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Abstract—This article proposes a general extension of the
Error Correcting Output Codes (ECOC) framework to the
online learning scenario. As a result, the final classifier handles
the addition of new classes independently of the base classifier
used. Validation on UCI database and two real machine vision
applications show that the online problem-dependent ECOC
proposal provides a feasible and robust way for handling new
classes using any base classifier.

I. INTRODUCTION

Machine vision applications are constantly evolving, a
fact leading to the development of strong online classifiers
that can deal with the variability of the data. Given a
classification task, the goal of online learning is to model
the classifiers parameters using an initial training set, being
able to incrementally evolve this model parameters as new
data or classes become available.

Figure 1. Abstraction layers of the online behavior.

The online learning objectives are clearly differentiable in
comparison to classic batch learning. However, the ”online”
term involves different levels of behavior associated to the
classifier. One can clearly distinguish two behaviors at differ-
ent level of abstraction: the first one, from the point of view
of data examples - one expects the classifier to adapt to new
data from previously seen classes. The second abstraction
layer, from the point of view of classes - one expects the
classifier to adapt to new classes without retraining the
complete classifier. Figure 1 shows the relationship between
these two layers. The bottom layer deals only with examples;
in this layer, we can distinguish between data incremen-
tal/decremental classifiers and batch classifiers, depending
on the un/capability of the method to adapt to new data

examples. In this layer, most online learning approaches are
based on extending classical binary classifiers to the online
case, like decision trees, online Support Vector Machines
(SVM), or online ensemble of classifiers [1], [2]. Online
feature extraction has also been studied in the prototype
based classification leading to methods like Incremental
Principal Component Analysis (iPCA) or the extension of
the Fisher Linear Discriminant Analysis criterion [3].

On a higher level, we find the class incremen-
tal/decremental behavior. This layer deals with the addi-
tion/removal of classes. Up to now, literature has considered
the first and second layers as one. However, few are the
methods that allow both behaviors at the same time, and
most of literature is focussed on the first layer. This second
level of abstraction is where our proposal, online ECOC,
is defined. As a meta-learning strategy it can accommodate
either example incremental online classifiers of the first layer
or batch classifiers.

In this paper, we study the suitability of the ECOC [4]
framework to adapt to the online learning scenario. In
particular, we focus on layer-2 using ECOC coding schemes,
which incrementally allow new classes to be added to the
original problem independently of the base classifier. The
addition of unseen samples in the online ECOC becomes
straightforward using an online (layer-1) base binary classi-
fier. In particular, we study, propose, and evaluate a problem
dependent matrix generation algorithm, and validate it over
the UCI repository and two computer vision problems.

The paper is organized as follows: Section 2 overviews the
ECOC framework and proposes its extension to the layer-2
online case. Section 3 explains the presented method. Sec-
tion 4 shows the validation, and finally, section 5 concludes
this work.

II. ONLINE ERROR CORRECTING OUTPUT CODES

ECOC technique is a metalearning strategy that allows
to extend any binary classifier to the multiclass case. The
classic ECOC meta learning algorithm [4] has two phases:
in the learning step, an ECOC encoding matrix is constructed
in order to define the combination of the M binary classi-
fiers that allow full multi-class classification. In the testing
(decoding) phase, the new sample x is classified according
to the M binary classifiers set. The decoding algorithm finds



the most suitable class label for the test sample using the
output of this binary set of classifiers.

Briefly, given a set of N training samples X =
{x1, . . . ,xN}, where each xi belongs to the class Ci ∈
{C1, . . . , CK}, an ECOC encoding consists on constructing
M binary problems (called dichotomizers, hj) from the
original K classes. At each dichotomizer, the class set is
split into the binary classes {+1,−1}, forming a K × M
encoding ECOC matrix T. When a new sample must be
classified, the outputs of the dichotomizers (columns of
the matrix T) are used to construct the codeword that is
compared with each row of the matrix T. The class with the
minimum distance is selected as the classifier output. In this
binary grouping setting, the total number of possible splits
is 2K−1 − 1, being the efficient construction of the ECOC
matrix T the key issue in the training step. The encoding
step was extended by Alwein et al [5] to include a new
symbol - symbol 0 - so that, a class can be omitted in the
training of a particular dichotomizer. Classical multi-class
classification strategies, such as the one-vs-all or one-vs-
one (when ternary representations are used) can be easily
represented as an ECOC matrix. Nevertheless, more sophis-
ticated problem dependent encodings have been shown to
outperform classical approaches [6], without a significant
increment of the codeword length.

Possible decoding strategies are the Hamming distance
between the output of the dichotomizers on the new test
sample and each codeword (row) of the encoding matrix as
well as Euclidean decoding, Probabilistic decoding or Loss-
based decoding.

The recent Weighted decoding [6] has shown to be
generally better than most of the state of the art decoding
measures. The weighting methodology is designed to fulfill
two properties that allow a better behavior of the binary and
ternary decoding, being able to decode matrices with any
sparseness degree.

III. ONLINE ECOC CODING

The new class addition in the ECOC matrix reshapes it
in two ways: First, a new code must be defined for the
new class. Second, new dichotomies could be needed to
discriminate the new class. Additionally, any knowledge in
the ECOC matrix should be preserved, i.e. it is undesirable
to retrain previously learnt dichotomizers. In this section, we
propose a problem dependent method to extend online the
ECOC matrix to consider the addition of new classes.

A. General dependent online ECOC (PDo)

Traditionally, the grouping properties of the encoding
matrix T are predefined at design time. The input K ×M
encoding ECOC matrix T, where each T (i, j) ∈ {+1,−1}
represents the binary metaclass membership of the class
i in the dichotomizer j, can be statically extended with
a new dichotomizer hM+1 and a new codeword CK+1.

Nevertheless, it seems that more efficient grouping decisions
could be performed when the specific nature of the problem
is taken into account. A problem dependent approach can
select the proper values of T (i, j) using a data driven
criterion, such as the training error on a validation subset. We
take advantage of the weighted decoding, which allows to
take into account the metaclass relative accuracy (r-value),
defined as follows:

Definition: The metaclass relative accuracy (r-value) of
class k on the set S given the definition of the metaclasses
ρ is defined as follows,

rk(S, ρ, i) =
#elements of class k classified as metaclass i in the set S

#elements belonging to class k in the set S
, (1)

where ρ defines classes belonging to metaclasses.
The PDo coding is built in three steps: (formulated in

Algorithm 1):
1) Vertical extension: This step consists of creating a new

codeword for the new class. In Fig.2, the first step
tests dichotomizers (h1, h2, h3) with the samples of the
new class, assuming that they belong to the metaclasses
{+1,−1}. The metaclass value with higher r-value is
assigned to the new code. In the example, the new code
corresponds to {−1, 0,+1}. As the r-value obtained for
the new class by h2 is not higher than ϵ, the result of
the dichotomizer is not considered in the decoding.

2) Base horizontal extension: A new dichotomizer special-
ized on the new class is included. In Fig.2, the second
step sets class 5 to +1 and the rest to −1. The r-value
for each class must be stored in the weighting matrix
W .

3) Problem-dependent horizontal refinement: This step
proposes an r-value driven variable codeword expan-
sion. In Fig.2, C2 is the class with the highest error
in the confusion vector for the new class. We set the
value corresponding to that class to 0 in h4 and create
a new dichotomizer specialized on distinguishing C2

from C5.
Note that we get independence of the base classifier.

IV. RESULTS

First, we discuss the data, methods, measurements, and
experimental settings of the experiments.
• Data: We use eleven multi-class data sets from the UCI

Machine Learning Repository database [7]. Then, we apply
the online classification methodology in a 36-class computer
vision Mobile Mapping System [8] and a 30-class problem
from the ARFaces [9] data set.
• Methods: We test the multi-class OSU implementation

of RBF-Support Vector Machines as batch classifier. In
the case of the online classifiers, we compare the iLDA
with one-nearest neighbor classifier and our ECOC online
methodology with and without online base classifiers: PDo
and the batch PDo. The different classifiers parameters are



Input: Set of data points S = {(xi, Ci)|xi ∈ X ∧ Ci ∈ C} divided in a
training set St ⊂ S and a validation set Sv ⊂ S so that,
St

∪
Sv = S and St

∩
Sv = ∅

Input: ECOC matrix T of size K × M
Input: Set of new training instances So = {xN+1, . . . , xN+U} from a new

class CK+1

Input: Parameters ϵ and α
Output: Expanded ECOC matrix T̃

begin step 1: Vertical expansion
foreach column/dichotomy j ∈ {1 . . .M} do

/* Find the weight associated to that class for dichotomy j as the
maximum metaclass relative accuracy for all possible codes */
W (K + 1, j) = max(αrK+1(St, T (·, j), l) + (1 −
α)rK+1(Sv, T (·, j), l)) ∀l ∈ {1,−1}
if W (K + 1, j) < ϵ then

W (K + 1, j) = 0; T̃ (K + 1, j) = 0
else

/* Fill the ECOC matrix with the code value that maximized
the weight */
T̃ (K + 1, j) = argmaxl(αrK+1(St, T (·, j), l) + (1 −
α)rK+1(Sv, T (·, j), l)) ∀ l ∈ {1,−1}

end
begin step 2: Base horizontal expansion

T̃ (K + 1,M + 1) = −1
T̃ (j,M + 1) = 1 ∀j ∈ {1 . . . K}
w(K + 1,M + 1) =
αrK+1(St, T (·,M+1),−1)+(1−α)rK+1(Sv, T (·,M+1),−1)

end
begin step 3: Problem dependent horizontal expansion

while w(K + 1,M + 1) ≤ ϵ and |{T̃ (j,M + 1) = 1, ∀j ∈
{1 . . . K}}| > 1 do

Calculate the confusion vector with respect to class CK+1

Select the class Ce with maximum error
T̃ (e,M + 1) = 0
Add a new column at position s = length(T̃ ) + 1 so that,

T̃ (j, s) =

 1 j = e
−1 j = K + 1
0 otherwise

Find the new weights according to the new dichotomy definitions
w(j,M + 1) = αrj(St, T (·,M + 1), T (j,M + 1)) + (1 −
α)rj(Sv, T (·,M + 1), T (j,M + 1)) and
w(j, s) = αrj(St, T (·, s), T (j, s)) + (1 −
α)rj(Sv, T (·, s), T (j, s)) ∀j ∈ {1 . . . K + 1}

end
Algorithm 1: General algorithm for the creation of the problem
dependent layer-2 online ECOC matrix.

tuned via cross-validation of the training set. All online
multi-class experiments are solved by considering an initial
2-class problem and progressively increasing the number of
classes by one.
• Measurements: We apply stratified ten-fold cross-

validation and test for the confidence interval with a two-
tailed t-test. We also use the Friedman and Nemenyi tests
to look for significant statistical differences between the
methods’ performances [10].

A. Validation over UCI data sets

The average accuracy and rankings are shown in table I.
The asterisks mark the best performance and the values
in bold correspond to the methods which fall within the
95% confidence interval of the best result. The rankings
are obtained estimating each relative rank rji for each data
set i and each classification strategy j, and computing the
mean ranking R for each classifier as Rj = 1

J

∑
i r

j
i ,

where J is the total number of data sets. For comparison

Figure 2. Problem-Dependent Online strategy. White, black, and
grey regions are coded by +1, -1, and 0, respectively.

Table I
UCI CLASSIFICATION RESULTS.

DB iLDA PDo batch PDo SVM

Balance 0.84 (0.03) 0.97 (0.02) * 0.97 (0.02) * 0.97 (0.02)
Wine 0.74 (0.06) * 0.65 (0.05) 0.64 (0.04) 0.61 (0.04)

Thyroid 0.72 (0.03) 0.96 (0.03) * 0.96 (0.03) * 0.95 (0.03)
IRIS 0.97 (0.03) * 0.95 (0.04) 0.95 (0.04) 0.97 (0.04)

Glass 0.53 (0.08) * 0.50 (0.04) 0.49 (0.04) 0.46 (0.04)
Ecoli 0.82 (0.04) 0.84 (0.03) 0.86 (0.02) 0.85 (0.02)
Yeast 0.52 (0.02) 0.58 (0.03) 0.57 (0.03) 0.59 (0.02)
Vowel 0.74 (0.04) * 0.54 (0.05) 0.50 (0.03) 0.53 (0.04)

Derma. 0.88 (0.03) 0.96 (0.01) * 0.96 (0.01) * 0.96 (0.01)
Vehicle 0.38 (0.04) 0.73 (0.02) * 0.73 (0.03) * 0.72 (0.02)

Segmen. 0.60 (0.01) 0.95 (0.02) * 0.91 (0.03) 0.95 (0.02)

Rank 2.73 1.63 2.00

purposes, the last column in the table shows the SVM
results trained as a multi-class off-line classifier and it is
not used in the computation of the ranking and confidence
interval. Notice that the best online method is the PDo,
followed by the batchPDo. In addition, we test for statistical
significance applying the Nemenyi test [10], founding the
PDo statistically outperform iLDA.

1) Traffic sign categorization: For this first computer
vision experiment, we use the video sequences obtained
from the Mobile Mapping System of [8] to test the online
ECOC methodology on a real traffic sign categorization
problem. A set of 36 circular and triangular traffic sign
classes are obtained (Fig. 3). The data set contains a total
of 3481 samples of size 32×32, filtered using the Weickert
anisotropic filter, masked to exclude the background pixels,
and equalized to prevent the effects of illumination changes.
These feature vectors are then projected into a 100 feature
vector by means of PCA [11].

The classification results of the traffic sign data sets are
shown in table II. The ranks are computed taking into
account each iteration of the 10-fold evaluation as a different
experiment. On can see that the PDo approach outperforms
the results of the rest of strategies, and obtains comparable
results to the off-line SVM.

In order to analyze if the difference between methods
ranks is statistically significant, we applied the Friedman



Figure 3. Examples of Traffic sign and face classes.

Table II
TRAFFIC AND FACE DATA SETS CLASSIFICATION.

Traffic SVM iLDA PDo batch PDo
Performance 0.97 (0.01) 0.90 (0.01) 0.95 (0.02) 0.93 (0.03)

Rank 2.6 7.4 3.4 4.9

Face SVM iLDA PDo batch PDo
Performance 0.88 (0.06) * 0.49 (0.09) 0.83 (0.07) 0.74 (0.09)

Rank 1.2 7.2 2.4 3.9

test, rejecting the null hypothesis. Once we have checked for
the non-randomness of the results, we use the Nemenyi test
to compare 4 methods with a confidence value α = 0.10. In
this case, we obtain a critical difference that single out SVM
and PDo as the best methods in the traffic sign recognition
experiment.

2) Face classification: The AR Face database [9] is com-
posed of 26 uniform white background face images from 126
subjects. The database has two sets of images for each per-
son, acquired in two different sessions (Fig. 3). We selected
all the samples from 30 different persons. The classification
results and ranks (Table II) show that the differences among
strategies are similar to the previous cases. The best results
are obtained by the batch SVM approach, followed by the
PDo and batch PDo strategies, respectively. Finally, the
iLDA approach offers the less performance. The Friedman
test also rejects the null hypothesis, and Nemenyi critical
difference single out SVM and PDo approaches as the best
methods for the ARFace categorization.

V. CONCLUSIONS

In this paper, we proposed a general problem-dependent
methodology for the design of online ECOC matrices for
both online and batch base classifiers. We have shown
different applications where the addition of classes online
can be applied by considering an initial 2-class problem
and progressively increasing the number of classes. The
online results have been compared with multi-class batch
classifiers, showing encouraging results.
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