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Abstract. Personalizing the product recommendation task is a major
focus of research in the area of conversational recommender systems.
Conversational case-based recommender systems help users to navigate
through product spaces, alternatively making product suggestions and
eliciting users feedback. Critiquing is a common form of feedback and in-
cremental critiquing-based recommender system has shown its efficiency
to personalize products based primarily on a quality measure. This qual-
ity measure influences the recommendation process and it is obtained
by the combination of compatibility and similarity scores. In this paper,
we describe new compatibility strategies whose basis is on reinforcement
learning and a new feature weighting technique which is based on the
user’s history of critiques. Moreover, we show that our methodology can
significantly improve recommendation efficiency in comparison with the
state-of-the-art approaches.

1 Introduction

Conversational case-based recommender systems guide user through a prod-
uct space, alternatively making product suggestions and eliciting user feed-
back [2,9,3,21]. Recommender systems can be distinguished by the type of
feedback they support; examples include value elicitation, ratings-based feedback
and preference-based feedback [22]. In this paper, we are especially interested in a
form of user feedback called critiquing [5,14], where a user indicates a directional
feature preference in relation to the current recommendation. For example, in a
travel/vacation recommender, a user might indicate that she is interested in a
vacation that is longer than the currently recommended option; in this instance,
longer is a critique over the duration feature.

As part of the recommendation process, conversational systems aim to retrieve
products that satisfy user preferences at each cycle. It is expected that over the
course of a recommendation session, the recommender learns about user pref-
erences, and therefore, the system could better prioritize products [15,5,13,20].
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In this sense, we focus on incremental critiquing [17], which has shown to en-
hance the recommendation efficiency prioritizing products based on a quality
measure. This quality measure is obtained by the combination of compatibility
and similarity scores.

In this paper, we consider that compatibility and similarity may improve
quality measure taking into account user preferences. In the literature, the com-
patibility score [17] is essentially computed as the percentage of critiques in the
user model that a case satisfies. We argue that the moment in which a critique
was made is important enough to influence the compatibility score, and thus, in
the final quality measure. Note that the user increases her knowledge of the do-
main along cycles and her preferences are more accurate over time. In particular,
previous work on this direction showed that using a simple Monte Carlo rein-
forcement learning strategy to compute the compatibility score obtains better
case quality results [18].

Reinforcement learning (RL) [24,11] is concerned with how an agent ought to
take actions in an environment. Common applications of RL techniques are re-
lated to robotics and game theory [16]. In the context of recommenders, an initial
attempt to include RL techniques has been performed on web-recommendation
systems where a possible analysis of finite-state Markov decision process based
on pages links is possible [10]. However, in the content-based recommendation
domain, it is quite difficult to infer which are possible good future actions since
the environment changes with the decisions of the user. For instance, suppose
that the user initially is looking for a particular video camera. The initial ex-
pectations may change with the learning process of the user while navigating in
the recommendation system. While navigating, the user notices that she needs
to spend more money to obtain the required product performance, and thus,
critiques change. Because of this reason, instead of looking for RL techniques
that predict based on how an action affects future actions, in this paper, we are
going to focus on RL techniques which are based on the user specialization. This
specialization is grounded on past actions, where the time of the action is closely
related to the user critiquing compatibility. We review different state-of-the-art
RL techniques based on Monte Carlo and Time Dynamics, and also propose two
new RL techniques adapted to conversational recommender systems.

Moreover, we also argue that quality is influenced by similarity. Conversational
case-based recommender systems use a similarity function (usually based on
nearest neighbor rules) to recommend the most similar product at each cycle [15].
Nevertheless, similarity functions are sensitive to irrelevant, interacting, and also
most preferred features [1]. This problem is well-known in Case-Based Reasoning
(CBR) systems because it can degrade considerably the system performance. In
order to avoid it, many similarity functions weight the relevance of features
[25,12]. Previously, in the work of [19], a local user preference weighting (LW)
was presented, which was shown to reduce the number of critiquing cycles. In
this paper, we present a global user preference weighting (GW). This method
basis on the satisfied critiques from the whole set of cases. We show how the new
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weighting strategy enhances the quality, and results in a shorter session length
than using the local user preference weighting.

Summarizing, this paper describes new strategies for compatibility and
weighting based on user’s critiquing history for enhancing quality. The paper
is organized as follows: Section 2 overviews the incremental critiquing approach
as the baseline to present our methodology. Section 3 describes state-of-the-art
RL approaches applied to conversational CBR and presents two new approaches
adapted to critiquing. Section 4 introduces the new methodology to weight the
similarity component of quality, and Section 5 presents the experimental evalu-
ation of the presented strategies. Finally, Section 6 concludes the paper.

2 Background

The incremental critiquing [17] implementation assumes a conversational recom-
mender system in the style of Entrée [4]. Each recommendation session starts
with an initial user query resulting in the retrieval of a product p (also known as
case) with the highest quality. The user will have the opportunity to accept this
case, thereby ending the recommendation session, or to critique it as a means to
influence the next cycle. The incremental critiquing algorithm consists of four
main steps: (1) a new case p is recommended to the user based on the current
query q and previous critiques; (2) the user reviews the recommendation and
applies a directional feature critique, cq; (3) the query, q, is revised for the next
cycle; (4) the user model, U = {U1, .., Ui}, i ≤ t is updated by adding the last
critique cq and pruning all the critiques that are inconsistent with it. Finally,
the recommendation process terminates either when the user retrieves a suitable
case, or when she explicitly finishes the recommendation process.

This recommendation process is highly influenced by the user model U con-
taining previous consistent critiques, which is incrementally updated at each
cycle. Incremental critiquing modifies the basic critiquing algorithm. Instead of
ordering the filtered cases on the basis of their similarity to the recommend case,
it also computes a compatibility score C as follows:

Cp′
t (U) =

∑
∀i:(1≤i≤t) δ(p′, Ui)

|U | (1)

where Cp′
t (U) is the compatibility score of candidate case p′ at time t given an

user model U . The satisfaction function δ returns 1 if case p′ satisfies the critique
Ui or 0 otherwise, and |U | stands for the total number of critiques in the user
model U . Thus, the compatibility score is essentially the percentage of critiques
in the user model that case p′ satisfies. Then, the compatibility score and the
similarity of a candidate case p′ to the current recommendation p are combined
in order to obtain an overall quality score Q:

Q(p′, p, U) = β · Cp′
t (U) + (1− β) · S(p′, p) (2)
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where S is the similarity function, and β is set to 0.75 by default. The quality
score Q is used to rank the filtered cases prior to the next cycle, and the case
with the highest quality is then chosen as the new recommendation.

3 Compatibility Using Reinforcement Learning

In this section, we analyze the compatibility component of the quality measure.
As shown in [18], RL techniques can enhance compatibility efficiency. Thus, we
review and propose RL techniques that are used as new compatibility scores to
conversational CBR systems.

Among the different classes of RL families that exists in literature, we find
Dynamic Programming Methods. These strategies are difficult to adapt to our
problem since a complete and accurate model of the environment is required,
and we are not able to predict future behavior of the user in the recommendation
system [24]. On the other hand, Monte Carlo methods do not require a model,
and are conceptually simple. Finally, temporal-difference methods (TD) also do
not require a model, and are fully incremental, though they are more complex
to analyze. Thus, both TD and Monte Carlo methods seem to be useful to use
the user experience in order to solve the prediction problem, and retrieve the
optimal product to the user reducing the number of critiquing cycles. In our
case, we want to model the current compatibility Cp′

t of a candidate case p′ at
instant t based on its corresponding previous compatibility. For this task, the
initial RL model for compatibility computation can be a simple Monte Carlo
method [18]:

Cp′
t = Cp′

t−1 + α ·
(
Rp′

t − Cp′
t−1

)
(3)

This Monte Carlo method is also called constant-α MC [24]. The term Rp′
t is the

satisfaction of case p′ at time t (i.e., Rp′
t = 1 if the candidate case p′ satisfies the

current critique, or Rp′
t = 0 otherwise), and α is a constant step-size parameter.

With the simple constant-α MC of eq. (3) we can update the compatibility of
a case p′ at time t based on what happens to p′ after current critique. Low
values of α ∈ [0..1] makes the compatibility of p′ to be increased/reduced slowly,
meanwhile using high values of α makes the new results to affect more the
compatibility of the case. We could also use incremental dynamic updates of α
depending of our problem domain (i.e., we could think that initial critiques of
the user should have less influence that last critiques since the user still does not
have a high knowledge of the recommendation environment).

In Figure 1 we show four cases and its corresponding critique satisfaction over
ten cycles in an hypothetical recommender. We suppose, for this example, that
each cycle t ∈ [1, .., 10] generates a new critique in our user model. The response
R of each case p′ at each time t is 1 if the case satisfies the current critique, or 0
otherwise. Note that all cases p′ have the same number of 1’s and 0’s but they
differ in the instant they have been satisfied. So, our expectation is that the order
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of compatibility should be: first case 1, since all satisfied critiques are produced
at the last cycles; next, case 4 and case 3, since both alternate 1 and 0 but the
case 4 satisfies the last critique; and finally case 2 with the less compatibility
since all 1’s are produced at the initial cycles.

Fig. 1. Case base satisfaction of critiques in a toy problem

Figure 2(a) shows the RL values for constant-α MC method for the case base
shown in Figure 1. Note that the final order of compatibility is the expected
based on the previous criterion. We set up the compatibility at time t = 0 to
0.5. The graph shows a logarithmic growing of the compatibility when satisfying
critiques, and the same influence decreasing the compatibility for non satisfied
cases.

(a) (b)

Fig. 2. (a) constant-α MC and (b) EMC numerical representation for the case base
shown in Figure 1

On the other hand, we could require that changes between different results Rt

modify the compatibility of p′ in a different magnitude. For example, we could
think that a wrong result for the case p′ defined as Rp′

t = 0 to have less influence
than a good result Rp′

t = 1. Then, we propose the Exponential Monte Carlo
(EMC) as follows:

Cp′
t =

{
Cp′

t−1 + α ·
(
Rp′

t + Cp′
t−1

)
if Rp′

t = 1

Cp′
t−1 − α · Cp′

t−1 if Rp′
t = 0

(4)
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Note that the Monte Carlo variant EMC defined in eq. (4) varies the logarith-
mic increasing of the compatibility in eq. (3) by an exponential tendency for an
input sequence of satisfied critiques Rp′

[1,..,t] = 1, as shown in Figure 2(b). With
the exponential tendency the compatibility score is more significant when more
critiques are satisfied in the last cycles of the recommendation process.

Concerning to TD methods, the Backward TD(λ) used in literature [24] con-
siders an internal variable ep′

t defined as the elegibility trace of case p′ at instant
t. This variable is defined as follows:

es
t =

{
γ · λ · es

t−1 if s /∈ st

γ · λ · es
t−1 + 1 if s ∈ st

(5)

where s is the state being analyzed, st is the set of valid states at time t, γ is
the discount rate, and λ is related to the eligibility trace influence. In our case,
considering the state s as a candidate case p′, we can express eq.(5) as follows:

Cp′
t = γ · λ · Cp′

t−1 + Rp′
t (6)

where Rp′
t = 1 if the case p′ satisfies the current critique and use the eligibility

trace as a measure of the compatibility of p′. This method has a similar tendency
than the constant-α MC, with a logarithmic increasing of the measure for an
input sequence of satisfied critiques Rp′

[1,..,t] = 1, as shown in Figure 3(a). In this
case, the desired compatibility order of the cases is also maintained. Note that
the behavior of this strategy in the case of the figure is very similar to that one
shown by the constant-α MC method, but working on a different compatibility
range.

(a) (b)

Fig. 3. (a) TD Backward and (b) EHL numerical representations for the case base
shown in Figure 1

The only case from the previous methods that consider an exponential ten-
dency for an input sequence of satisfied critiques Rp′

[1,..,t] = 1 corresponds to
the EMC RL strategy, the rest of strategies have a logarithmic compatibility
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increasing. However, we can also think that in the recommendation process, as
the user increases her knowledge along cycles, maybe first matches are finally
not relevant meanwhile consecutive or final matches can be more confident to
the user preferences. This effect could be modelled by a RL technique which
changes the logarithmic increasing to an exponential one. In order to observe
if this hypothesis works in conversational recommendation systems, we propose
the Exponential Hit-Loss RL technique (EHL) as follows:

Cp′
t =

{
h← h + 1, Cp′

t = Cp′
t−1 · (1 + α)(h

p′
+t)k if Rp′

t = 1
f ← f + 1, Cp′

t = Cp′
t−1 · (1 + α)(f

p′
+t)k if Rp′

t = 0
(7)

where hp′
and fp′

are the number of times that candidate case p′ has satisfied
(hit) or not (loss or fall) the critiques, respectively (for each case in the data
set these values are initialized to zero at time t=0), and k is a regularization
factor (fixed to k = 1

2 in our experiments). This technique has an exponential
behavior, which varies based on the amount of hit and losses in the history of
each p′ and the instant of time, as shown in Figure 3(b). Note that the desired
compatibility order is also satisfied.

4 Similarity Using User Preference Weighting

As explained before, the basic idea of the recommender is to present the product
that best satisfy user’s preferences and we aim to do it by means of enhancing
compatibility and similarity. Similarity plays, as in traditional CBR, an impor-
tant role in the recommender. At each cycle, in the standard or the incremental
recommendation process, the similarity between the candidate case p′ to the
recommended case p is computed as follows:

S(p′, p) =
∑

∀f

d(p
′
f , pf ) (8)

where the similarity is the combination of distances d between the candidate p′

case and the recommended case p for each feature f .
A common tendency in CBR systems is to use weighting in the similarity

measure. In this sense, we propose to change the similarity measure as follows:

S(p′, p) =
∑

∀f

W (p
′
f ) · d(p

′
f , pf ) (9)

where W (p
′
f ) is the weight associated to the f feature of the candidate case p′.

Next, we review the local user preference weighting (LW) proposal and pro-
pose the global user preference weighting (GW). Both strategies are based on the
history of critiques made by the user along the session. This history is the user
model U defined previously, which specifies the user preferences in the current
session.
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4.1 Local User Preference Weighting

The local user preference weighting (LW) [19] discovers the relative importance
of each feature in each case as a weighting value for computing the similarity,
taking into account the user preferences. LW is basically motivated by the fact
that most compatible cases are quite similar on their critiqued features and
differences mainly belong to those features that have not been yet critiqued.
So, the aim of the local weighting method is to prioritize the similarity of those
features that have not yet been critiqued. The weight of the local approach is
defined over each feature p

′
f of candidate case p′ as follows:

W (p
′
f ) = 1− 1

2

(∑
∀i∈Uf δ(p

′
i, U

f
i )

|Uf |

)

(10)

where |Uf | is the number of critiques in U that refer to feature f , Uf
i is a critique

over feature f . This generates a feature weight vector for each case. A feature
that has not been critiqued will assume a weight value of 1.0, and a decrement
will be applied when a critique is satisfied by the case. As such, the feature
weight will be proportional to the number of times a critique on this feature
is satisfied by the case. However, as shown in eq. (10), weights never decrease
to a 0 value. For example, in a travel vacation recommender with a user model
that contains two critiques [price, >, 1000] and [price, >, 1500], a case with two
features {duration, price} whose price is 2000 will have as price weight a 0.5
value because it satisfies both critiques whereas the duration weight will be 1.0
because there is no critique on this feature. It is important to recap that the key
idea here is to prioritize the similarity of those features that have not yet been
critiqued in a given session.

4.2 Global User Preference Weighting

LW computes a feature weight vector for each case depending on the degree
of satisfaction of the user critiques for this case. However, considering that the
compatibility function is correctly focusing into the product space, the remaining
set of cases are similarly satisfying the preferences of the user, so their feature
weight vectors will also be similar and a global weighting vector is feasible.

The idea is to compute a vector of weights that will be used for the whole set
of candidate cases. This weighting method only enhances the set of features that
may produce better recommendation to all the cases. For each case p′ in the list
of candidate cases, the global weighting is defined as follows:

W (f) = 1− 1
2

(∑
∀p′⊆P ′ δ(p′, Uf

i )
|P ′|

)

(11)

where |P ′| is the total number of cases in the list of candidate cases. The final
weight for each feature f depends on the number of cases that satisfy a critique
on this feature. Similarly to LW, the most satisfied critiques will have the lowest
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weight for a feature, since the system looks for prioritizing features that have
not been previously critiqued. As before, weights never decrease to a 0 value.
The maximum decrease is 0.5 which has experimentally shown to obtain the best
performance.

The rationale behind prioritizing with the highest weight values the non cri-
tiqued features is based on the idea that they are the most important to denote
differences on similarity between two cases. This happens because the compat-
ibility score correctly focuses the product space and thus, the candidate cases
are similar in the critiqued features. Consequently, the effort of the similarity is
to show where the differences are in the features that the recommender is not
able to focus with the compatibility because there are not critiques about them.

5 Empirical Evaluation

In previous sections we described different reinforcement learning measures and
two weighting approaches to improve the quality measure of a conversational
recommender system. We argue that quality measure may benefit from im-
provements on compatibility and similarity. As a result, the tendency of the
quality measure is to recommend cases that better satisfy user preferences. In
this section, we test our proposals using a well-known recommender data set.
In particular, we look for the performance of the recommender system when us-
ing reinforcement learning techniques and also the combination of both RL and
weighting proposals.

5.1 Setup

The evaluation was performed using the standard Travel data set (available
from http://www.ai-cbr.org) which consists of 1024 vacation cases. Each case is
described in terms of nine features. The data set was chosen because it contains
numerical and nominal features and a wide search space.

First, we evaluate the different RL measures: Monte Carlo (MC), Exponential
Monte Carlo (EMC), BackwardTD (BTD), and Exponential Hit-Loss (EHL).
Second, we also test the combination of RL with the weighting strategies in our
recommender. The configurations analyzed are LW-MC (which corresponds to
a local user preference weighting combined with a Monte Carlo compatibility),
LW-BTD, LW-EHL, LW-EMC, GW-MC, GW-BTD, GW-EHL, and GW-EMC.
We use incremental critiquing-based recommender (IC) [17] as baseline.

We follow the evaluation methodology similar to that one described in [23].
Accordingly, each case (which is called the ’base’) in the case-base is temporarily
removed and used in two ways. First, it serves as a basis for a set of queries
by taking random subsets of its features. We focus on subsets of one, three,
and five features to allow us to distinguish between hard, moderate, and easy
queries, respectively. Second, we select the case that is most similar to the original
base. These cases are the recommendation targets for the experiments. Thus,
the base represents the ideal query for a user, the generated query is the initial
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query provided by the user, and the target is the best available case for the
user. Each generated query is a test problem for the recommender, and at each
recommendation cycle the user picks a critique that is compatible with the known
target case. We repeat each leave-one-out ten times and the recommendation
sessions terminate when the target case is returned. Different statistics are also
used to evaluate the statistical significance of the obtained results.

5.2 Reinforcement Learning Recommendation Efficiency

We analyze the recommendation efficiency —by which we mean average recom-
mendation session length— when comparing our RL measures to incremental
critiquing. RL measures need to set up a parameter α that fix the learning rate
(in the case of BTD we modify the parameter λ). We run different variations
of α, λ ∈ [0.1, ..., 0.5] in order to appreciate the influence of this parameter over
each strategy. Before to compute the quality for each product, we normalize the
compatibility term C so that it ranges between ε and one for the lowest and
highest compatibility, respectively. This is computed as Cp′

= Cp′

max∀a′⊆P ′(Ca′ ) ,

where Cp′
is the compatibility of the case p′ to be normalized. This normal-

ization makes comparable the results obtained by the different RL strategies.
Figure 4 (a) presents a graph with the evolution of the average session length
for different values of α and λ. We can see that MC and BTD present a ten-
dency to increase and decrease the average session length when increasing α and
λ, respectively. The best configuration for MC is α = 0.1 and, although not
shown in the graph, the best configuration for BTD is λ = 0.9. This large value
for BTD suggests that high changes on the compatibility value may improve
(reduce) session lengths. The EMC and EHL strategies consider an exponential
tendency in order to make final critiques more relevant to the user preferences
than the initial ones. As shown in Figure 4 (a), the exponential behavior of these
strategies, in contrast to the logarithmic one of the remaining, results in shorter
session lengths.

(a) (b)

Fig. 4. Figure (a) corresponds to session lengths evolution for different α, λ-values and
Figure (b) represents session length benefit over incremental critiquing
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We also found that the exponential EMC and EHL configurations have a more
stable average session length than the rest of RL techniques for different values
of α, ranging from 10.37 to 10.24. In Figure 4 (b) we present EMC and EHL
benefit compared to incremental critiquing. We compute the percentage benefit
as Benefit(y,x) =

(
1− y

x

)
·100, where y and x stands for the number of cycles

of the compared strategy and IC, respectively. The EMC and EHL benefit ranges
from 2% to 3.5%. Although the result seems low, we want to point out that the
only difference between IC and our EMC and EHL methods is how we compute
the compatibility measure. Note that in our previous work [18], we introduced
the MC strategy in combination with a product recommendation strategy called
Highest Compatibility Selection (HCS) [19], whose benefit applied together in
the recommender system was around 2% to under 4%. Our new RL measures
are able to obtain the same benefit by themselves without introducing the HCS
methodology. Thus, we can state that EMC and EHL RL exponential strate-
gies are able to focus on those products that best satisfy the user preferences,
obtaining more accurate quality measurements.

Additionally, in Figure 5 (a) we summarize the average session lengths results
over all types of queries for different variations of β using EMC (set up with
α = 0.2) and EHL (set up with α = 0.3). Once again, the results are quite
similar between EMC and EHL. Session lengths are maintained between β = 0.5
to β = 0.9. It is significant that session lengths remain shorter for β = 1.0 than
β = 0.1. Note that β = 1.0 means that each recommendation cycle is influenced
by the compatibility measure with no similarity and a β = 0.1 specifies that the
most important role for recommendation is the similarity.

Figure 5 (b) presents EMC and EHL benefit over incremental critiquing for the
β-values for which RL techniques obtain better results. EMC and EHL reduce
the session length from nearly 2% to 3.5%. The best results are obtained for
the values of β = 0.6 and β = 0.75, respectively. The last value coincides with
the best result obtained by the incremental critiquing. Thus, we decided to fix
β = 0.75, α = 0.1 for MC, α = 0.2 for EMC, α = 0.9 for BTD, and α = 0.3 for
EHL in the next experiments, respectively.

(a) (b)

Fig. 5. Figure (a) corresponds to session lengths evolution for different β-values and
Figure (b) represents benefit over incremental critiquing
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5.3 Quality Recommendation Efficiency

Earlier we mentioned how quality, apart from the compatibility, also uses simi-
larity to optimize recommendations. In this section, we analyze the benefits over
incremental critiquing when applying both weighting and reinforcement learning
to compute the quality measure.

In Figure 6 we present the average benefit to different levels of query dif-
ficulty. Figure 6 (a) depicts the results for the combination of local weighting
with RL measures. These combinations result for all algorithms tested in a re-
duction in session length that ranges from 0.5% up to 8%. On the other hand,
see Figure 6(b), global weighting and RL measures gives the highest benefit,
ranging from 3.44% to 11.13%. Combining weighting and reinforcement learning
compatibility further enhances recommendation performance, resulting in better
recommendation for all queries (hard, moderate, and easy).

We also statistically analyze the benefits of using our methodology instead
of the standard incremental critiquing. As before, we separately evaluate local
and global weighting. The algorithms analyzed are: (1) IC, LW-MC, LW-EMC,
LW-BTD, and LW-HLE, and (2) IC, GW-MC, GW-EMC, GW-BTD and GW-
HLE. First of all, we compute the mean rank (r) of each algorithm considering
all the experiments (five algorithms and three different queries for each test).
The rankings are obtained estimating each particular ranking rj

i for each query
i and each algorithm j, and computing the mean ranking R for each algorithm
as Rj = 1

N

∑
i rj

i , where N is the total number of queries. Compared with
mean performance values, the mean rank can reduce the susceptibility to out-
liers which, for instance, allows a classifier’s excellent performance on one query
to compensate for its overall bad performance [6]. Second, we apply the Fried-
man and Nemenyi tests to analyze whether the difference between algorithms is
statistically significant [7,8].

The Friedman test, recommended by Demšar [6], is effective for compar-
ing multiple algorithms across multiple data sets, in our case, across multiple

(a) (b)

Fig. 6. Average benefit over incremental critiquing. Each figure represents a different
benefit weighting where (a) corresponds to local weighting and (b) corresponds to
global weighting.
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queries. It compares mean ranks of algorithms to decide whether to reject the
null hypothesis, which states that all the methods are equivalent and so their
ranks should be equal. The Friedman statistic value is computed as X2

F =
12N

k(k+1)

[∑
j R2

j − k(k+1)2

4

]
. Since this value is undesirable conservative, Iman and

Davenport proposed a corrected statistic, FF = (N−1)X2
F

N(k−1)−X2
F

.
When we apply the Friedman test in our experimental setup with five algo-

rithms and three different queries, FF is distributed according to the F distri-
bution with (5 − 1) = 4 and (5 − 1) · (3 − 1) = 8 degrees of freedom. The
critical value of F (4, 8) = 3.83 at the 0.05 critical level. We obtained the values
of XF = 11.42 and FF = 40.06 for the local weighting rankings and XF = 9.86
and FF = 9.22 for the global weighting rankings. As the values of FF are always
higher than 3.83 we can reject the null hypothesis in both cases.

Once we have checked for the non-randomness of the results, we can perform
a post hoc test to check if one of the techniques can be singled out. For this
purpose we use the Nemenyi test —two techniques are significantly different if
the corresponding average ranks differ by at least the critical difference value,

CD = qα

√
k(k+1)

6N , where qα is based on the Studentized range statistic divided

by
√

2. In our case, when comparing five algorithms with a critical value α = 0.1,
q0.1 = 2.45 for a two-tailed Nemenyi test. Substituting, we obtain a critical
difference value CD = 3.17. Thus, for any two pairs of algorithms whose rank
difference is higher than 3.17, we can infer —with a confidence of 90%— that
there exists a significant difference between them.

The results of the Nemenyi test are illustrated in Figure 7. In the figure,
bullets represent the mean ranks of each algorithm. Vertical lines across bullets
indicate the ’critical difference’. The performance of two algorithms is signifi-
cantly different if their corresponding mean ranks differ by at least the critical
difference. For instance, Figure 7 (a) reveals that LW-EMC and LW-EHL are
significantly better than IC. We cannot say the same with regard to LW-MC and
LW-BTD, though. The same behavior occurs in the case of the global weighting
analysis of Figure 7 (b). However, note that the global weighting of Figure 6(b)

(a) (b)

Fig. 7. Application of the Nemenyi test critical difference to algorithms mean rank
considering their session length for (a) local weighting and (b) global weighting
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shows more stable results for all combination of strategies than local weighting,
obtaining higher benefits in terms of session length.

6 Conclusions

Retrieving the most suitable product for a user during a live customer interac-
tion is one of the key pieces in conversational case-based recommender systems.
Specifically, in incremental critiquing the recommendation process is primarily
guided by a quality measure. In this paper we have proposed new strategies
for compatibility computation and feature weighting that enhance quality. We
reviewed the state-of-the-art on reinforcement learning which can be applied to
conversational CBRs, and proposed two new compatibility strategies which of-
fer better benefit in terms of session length. Concerning the similarity score, we
presented a global weighting strategy, which uses a common weight over all cases
based on the number of satisfied critiques. Our experiments show significantly
improvements in comparison to the state-of-the-art approaches.
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9. Göker, M.H., Thompson, C.A.: Personalized conversational case-based recommen-
dation. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp.
99–111. Springer, Heidelberg (2000)



312 M. Salamó, S. Escalera, and P. Radeva

10. Golovin, N., Rahm, E.: Reinforcement learning architecture for web recommenda-
tions. In: Proceedings of the International Conference on Information Technology:
Coding and Computing, Washington, DC, USA, vol. 2, p. 398. IEEE Computer
Society Press, Los Alamitos (2004)

11. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learning: A survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

12. Kohavi, R., Langley, P., Yun, Y.: The utility of feature weighting in nearest-
neighbour algorithms. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS,
vol. 1224. Springer, Heidelberg (1997)

13. McGinty, L., Smyth, B.: Comparison-Based Recommendation. In: Craw, S. (ed.)
ECCBR 2002. LNCS, vol. 2416, pp. 575–589. Springer, Heidelberg (2002)

14. McGinty, L., Smyth, B.: Tweaking Critiquing. In: Proceedings of the Workshop
on Personalization and Web Techniques at the International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, San Francisco (2003)

15. McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.)
ICCBR 2003. LNCS, vol. 2689, pp. 291–305. Springer, Heidelberg (2003)

16. Moon, A., Kang, T., Kim, H., Kim, H.: A service recommendation using reinforce-
ment learning for network-based robots in ubiquitous computing environments.
In: EEE International Conference on Robot & Human Interactive Communication
(2007)

17. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental Critiquing. In:
Bramer, M., Coenen, F., Allen, T. (eds.) Research and Development in Intelligent
Systems XXI. Proceedings of AI 2004, Cambridge, UK, pp. 101–114. Springer,
Heidelberg (2004)
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