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ABSTRACT
Symbol spotting problem requires feature extraction strate-
gies able to generalize from training samples and to localize
the target object while discarding most part of the image. In
the case of document analysis, symbol spotting techniques
have to deal with a high variability of symbols’ appearance.
In this paper, we propose the Circular Blurred Shape Model
descriptor. Feature extraction is performed capturing the spa-
tial arrangement of significant object characteristics in a cor-
relogram structure. Shape information from objects is shared
among correlogram regions, being tolerant to the irregular de-
formations. Descriptors are learnt using a cascade of classi-
fiers and Abadoost as the base classifier. Finally, symbol spot-
ting is performed by means of a windowing strategy using the
learnt cascade over plan and old musical score documents.
Spotting and multi-class categorization results show better
performance comparing with the state-of-the-art descriptors.

Index Terms— Image Shape Analysis, Document Image
Processing.

1. INTRODUCTION

Document Image Analysis and Recognition (DIAR) is one of
the most active areas in the field of pattern recognition, in-
cluding the recognition of text documents, page layout anal-
ysis and graphics recognition. Symbol recognition is one of
the main topics of Graphics Recognition, which has been in-
tensivly researched in the last decades. Symbols are synthetic
visual entities that can be used for describing complex models
with compact diagrammatic notations, allowing the definition
of intuitive graphical languages. Graphical languages have
been effectively used in a large number of domains like engi-
neering, architecture, software modeling, music, cartography,
etc. The automatic interpretation of such graphic documents
requires two main processes: the description of symbols and
their localization in the image (symbol spotting).

Symbol recognition in document images can be seen as a
particular case of Shape Recognition. A good symbol recog-
nition method requires a symbol descriptor that guarantees
intra-class compactness and inter-class separability. It should
be tolerant to noise, degradation, occlusions and distortion.
Often symbols in graphical documents appear isolated, and
thus, their descriptors should be invariant to rotation, scaling,

and translation. Numerous shape descriptors, tolerant to such
distortions, have been proposed based on contours (silhou-
ettes) and regions [1]. They can also be divided in contin-
uous approaches (which use a feature vector) and structural
approaches.

The aim of Symbol Spotting is the localization of specific
important information instead of analyzing the whole content
of the document. First, the recognition of the whole document
can be a very complex task (i.e. the analysis of historical doc-
uments). Secondly, a fast symbol detection technique (avoid-
ing segmentation) is required for localizing symbols in large
data sets. Symbol Spotting is related to indexing and retrieval,
and it has been a very emerging topic of interest, applied to
technical drawings or maps [2]. The spotting techniques can
rely on different pattern recognition methods, such as geomet-
ric features, region-based approaches using connected com-
ponents, or structural symbol representation [3].

In order to describe an object that can suffer from irregular
deformations, the authors of [4] proposed a description strat-
egy in which spatial arrangement of object parts is captured
in a rectangular grid. Contiguous regions share information
about their containing object points, and thus, the descriptor
is tolerant to irregular deformations. The authors validated
that the descriptor is suitable for the multi-class categoriza-
tion of aligned symbols, outperforming state-of-the-art strate-
gies [4]. In this paper, we present a method for symbol spot-
ting which uses a new symbol descriptor, the Circular Blurred
Shape Model (CBSM), which is rotationally invariant, able to
cope with irregular deformations, and fast to compute. The
method, as an extension of [4], codifies the spatial arrange-
ment of object characteristics based on a prior blurring de-
gree, which determines the shape deformation allowed to the
object. Regions in a correlogram are used to vote object char-
acteristics from neighbor regions. The new descriptor is learnt
in a cascade of classifiers with Adaboost, and tested with a
windowing strategy to perform symbol spotting. The valida-
tion of the method over plan and old musical score documents
show the robustness of the presented approach. Moreover,
state-of-the-art descriptors are compared in multi-class cate-
gorization problems, showing better performance of the new
descriptor.

The paper is organized as follows: Section 2 presents the



rotationally invariant CBSM descriptor and its spotting exten-
sion. Experiments are presented in Section 3. Finally, Section
5 concludes the paper.

2. CIRCULAR BLURRED SHAPE MODEL
SPOTTING

In this section, we present a circular formulation of the
Blurred Shape Model descriptor (CBSM). By defining a
correlogram structure from the center of the object region,
spatial arrangement of object parts is shared among regions
defined by circles and sections. The method also allows a
rotationally invariant description, rotating the correlogram by
the predominant region densities. We divide the description
of the algorithm into three main steps: the definition of the
correlogram parameters, the descriptor computation, and the
rotationally invariant procedure. We include a fourth step
to extend the CBSM methodology to solve symbol spotting
problems.

Correlogram definition: Given a number of circles C,
number of sections S, and an image region I , a correlogram
B = {b{1,1}, .., b{C,S}} is defined as a radial distribution of
sub-regions of the image, as shown in Figure 1(a) and (b).
Each region b has centroid coordinates defined by b∗. Then,
the regions around b are defined as the neighbors of b. Note
that depending of the spatial location of the analyzed region,
different number of neighbors can be defined (Fig. 1(c)).

Descriptor computation: In order to compute the de-
scriptor, first, a pre-process of the input region I to obtain
the shape features is required. Working with document im-
ages, relevant shape information can be obtained by means
of a contour map (although based on the object properties we
can define other initial properties). In this paper, we use a
Canny edge detector procedure.

Given the object contour map, each point from the image
belonging to a contour is taken into account in the description
process (Fig. 1(d)). First of all, the distances from the con-
tour point x to the centroids of its corresponding region and
neighbor regions are computed. The inverse of these distances
are computed and normalized by the sum of total distances.
These values are then added to the corresponding positions of
the descriptor vector ν, including higher values to that posi-
tions corresponding to the nearest regions to x (Figure 1(e)
bottom). This makes the description tolerant to irregular de-
formations. Note that for a map of k relevant contour points,
the computation of the descriptor just requires k simple oper-
ations.

At this point we have a description ν for an input image I ,
where the length of ν, defined by parameters C and S, defines
the degree of spatial information taken into account in the de-
scription process. In Figure 2, a bat instance from the public
MPEG7 data set [5] is described with different C × S correl-
ogram sizes. In the way that we increase the number of re-
gions, the description becomes more local. Thus, an optimal
parameters of C and S should be obtained for each particular

problem (i.e. via cross-validation).
Rotationally invariant descriptor: In order to make the

description rotationally invariant, a second step is included in
the description process. We look for the main diagonal Gi of
correlogram B with the highest density. This diagonal is then
the reference to rotate the descriptor. The orientation of the
rotational process, so that Gi is aligned with the x-axis, is that
corresponding to the highest description density at both sides
of Gi. This procedure is detailed in Algorithm 2. A visual
result of the rotationally invariant process can be observed in
Figure 2.

Algorithm 1 Circular Blurred Shape Model Description Algorithm.

Require: a binary image I , the number of circles C, and the number of sections S
Ensure: descriptor vector ν

Define d = R/C and g = S/360, where R is the radius of the correlogram, as the
distance between consecutive circles and the degrees between consecutive sectors,
respectively (Figure 1(a)).
Define B = {b{1,1}, .., b{C,S}} as the set of bins for the circular description
of I , where bc,s is the bin of B between distance [(c − 1)d, cd) with respect
to the origin of coordinates o, and between angles [(s − 1)g, sg) to the origin of
coordinates o and x-axis (Figure 1(b)).
Define b∗{c,s} = (d sin α, d cos α), the centroid coordinates of bin b{c,s},
where α is the angle between the centroid and the x-axis, and B∗ =
{b∗{1,1}, .., b∗{C,S}} the set of centroids in B (Figure 1(e)).
Define Xb{c,s} = {b1, .., bcs} as the sorted set of the elements in B∗ so that

d(b∗{c,s}, b∗i ) ≤ d(b∗{c,s}, b∗j ), i < j.
Define N(b{c,s}) as the neighbor regions of b{c,s}, defined by the initial elements
of Xb{c,s} :

N(b{c,s}) =





X′, |X′| = S + 3 if b{c,s} ∈ IN
X′, |X′| = 9 if b{c,s} ∈ MI
X′, |X′| = 6 if b{c,s} ∈ EX

being X′ the first elements of X , and IN , MI , and EX , the inner, middle, and
extern regions of B, respectively (Figure 1(c)). Note that different number of neigh-
bor regions appears depending of the location of the region in the correlogram. We
consider the own region as the first neighbor.
Initialize νi = 0, i ∈ [1, .., CS], where the order of indexes in ν are:
ν = {b{1,1}, .., b{1,S}, b{2,1}, ..b{2,S}, .., b{C,1}, ..b{C,S}}
for each point x ∈ I , I( x ) = 1 (Figure 1(d)) do

for each b{i,j} ∈ N(bx) do
d{i,j} = d(x, b{i,j}) = ||x− b∗{i,j}||2

end for
Update the probabilities vector ν positions as follows (Figure 1(f)):

ν(b{i,j}) = ν(b{i,j}) +
1/d{i,j}
D{i,j}

,

D{i,j} =
∑

b{m,n}∈N(b{i,j})
1

||x−b∗{m,n}||
2

end for
Normalize the vector ν as follows:
d′ =

∑CS
i=1 νi, νi =

νi
d′ , ∀i ∈ [1, .., CS]

Spotting CBSM extension: Once we have the rotation-
ally invariant CBSM descriptor, we need to define two stages
in order to design a symbol spotting methodology. A first
stage should learn to distinguish among the target object and
background (i.e. learning a binary classifier). A second stage
should perform a search over the whole image using the learnt
classifier in order to locate those regions containing the target
object.

For the first step, we propose to learn a binary classifier
using Adaboost [6] with a set of positive and negative object
instances. Since we need to apply this classifier to a huge
number of regions, the final detection time for an image is
very expensive. In order to address this limitation, we learn
the classifier using a cascade methodology [7]. Afterwards,



(a) (b) (c) (d) (e)

Fig. 1. (a) CBSM correlogram parameters, (b) regions distribution, (c) region neighbors, (d) object point analysis, (e) region centroid definition, and (e) descriptor vector update
after point analysis.

Algorithm 2 Rotationally invariant ν description.

Require: ν, S, C
Ensure: Rotationally invariant descriptor vector νROT

Define G = {G1, .., GS/2} the S/2 diagonals of B, where
Gi = {ν(b{1,i}), .., ν(b{C,i}), .., ν(b{1,i+S/2}), .., ν(b{C,i+S/2})}

Select Gi so that
∑2C

j=1 Gi(j) ≥
∑2C

j=1 Gk(j), ∀k ∈ [1, .., S/2]

Define LG and RG as the left and right areas of the selected Gi as follows:
LG =

∑
j,k ν(b{j,k}), j ∈ [1, .., C], k ∈ [i + 1, .., i + S/2− 1]

RG =
∑

j,k ν(b{j,k}), j ∈ [1, .., C], k ∈ [i + S/2 + 1, .., i + S − 1]

if LG > RG then
B is rotated k = i + S/2− 1 positions to the left:
νROT = {ν(b{1,k+1}), .., ν(b{1,S}), ν(b{1,1}), .., ν(b{1,k}), ..,
, .., ν(b{C,k+1}), .., ν(b{C,S}), ν(b{C,1}), .., ν(b{C,k})}

else
B is rotated k = i− 1 positions to the right:
νROT = {ν(b{1,S}), .., ν(b{1,S−k+1}), ν(b{1,1}), .., ν(b{1,S−k}), ..,
, .., ν(b{C,S}), .., ν(b{C,S−k+1}), ν(b{C,1}), .., ν(b{C,S−k})}

end if

Bat1 Bat1 5×5 Bat1 24×24 Bat1 54×54

Bat2 Bat2 5×5 Bat2 24×24 Bat2 54×54

Fig. 2. Examples of image descriptions at different sizes for two object instances.

a windowing strategy is applied over the whole test images.
Between a range of windows sizes, a window is tested around
the image, and the cascade of classifiers is applied, detecting
target symbols.

3. EXPERIMENTAL EVALUATION
Before the presentation the results of the CBSM methodol-
ogy, first we discuss the data, methods, and validation of the
experiments.

• Data: In order to test the object spotting methodology,
we selected 20 predefined plan files of the Smart Draw soft-
ware [8], and 20 old musical scores from a collection of mod-
ern and old musical scores (19th century) of the Archive of
the Seminar of Barcelona. We also used the 70 object cate-

gories from the public MPEG7 binary object data set [5].
• Methods: we used the proposed CBSM descriptor,

learning the C and S parameters via cross-validation, learn-
ing 10 levels of the cascade with Gentle Adaboost classifier
with 50 decision stumps [6], and using as negative set 5000
random background images from Google. We also compare
our descriptor with SIFT [9], Zoning, Zernique, CSS curva-
ture descriptors from the standard MPEG [10] [1] [11], and
the original rectangular BSM [4]. The optimum grid size of
the CBSM descriptors is estimated applying cross-validation
over the training set using a 10% of the samples to validate
the different sizes of S, C = {8, 12, 16, 20, 24, 28, 32}. The
Zoning and BSM descriptors are set to the same number of
regions than the CBSM descriptor. Concerning the Zernique
technique, 7 moments are used. The length of the curve for
the CSS descriptor is normalized to 200, where the σ param-
eter takes an initial value of 1 and increases by 1 unit at each
step. We also used a simple 3-Nearest Neighbor to compare
multi-class categorization results among descriptors.

• Validation: The classification score is computed by
means of stratified ten-fold cross-validation, testing for the
95% of the confidence interval with a two-tailed t-test. In the
case of the object spotting problems, we apply the evalua-
tion framework of [12] for the detection rate criterion. The
accuracy is measured by the amount of overlap between the
detected region and the labelled one. We consider that two
regions are matched if they satisfy 1 − Rd∩Ro

Rd∪Ro
< ε, where

Rd is the detected region and Ro is the original one. We
set the maximum overlap error ε to 40%, as in [12]. More-
over, we introduce the false alarm rate criterion, defined as
the ratio between the number of detected regions that do not
match which the original labelled ones and the total number
of detected regions.

3.1. Symbol spotting in plan documents
In this experiment, we learnt a cascade of classifiers using 30
positive door symbols. Some results testing the spotting pro-
cedure with a windows displacement of five pixels are shown
in Figure 3. Note that all the doors are detected even when
connected with different wall types and over different rota-
tion degrees. From the total number of doors in the 20 plan
images, the 32 test doors were successfully detected using
the previous accuracy measure, obtaining a hit ratio of 100%.
Moreover, only one false positive region was detected, corre-



sponding to a 3% of the positive detections, taking into ac-
count that the cascade has analyzed thousands of regions per
image.

Fig. 3. Smartdraw door symbol detection results.

3.2. Symbol spotting in old musical scores
In this experiment, we learnt a cascade of classifiers using 144
positive clefs samples. Some results testing the spotting pro-
cedure with a windows displacement of five pixels over dif-
ferent staves are shown in Figure 4. Note that all the clefs are
detected. At the bottom one false positive is detected. Note
that under this false positive a rotation of the region appears,
looking as the beginning of a stave, where the clefs appear. In
this case, the degradation of the images reduces the accuracy
in comparison to the previous case. In particular, from the to-
tal number of 30 test clefs in the images, 28 were successfully
detected using the previous accuracy measure, which corre-
sponds to a hit ratio of 93.33%. Regarding the false positives,
7 regions were detected.

3.3. CBSM for multi-class classification
In this experiment, we used the 70 object categories from the
public MPEG7 binary object data set [5] to compare the de-
scriptors in a multi-class categorization problem. The classifi-
cation results and confidence interval using a 3-NN are shown
in Table 1. Note that the best performance is obtained by our
CBSM descriptor, followed by the original BSM.

CBSM BSM Zernique
71.84 (6.73) 65.79 (8.03) 43.64 (7.66)

Zoning CSS SIFT
58.64 (10.97) 37.01 (10.76) 29.14 (5.68)

Table 1. Classification results of state-of-the-art descriptors and 3-NN for the 70
classes of the public MPEG7 data set.

4. CONCLUSION
We presented the Circular Blurred Shape Model descriptor.
The descriptor codifies the spatial arrangement of object parts
based on a prior blurring degree. The descriptor has shown
to be potentially useful to describe objects that may suffer

Fig. 4. Clef detection in old stave images. A false positive is shown at the bottom of
the figure.

from irregular deformations, such as the symbols that appear
in document analysis. The descriptor is learnt using a cas-
cade of classifiers with Adaboost to discard non-object re-
gions, and tested over whole images, localizing the target ob-
jects. The symbol spotting procedure presented in this paper
shown to robustly locate object instances in documents, such
as symbols in plans and old musical scores. Moreover, the
presented descriptor also outperforms the state-of-the-art de-
scriptors when compared in multi-class object categorization
problems.
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