-distance
relationships.

."M(X) '

» Multiscale decomposition of y' for each
label using Gaussian Filters.

 Use of likelihods instead of label value.
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‘ Multiscale Stacked Sequential .. ... @,
Learning ©

Background/Flower

+ Scale

* Multiscale decomposition of y' for each
label using Gaussian Filters.

e Use of likelihods instead of label value.
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Classifyng Objects ™ &

« With MSSL we have learned relationships
between pixels belonging to an object for
a concret training set.




‘Classifying Objects at diffel
sizes
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Problem:

— Relationships between pixels change if
object size changes.

— It is not possible to learn at all possible
Sizes?
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Learning at multiple scaf

Train: templates ->

-~ Template o8 Tl:/;?nsi#g g:rllqlengclg;eages "
Learned €Sl shift scales ->
model

perform several
— =, H_MISSL Testing ph testing phases

—»[ ¥, { MSSL Testing phase | Shlftlng scales
b —>[22 H_MSSL Testing phase | .
’ |24 H MSSL Testing phase Agg reg athn

| f9 —>{ >, -{ MSSL Testing phase | Maximum
likelihood value for

each pixel.

Aggregation
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Experiments "

Validation Experiment: horses

Training phase: Horse Images

Testing phase: Same horse images resized to its half size.

MSSL Result

Scales {2,4,8} Scales {1,2,4}

- 1
M
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Flowers classification™ " g

Training phase:
— Flower template. 16 images at same size.
— Only color features, no spatial features.
— Adaboost classifiers.
— Scales = >{18,27,41}.
Testing phase:
— Scales = >{0.5,3,5,8,12,18,27,41}.
— 6 testing rounds per image.
Aggregation:
— Take the maximum for all rounds.
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Method Acc Over Sens Spec Prec NPV

ADABoost | 08773 | 05621 | 09207 | 0,7217 | 09222 | 0,7176
CRF 08568 | 05840 | 0,8430 | 09052 | 09689 | 0,6220
MSSL 09012 | 06243 | 09427 | 0,7524 | 09317 | 0,7858
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Conclusions "~ "g™"

* Multiscale Stacked Sequential Learning is a
useful framework for object classification
task.

* Results are comparable with those of the
state-of-the-art methodologies like CRF.

« Without retraining we can classify correctly
images at differents scales, only
performing some extra test rounds.



